Raif S Geha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1563181/publications.pdf

Version: 2024-02-01

150 papers 8,434 citations

52 h-index 85 g-index

157 all docs

157 does citations

157 times ranked

10109 citing authors

#	Article	IF	CITATIONS
1	Linker-Improved Chimeric Endolysin Selectively Kills Staphylococcus aureus <i>In Vitro</i> , on Reconstituted Human Epidermis, and in a Murine Model of Skin Infection. Antimicrobial Agents and Chemotherapy, 2022, 66, e0227321.	3.2	12
2	Inborn Errors of the Immune System Associated With Atopy. Frontiers in Immunology, 2022, 13, 860821.	4.8	10
3	ITK deficiency presenting as autoimmune lymphoproliferative syndrome. Journal of Allergy and Clinical Immunology, 2021, 147, 743-745.e1.	2.9	8
4	DOCK8 Expression in Regulatory T Cells Maintains their Stability and Limits Contact Hypersensitivity. Journal of Investigative Dermatology, 2021, 141, 1503-1511.e3.	0.7	7
5	Hematopoietic Stem Cell Transplantation Is a Curative Therapy for Transferrin Receptor 1 (TFRC) Deficiency. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 753-759.e2.	3.8	4
6	Mast cell–derived IL-13 downregulates IL-12 production by skin dendritic cells to inhibit the TH1 cell response to cutaneous antigen exposure. Journal of Allergy and Clinical Immunology, 2021, 147, 2305-2315.e3.	2.9	33
7	Efficacy and economics of targeted panel versus whole-exome sequencing in 878 patients with suspected primary immunodeficiency. Journal of Allergy and Clinical Immunology, 2021, 147, 723-726.	2.9	31
8	Combined immunodeficiency due to a mutation in the \hat{I}^31 subunit of the coat protein I complex. Journal of Clinical Investigation, 2021, 131, .	8.2	15
9	Multi-kingdom ecological drivers of microbiota assembly in preterm infants. Nature, 2021, 591, 633-638.	27.8	169
10	Macabre TH2 skewing in DOCK8 deficiency. Journal of Allergy and Clinical Immunology, 2021, 148, 73-75.	2.9	5
11	Basophil: The cell that itches. Journal of Allergy and Clinical Immunology, 2021, 148, 708-709.	2.9	1
12	Mechanisms underlying genetic susceptibility to multisystem inflammatory syndrome in children (MIS-C). Journal of Allergy and Clinical Immunology, 2021, 148, 732-738.e1.	2.9	84
13	TNFRSF13B genotypes control immune-mediated pathology by regulating the functions of innate B cells. JCI Insight, 2021, 6, .	5.0	4
14	Combined immunodeficiency with autoimmunity caused by a homozygous missense mutation in inhibitor of nuclear factor ?B kinase alpha (IKK $\hat{l}\pm$). Science Immunology, 2021, 6, eabf6723.	11.9	6
15	Basophil-derived IL-4 promotes cutaneous Staphylococcus aureus infection. JCI Insight, 2021, 6, .	5.0	15
16	Hypomorphic variants in AK2 reveal the contribution of mitochondrial function to B-cell activation. Journal of Allergy and Clinical Immunology, 2020, 146, 192-202.	2.9	13
17	Dysregulated actin dynamics in activated PI3Kδ syndrome. Clinical Immunology, 2020, 210, 108311.	3.2	7
18	Acetaminophen Inhibits the Neutrophil Oxidative Burst: Implications for Diagnostic Testing. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 3543-3548.	3.8	0

