
Michael W Bevan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1563799/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Rapid delivery systems for future food security. Nature Biotechnology, 2021, 39, 1179-1181.	17.5	17
2	Fast-forward breeding for a food-secure world. Trends in Genetics, 2021, 37, 1124-1136.	6.7	82
3	Multiple wheat genomes reveal global variation in modern breeding. Nature, 2020, 588, 277-283.	27.8	513
4	Variation in the expression of a transmembrane protein influences cell growth in Arabidopsis thaliana petals by altering auxin responses. BMC Plant Biology, 2020, 20, 482.	3.6	0
5	Reduced chromatin accessibility underlies gene expression differences in homologous chromosome arms of diploid Aegilops tauschii and hexaploid wheat. GigaScience, 2020, 9, .	6.4	23
6	Variation in Expression of the HECT E3 Ligase <i>UPL3</i> Modulates LEC2 Levels, Seed Size, and Crop Yields in <i>Brassica napus</i> . Plant Cell, 2019, 31, 2370-2385.	6.6	38
7	Independent assessment and improvement of wheat genome sequence assemblies using Fosill jumping libraries. GigaScience, 2018, 7, .	6.4	12
8	Hidden variation in polyploid wheat drives local adaptation. Genome Research, 2018, 28, 1319-1332.	5.5	41
9	Ubiquitylation activates a peptidase that promotes cleavage and destabilization of its activating E3 ligases and diverse growth regulatory proteins to limit cell proliferation in <i>Arabidopsis</i> . Genes and Development, 2017, 31, 197-208.	5.9	128
10	An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Research, 2017, 27, 885-896.	5.5	464
11	Genomic innovation for crop improvement. Nature, 2017, 543, 346-354.	27.8	301
12	Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature, 2017, 551, 498-502.	27.8	563
13	The Mediator complex subunits MED25/PFT1 and MED8 are required for transcriptional responses to changes in cell wall arabinose composition and glucose treatment in Arabidopsis thaliana. BMC Plant Biology, 2015, 15, 215.	3.6	21
14	The Tinkerbell (Tink) Mutation Identifies the Dual-Specificity MAPK Phosphatase INDOLE-3-BUTYRIC ACID-RESPONSE5 (IBR5) as a Novel Regulator of Organ Size in Arabidopsis. PLoS ONE, 2015, 10, e0131103.	2.5	30
15	<i>TANG1</i> , Encoding a Symplekin_C Domain-Contained Protein, Influences Sugar Responses in Arabidopsis. Plant Physiology, 2015, 168, 1000-1012.	4.8	10
16	The Ubiquitin Receptors DA1, DAR1, and DAR2 Redundantly Regulate Endoreduplication by Modulating the Stability of TCP14/15 in Arabidopsis. Plant Cell, 2015, 27, 649-662.	6.6	101
17	The Pentatricopeptide Repeat Proteins TANG2 and ORGANELLE TRANSCRIPT PROCESSING439 Are Involved in the Splicing of the Multipartite <i>nad5</i> Transcript Encoding a Subunit of Mitochondrial Complex I. Plant Physiology, 2014, 165, 1409-1416.	4.8	78
18	A 4-gigabase physical map unlocks the structure and evolution of the complex genome of <i>Aegilops tauschii,</i> the wheat D-genome progenitor. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7940-7945.	7.1	214