#	Article	IF	Citations
19	APRIL expression is upregulated in atopic dermatitis skin lesions and at sites of antigen driven allergic skin inflammation in mice. Clinical Immunology, 2020, 219, 108556.	3.2	1
20	Immune dysregulation and multisystem inflammatory syndrome in children (MIS-C) in individuals with haploinsufficiency of SOCS1. Journal of Allergy and Clinical Immunology, 2020, 146, 1194-1200.e1.	2.9	92
21	A regulatory T cell Notch4–GDF15 axis licenses tissue inflammation in asthma. Nature Immunology, 2020, 21, 1359-1370.	14.5	70
22	Immunoglobulins in the treatment of COVID-19 infection: Proceed with caution!. Clinical Immunology, 2020, 216, 108459.	3.2	91
23	ILC2 activation by keratinocyte-derived IL-25 drives IL-13 production at sites of allergic skin inflammation. Journal of Allergy and Clinical Immunology, 2020, 145, 1606-1614.e4.	2.9	68
24	Genotype and functional correlates of disease phenotype in deficiency of adenosine deaminase 2 (DADA2). Journal of Allergy and Clinical Immunology, 2020, 145, 1664-1672.e10.	2.9	95
25	Severe combined immunodeficiency caused by inositol-trisphosphate 3-kinase B (ITPKB) deficiency. Journal of Allergy and Clinical Immunology, 2020, 145, 1696-1699.e6.	2.9	6
26	Cutaneous barrier leakage and gut inflammation drive skin disease in Omenn syndrome. Journal of Allergy and Clinical Immunology, 2020, 146, 1165-1179.e11.	2.9	13
27	Inherited human IFN- \hat{I}^3 deficiency underlies mycobacterial disease. Journal of Clinical Investigation, 2020, 130, 3158-3171.	8.2	89
28	IL-22 promotes allergic airway inflammation in epicutaneously sensitized mice. Journal of Allergy and Clinical Immunology, 2019, 143, 619-630.e7.	2.9	41
29	A novel truncating mutation in MYD88 in a patient with BCG adenitis, neutropenia and delayed umbilical cord separation. Clinical Immunology, 2019, 207, 40-42.	3.2	9
30	Combined immunodeficiency in a patient with c-Rel deficiency. Journal of Allergy and Clinical Immunology, 2019, 144, 606-608.e4.	2.9	32
31	Outcomes and Treatment Strategies for Autoimmunity and Hyperinflammation in Patients with RAG Deficiency. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 1970-1985.e4.	3.8	64
32	Mechanical Skin Injury Promotes Food Anaphylaxis by Driving Intestinal Mast Cell Expansion. Immunity, 2019, 50, 1262-1275.e4.	14.3	158
33	Rethinking newborn screening for severe combined immunodeficiency: Lessons from an international partnership for patients with primary immunodeficiencies in Pakistan. Clinical Immunology, 2019, 202, 29-32.	3.2	2
34	F-BAR domain only protein 1 (FCHO1) deficiency is a novel cause of combined immune deficiency in human subjects. Journal of Allergy and Clinical Immunology, 2019, 143, 2317-2321.e12.	2.9	21
35	Immunodeficiency and EBV-induced lymphoproliferation caused by 4-1BB deficiency. Journal of Allergy and Clinical Immunology, 2019, 144, 574-583.e5.	2.9	63
36	Human primary immunodeficiency caused by expression of a kinase-dead p $110\hat{l}$ mutant. Journal of Allergy and Clinical Immunology, 2019, 143, 797-799.e2.	2.9	33

#	Article	IF	CITATIONS
37	Hematopoietic Stem Cell Transplantation as Treatment for Patients with DOCK8 Deficiency. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 848-855.	3.8	67
38	Primary immunodeficiencies caused by mutations in actin regulatory proteins. Immunological Reviews, 2019, 287, 121-134.	6.0	40
39	Injury, dysbiosis, and filaggrin deficiency drive skin inflammation through keratinocyte IL-1α release. Journal of Allergy and Clinical Immunology, 2019, 143, 1426-1443.e6.	2.9	56
40	Atypical phenotype of an old disease or typical phenotype of a new disease: deficiency of adenosine deaminase 2. Turkish Journal of Pediatrics, 2019, 61, 413.	0.6	5
41	RORα-expressing T regulatory cells restrain allergic skin inflammation. Science Immunology, 2018, 3, .	11.9	97
42	WASP-mediated regulation of anti-inflammatory macrophages is IL-10 dependent and is critical for intestinal homeostasis. Nature Communications, 2018, 9, 1779.	12.8	40
43	Mechanisms of genotype-phenotype correlation in autosomal dominant anhidrotic ectodermal dysplasia with immune deficiency. Journal of Allergy and Clinical Immunology, 2018, 141, 1060-1073.e3.	2.9	22
44	Exaggerated follicular helper T-cell responses in patients with LRBA deficiency caused by failure of CTLA4-mediated regulation. Journal of Allergy and Clinical Immunology, 2018, 141, 1050-1059.e10.	2.9	93
45	DNA recombination defects in Kuwait: Clinical, immunologic and genetic profile. Clinical Immunology, 2018, 187, 68-75.	3.2	11
46	Clinical, immunologic, and genetic spectrum of 696 patients with combined immunodeficiency. Journal of Allergy and Clinical Immunology, 2018, 141, 1450-1458.	2.9	90
47	Novel biallelic TRNT1 mutations resulting in sideroblastic anemia, combined B and T cell defects, hypogammaglobulinemia, recurrent infections, hypertrophic cardiomyopathy and developmental delay. Clinical Immunology, 2018, 188, 20-22.	3.2	24
48	The Lack of WIP Binding to Actin Results in Impaired B Cell Migration and Altered Humoral Immune Responses. Cell Reports, 2018, 24, 619-629.	6.4	17
49	Defective TLR9-driven STAT3 activation in B cells of patients with CVID. Clinical Immunology, 2018, 197, 40-44.	3.2	7
50	MyD88 signaling in T regulatory cells by endogenous ligands dampens skin inflammation in filaggrin deficient mice. Clinical Immunology, 2018, 195, 88-92.	3.2	1
51	Comprehensive Genetic Results for Primary Immunodeficiency Disorders in a Highly Consanguineous Population. Frontiers in Immunology, 2018, 9, 3146.	4.8	37
52	Deficient LRRC8A-dependent volume-regulated anion channel activity is associated with male infertility in mice. JCl Insight, 2018, 3, .	5.0	29
53	Leucine-rich repeat containing 8A (LRRC8A) –dependent volume-regulated anion channel activity is dispensable for T-cell development and function. Journal of Allergy and Clinical Immunology, 2017, 140, 1651-1659.e1.	2.9	36
54	Human <i>RELA</i> haploinsufficiency results in autosomal-dominant chronic mucocutaneous ulceration. Journal of Experimental Medicine, 2017, 214, 1937-1947.	8.5	84

#	Article	IF	CITATIONS
55	Janus kinase 3 deficiency caused by a homozygous synonymous exonic mutation that creates a dominant splice site. Journal of Allergy and Clinical Immunology, 2017, 140, 268-271.e6.	2.9	11
56	DOCK8 Deficiency Presenting as an IPEX-Like Disorder. Journal of Clinical Immunology, 2017, 37, 811-819.	3.8	39
57	Combined immunodeficiency with EBV positive B cell lymphoma and epidermodysplasia verruciformis due to a novel homozygous mutation in RASGRP1. Clinical Immunology, 2017, 183, 142-144.	3.2	43
58	Advances in basic and clinical immunology in 2016. Journal of Allergy and Clinical Immunology, 2017, 140, 959-973.	2.9	5
59	A novel mutation in the JH4 domain of JAK3 causing severe combined immunodeficiency complicated by vertebral osteomyelitis. Clinical Immunology, 2017, 183, 198-200.	3.2	6
60	Cernunnos deficiency associated with BCG adenitis and autoimmunity: First case from the national Iranian registry and review of the literature. Clinical Immunology, 2017, 183, 201-206.	3.2	11
61	Staphylococcus aureus Epicutaneous Exposure Drives Skin Inflammation via IL-36-Mediated T Cell Responses. Cell Host and Microbe, 2017, 22, 653-666.e5.	11.0	170
62	Disseminated Mycobacterium malmoense and Salmonella Infections Associated with a Novel Variant in NFKBIA. Journal of Clinical Immunology, 2017, 37, 415-418.	3.8	13
63	Epidermodysplasia verruciformis as a manifestation of ARTEMIS deficiency in a young adult. Journal of Allergy and Clinical Immunology, 2017, 139, 372-375.e4.	2.9	18
64	Heterozygosity for transmembrane activator and calcium modulator ligand interactor A144E causes haploinsufficiency and pneumococcal susceptibility in mice. Journal of Allergy and Clinical Immunology, 2017, 139, 1293-1301.e4.	2.9	13
65	The LRRC8A Mediated "Swell Activated―Chloride Conductance Is Dispensable for Vacuolar Homeostasis in Neutrophils. Frontiers in Pharmacology, 2017, 8, 262.	3.5	9
66	Uses of Next-Generation Sequencing Technologies for the Diagnosis of Primary Immunodeficiencies. Frontiers in Immunology, 2017, 8, 847.	4.8	95
67	DOCK8 enforces immunological tolerance by promoting IL-2 signaling and immune synapse formation in Tregs. JCI Insight, 2017, 2, .	5.0	31
68	Staphylococcus aureus Exploits Epidermal Barrier Defects in Atopic Dermatitis to Trigger Cytokine Expression. Journal of Investigative Dermatology, 2016, 136, 2192-2200.	0.7	260
69	Chronic mucocutaneous candidiasis associated with an SH2 domain gain-of-function mutation that enhances STAT1 phosphorylation. Journal of Allergy and Clinical Immunology, 2016, 138, 297-299.	2.9	24
70	Hyper IgM Syndrome: a Report from the USIDNET Registry. Journal of Clinical Immunology, 2016, 36, 490-501.	3.8	92
71	Hematopoietic stem cell transplantation outcomes for 11 patients with dedicator of cytokinesis 8 deficiency. Journal of Allergy and Clinical Immunology, 2016, 138, 852-859.e3.	2.9	48
72	Combined immunodeficiency due to a homozygous mutation in ORAI1 that deletes the C-terminus that interacts with STIM 1. Clinical Immunology, 2016, 166-167, 100-102.	3.2	11