MICHAEL W BEVAN

#	Article	IF	CITATIONS
19	The ARP2/3 Complex Mediates Guard Cell Actin Reorganization and Stomatal Movement in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 2031-2040.	6.6	74
20	Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature, 2012, 491, 705-710.	27.8	983
21	The plantâ€specific G protein γ subunit AGG3 influences organ size and shape in <i>Arabidopsis thaliana</i> . New Phytologist, 2012, 194, 690-703.	7.3	119
22	Targeted reâ€sequencing of the allohexaploid wheat exome. Plant Biotechnology Journal, 2012, 10, 733-742.	8.3	133
23	Endless variation most beautiful. Nature, 2011, 477, 415-416.	27.8	2
24	Control of final seed and organ size by the <i>DA1</i> gene family in <i>Arabidopsis thaliana</i> . Genes and Development, 2008, 22, 1331-1336.	5.9	404
25	Signaling from an Altered Cell Wall to the Nucleus Mediates Sugar-Responsive Growth and Development in <i>Arabidopsis thaliana</i> . Plant Cell, 2007, 19, 2500-2515.	6.6	57
26	Sugar and ABA response pathways and the control of gene expression. Plant, Cell and Environment, 2006, 29, 426-434.	5.7	227
27	Impaired sucrose induction1encodes a conserved plant-specific protein that couples carbohydrate availability to gene expression and plant growth. Plant Journal, 2006, 46, 1045-1058.	5.7	35
28	Establishing glucose- and ABA-regulated transcription networks in Arabidopsis by microarray analysis and promoter classification using a Relevance Vector Machine. Genome Research, 2006, 16, 414-427.	5.5	229
29	The Arabidopsis genome: A foundation for plant research. Genome Research, 2005, 15, 1632-1642.	5.5	110
30	Characterization of Mutants in Arabidopsis Showing Increased Sugar-Specific Gene Expression, Growth, and Developmental Responses. Plant Physiology, 2004, 134, 81-91.	4.8	87
31	Positioning Arabidopsis in Plant Biology. A Key Step Toward Unification of Plant Research. Plant Physiology, 2004, 135, 602-606.	4.8	8
32	Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. Plant Journal, 2003, 34, 351-362.	5.7	424
33	Genetic approaches to understanding sugar-response pathways. Journal of Experimental Botany, 2003, 54, 495-501.	4.8	105
34	PLANT SCIENCE: Surprises Inside a Green Grass Genome. Science, 2003, 300, 1514-1515.	12.6	7
35	Genomics and plant cells: application of genomics strategies to Arabidopsis cell biology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 731-736.	4.0	10
36	Impaired sucrose-induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signalling. Plant Journal, 2001, 26, 421-433.	5.7	359

MICHAEL W BEVAN

#	Article	IF	CITATIONS
37	<i>MYB61</i> Is Required for Mucilage Deposition and Extrusion in the Arabidopsis Seed Coat. Plant Cell, 2001, 13, 2777-2791.	6.6	253
38	Function Search in a Large Transcription Factor Gene Family in Arabidopsis: Assessing the Potential of Reverse Genetics to Identify Insertional Mutations in R2R3 MYB Genes. Plant Cell, 1999, 11, 1827-1840.	6.6	151
39	The activities of acidic and glutamine-rich transcriptional activation domains in plant cells: design of modular transcription factors for high-level expression. Plant Molecular Biology, 1998, 36, 195-204.	3.9	71
40	Towards functional characterisation of the members of theR2R3-MYBgene family fromArabidopsis thaliana. Plant Journal, 1998, 16, 263-276.	5.7	554
41	Tissue-specific expression of the PAL3 promoter requires the interaction of two conserved cis sequences. Plant Molecular Biology, 1996, 31, 393-397.	3.9	13
42	Two classes of cis sequences contribute to tissue-specific expression of a PAL2 promoter in transgenic tobacco. Plant Journal, 1995, 7, 859-876.	5.7	157
43	The maize transcription factor Opaque-2 activates a wheat glutenin promoter in plant and yeast cells. Plant Molecular Biology, 1995, 29, 711-720.	3.9	36
44	Asparaginase gene expression is regulated in a complex spatial and temporal pattern in nitrogen-sink tissues. Plant Journal, 1994, 5, 695-704.	5.7	31
45	A practical guide to ligation-mediated PCR footprinting andin-vivo DNA analysis using plant tissues. Plant Molecular Biology Reporter, 1993, 11, 249-272.	1.8	2