#	Article	IF	CITATIONS
73	Rapid molecular diagnostics of severe primary immunodeficiency determined by using targeted next-generation sequencing. Journal of Allergy and Clinical Immunology, 2016, 138, 1142-1151.e2.	2.9	85
74	Mutations in pyrin masquerading as a primary immunodeficiency. Clinical Immunology, 2016, 171, 65-66.	3.2	2
75	IL-22 derived from î³î´T cells restricts Staphylococcus aureus infection of mechanically injured skin. Journal of Allergy and Clinical Immunology, 2016, 138, 1098-1107.e3.	2.9	48
76	IL-23 induced in keratinocytes by endogenous TLR4 ligands polarizes dendritic cells to drive IL-22 responses to skin immunization. Journal of Experimental Medicine, 2016, 213, 2147-2166.	8.5	79
77	IL-33 promotes food anaphylaxis in epicutaneously sensitized mice by targeting mast cells. Journal of Allergy and Clinical Immunology, 2016, 138, 1356-1366.	2.9	157
78	Dedicator of cytokinesis 8 regulates signal transducer and activator of transcription 3 activation and promotes TH17Âcell differentiation. Journal of Allergy and Clinical Immunology, 2016, 138, 1384-1394.e2.	2.9	70
79	A missense mutation in TFRC, encoding transferrin receptor 1 , causes combined immunodeficiency. Nature Genetics, $2016,48,74-78.$	21.4	219
80	Thymic stromal lymphopoietin and IL-33 promote skin inflammation and vaccinia virus replication in a mouse model of atopic dermatitis. Journal of Allergy and Clinical Immunology, 2016, 138, 283-286.	2.9	22
81	Spectrum of Phenotypes Associated with Mutations in LRBA. Journal of Clinical Immunology, 2016, 36, 33-45.	3.8	180
82	Recurrent viral infections associated with a homozygous CORO1A mutation that disrupts oligomerization and cytoskeletal association. Journal of Allergy and Clinical Immunology, 2016, 137, 879-888.e2.	2.9	41
83	Autoimmune lymphoproliferative syndrome caused by a homozygous FasL mutation that disrupts FasL assembly. Journal of Allergy and Clinical Immunology, 2016, 137, 324-327.e2.	2.9	13
84	Targeted deep sequencing identifies rare loss-of-function variants in IFNGR1 for risk of atopic dermatitis complicated by eczema herpeticum. Journal of Allergy and Clinical Immunology, 2015, 136, 1591-1600.	2.9	42
85	Defective lymphoid organogenesis underlies the immune deficiency caused by a heterozygous S32I mutation in lκBα. Journal of Experimental Medicine, 2015, 212, 185-202.	8.5	25
86	The microbiota is important for IL-17A expression and neutrophil infiltration in lesional skin of Flgft/ft mice. Clinical Immunology, 2015, 156, 128-130.	3.2	12
87	Filaggrin deficiency promotes the dissemination of cutaneously inoculated vaccinia virus. Journal of Allergy and Clinical Immunology, 2015, 135, 1511-1518.e6.	2.9	15
88	A novel mutation in NCF2 associated with autoimmune disease and a solitary late-onset infection. Clinical Immunology, 2015, 161, 128-130.	3.2	12
89	Wiskott-Aldrich Syndrome Interacting Protein Deficiency Uncovers the Role of the Co-receptor CD19 as a Generic Hub for PI3 Kinase Signaling in B Cells. Immunity, 2015, 43, 660-673.	14.3	68
90	A novel mutation in ORAI1 presenting with combined immunodeficiency and residual T-cell function. Journal of Allergy and Clinical Immunology, 2015, 136, 479-482.e1.	2.9	28

#	Article	IF	Citations
91	The Rho GTPase Cdc42 Is Essential for the Activation and Function of Mature B Cells. Journal of Immunology, 2015, 194, 4750-4758.	0.8	26
92	Broad spectrum of autoantibodies in patients with Wiskott-Aldrich syndrome and X-linked thrombocytopenia. Journal of Allergy and Clinical Immunology, 2015, 136, 1401-1404.e3.	2.9	25
93	A novel mutation in ICOS presenting as hypogammaglobulinemia with susceptibility to opportunistic pathogens. Journal of Allergy and Clinical Immunology, 2015, 136, 794-797.e1.	2.9	26
94	Regulatory T-cell deficiency and immune dysregulation, polyendocrinopathy, enteropathy, X-linked–like disorder caused by loss-of-function mutations in LRBA. Journal of Allergy and Clinical Immunology, 2015, 135, 217-227.e9.	2.9	223
95	Dedicator of cytokinesis 8–deficient patients have aÂbreakdown in peripheral B-cell tolerance and defectiveÂregulatory T cells. Journal of Allergy and Clinical Immunology, 2014, 134, 1365-1374.	2.9	7 9
96	Flow cytometry diagnosis of dedicator of cytokinesis 8 (DOCK8) deficiency. Journal of Allergy and Clinical Immunology, 2014, 134, 221-223.e7.	2.9	62
97	Food allergy: Insights into etiology, prevention, and treatment provided by murine models. Journal of Allergy and Clinical Immunology, 2014, 133, 309-317.	2.9	96
98	Gene hunting in the genomic era: Approaches to diagnostic dilemmas in patients with primary immunodeficiencies. Journal of Allergy and Clinical Immunology, 2014, 134, 262-268.	2.9	34
99	A systematic analysis of recombination activity andÂgenotype-phenotype correlation in human recombination-activating gene 1 deficiency. Journal of Allergy and Clinical Immunology, 2014, 133, 1099-1108.e12.	2.9	132
100	Binding of WIP to Actin Is Essential for T Cell Actin Cytoskeleton Integrity and Tissue Homing. Molecular and Cellular Biology, 2014, 34, 4343-4354.	2.3	21
101	The CARD11-BCL10-MALT1 (CBM) signalosome complex: Stepping into the limelight of human primary immunodeficiency. Journal of Allergy and Clinical Immunology, 2014, 134, 276-284.	2.9	133
102	A novel mutation in FOXN1 resulting in SCID: A case report and literature review. Clinical Immunology, 2014, 155, 30-32.	3.2	32
103	Flow cytometry biomarkers distinguish DOCK8 deficiency from severe atopic dermatitis. Clinical Immunology, 2014, 150, 220-224.	3.2	38
104	Lessons in gene hunting: AÂRAG1 mutation presenting with agammaglobulinemia and absence of B cells. Journal of Allergy and Clinical Immunology, 2014, 134, 983-985.e1.	2.9	22
105	Plasmacytoid dendritic cell depletion in DOCK8 deficiency: Rescue of severe herpetic infections with IFN-α 2b therapy. Journal of Allergy and Clinical Immunology, 2014, 133, 1753-1755.e3.	2.9	46
106	Presence of hypogammaglobulinemia and abnormal antibody responses in GATA2 deficiency. Journal of Allergy and Clinical Immunology, 2014, 134, 223-226.	2.9	25
107	A novel disease-causing CD40L mutation reduces expression of CD40 ligand, but preserves CD40 binding capacity. Clinical Immunology, 2014, 153, 288-291.	3.2	9
108	T-cell receptor ligation causes Wiskott-Aldrich syndrome protein degradation and F-actin assembly downregulation. Journal of Allergy and Clinical Immunology, 2013, 132, 648-655.e1.	2.9	42

#	Article	IF	Citations
109	C3a receptor promotes viral containment in mice inoculated with vaccinia virus at sites of allergic skin inflammation. Journal of Allergy and Clinical Immunology, 2013, 132, 746-748.e3.	2.9	0
110	Epicutaneous sensitization results in IgE-dependent intestinal mast cell expansion and food-induced anaphylaxis. Journal of Allergy and Clinical Immunology, 2013, 131, 451-460.e6.	2.9	139
111	Mice Lacking Wasp-Interacting Protein Evolve Anti-Platelet IgAs That Impair Platelet Responses Mediated by the Collagen Receptor GPVI Blood, 2008, 112, 1231-1231.	1.4	13
112	Epicutaneous antigen exposure induces a Th17 response that drives airway inflammation after inhalation challenge. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15817-15822.	7.1	179
113	Charles A. Janeway and Fred S. Rosen: The discovery of gamma globulin therapy and primary immunodeficiency diseases at Boston Children's Hospital. Journal of Allergy and Clinical Immunology, 2005, 116, 937-940.	2.9	6
114	The regulation of immunoglobulin E class-switch recombination. Nature Reviews Immunology, 2003, 3, 721-732.	22.7	399
115	An obligate role for T-cell receptor $\hat{l}\pm\hat{l}^2+T$ cells but not T-cell receptor $\hat{l}^3\hat{l}'+T$ cells, B cells, or CD40/CD40L interactions in a mouse model of atopic dermatitis. Journal of Allergy and Clinical Immunology, 2001, 107, 359-366.	2.9	60
116	WIP regulates N-WASP-mediated actin polymerization and filopodium formation. Nature Cell Biology, 2001, 3, 484-491.	10.3	251
117	Allelic Exclusion of the T Cell Receptor β Locus Requires the Sh2 Domain–Containing Leukocyte Protein (Slp)-76 Adaptor Protein. Journal of Experimental Medicine, 1999, 190, 1093-1102.	8.5	46
118	CD40 ligation and IL-4 use different mechanisms of transcriptional activation of the human lymphotoxin \hat{l}_{\pm} promoter in B cells. European Journal of Immunology, 1998, 28, 901-906.	2.9	32
119	The hyper-lgM (HIM) syndrome. Seminars in Immunopathology, 1998, 19, 383-399.	4.0	26
120	Searching for genes involved in the pathogenesis of primary immunodeficiency diseases: lessons from mouse knockouts. Journal of Clinical Immunology, 1997, 17, 109-126.	3.8	19
121	Affinity maturation without germinal centres in lymphotoxin-α-deficient mice. Nature, 1996, 382, 462-466.	27.8	313
122	CD40-mediated lymphotoxin α expression in human B cells is tyrosine kinase dependent. European Journal of Immunology, 1995, 25, 2438-2444.	2.9	20
123	Bacterial Superantigens Induce The Proliferation of Resting $\hat{I}^3 \hat{I}^7$ Receptor Bearing T Cells. Immunological Investigations, 1995, 24, 713-724.	2.0	12
124	Protein Tyrosine Kinase Activation and Protein Kinase C Translocation Are Functional Components of CD40 Signal Transduction in Resting Human B Cells. Immunological Investigations, 1994, 23, 437-448.	2.0	11
125	Engagement of MHC class II molecules by staphylococcal superantigens activates src-type protein tyrosine kinases. European Journal of Immunology, 1994, 24, 651-658.	2.9	58
126	Decreased expression of the ligand for CD40 in newborn lymphocytes. European Journal of Immunology, 1994, 24, 1925-1928.	2.9	71

#	Article	IF	Citations
127	Activator protein-1 (AP-1) is stimulated by microbial superantigens in human monocytic cells. European Journal of Immunology, 1993, 23, 2129-2135.	2.9	16
128	Signal Transduction by Microbial Superantigens via MHC class II Molecules. Immunological Reviews, 1993, 131, 43-59.	6.0	59
129	Severe Combined Immunodeficiency with Selective T-Cell Cytokine Genes. Pediatric Research, 1993, 33, S20-S23.	2.3	2
130	Severe Combined Immunodeficiency with Selective T-Cell Cytokine Genes. Pediatric Research, 1993, 33, S20-S23.	2.3	4
131	Novel immune deficiencies: defective transcription of lymphokine genes. Clinical and Experimental Allergy, 1991, 21, 190-194.	2.9	0
132	Binding of toxic shock syndrome toxin-1 to murine major histocompatibility complex class II molecules. European Journal of Immunology, 1990, 20, 1911-1916.	2.9	39
133	Interleukin 4 down-regulates the expression of CD14 in normal human monocytes. European Journal of Immunology, 1990, 20, 2375-2381.	2.9	145
134	Regulation of Human IgE Synthesis. International Reviews of Immunology, 1989, 5, 111-115.	3.3	7
135	Endogenous interleukin 6 plays an obligatory role in interleukin 4-dependent human IgE synthesis. European Journal of Immunology, 1989, 19, 1419-1424.	2.9	208
136	The B-cell binding site on human immunoglobulin E. Nature, 1989, 338, 649-651.	27.8	145
137	Regulatory effects of human IgE-binding factors in the IgE synthesis by human and rat lymphocytes. European Journal of Immunology, 1988, 18, 1663-1670.	2.9	6
138	Regulation of the Human IgE Antibody Response. International Reviews of Immunology, 1987, 2, 75-91.	3.3	52
139	Characterization of human T cell-derived IgE-potentiating factor. European Journal of Immunology, 1986, 16, 985-991.	2.9	20
140	Control of IgE synthesis in man. Journal of Clinical Immunology, 1986, 6, 273-283.	3.8	24
141	Polymerase activity in lymphocyte culture supernatants from patients with Kawasaki disease. Nature, 1986, 323, 814-816.	27.8	104
142	Inhibition of the Prausnitz–Küstner reaction by an immunoglobulin Îμ-chain fragment synthesized in E. coli. Nature, 1985, 315, 577-578.	27.8	69
143	Analysis of antigen uptake and presentation by Epstein-Barr virus-transformed human lymphoblastoid B cells. European Journal of Immunology, 1984, 14, 291-298.	2.9	18
144	Production of IgE-potentiating factor in man by T cell lines bearing Fc receptors for IgE. European Journal of Immunology, 1984, 14, 871-878.	2.9	82

#	Article	IF	CITATION
145	Intestinal Malakoplakia in Childhood: Case Report and Review of Literature. Pediatric Pathology, 1983, 1, 337-343.	0.5	14
146	Nature of the immunogenic moiety recognized by the human T cell proliferating in response to tetanus toxoid antigen. European Journal of Immunology, 1981, 11, 365-371.	2.9	23
147	Macrophage T-cell interaction in man: Handling of tetanus toxoid antigen by human monocytes. Journal of Clinical Immunology, 1981, 1, 21-29.	3.8	14
148	Regulation of Human B Cell Activation. Immunological Reviews, 1979, 45, 275-305.	6.0	44
149	Heterogeneity of "Acquired―or Common Variable Agammaglobulinemia. New England Journal of Medicine, 1974, 291, 1-6.	27.0	211
150	INTERACTION OF HUMAN THYMUS-DERIVED AND NON-THYMUS-DERIVED LYMPHOCYTES IN VITRO. Journal of Experimental Medicine, 1973, 138, 1230-1247.	8.5	123