
Valeria A Risso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1563146/publications.pdf Version: 2024-02-01

VALEDIA A RISSO

#	Article	IF	CITATIONS
1	Hyperstability and Substrate Promiscuity in Laboratory Resurrections of Precambrian β-Lactamases. Journal of the American Chemical Society, 2013, 135, 2899-2902.	13.7	212
2	Conformational dynamics and enzyme evolution. Journal of the Royal Society Interface, 2018, 15, 20180330.	3.4	140
3	Evolution of Conformational Dynamics Determines the Conversion of a Promiscuous Generalist into a Specialist Enzyme. Molecular Biology and Evolution, 2015, 32, 132-143.	8.9	125
4	Cooperativity and flexibility in enzyme evolution. Current Opinion in Structural Biology, 2018, 48, 83-92.	5.7	81
5	Mutational Studies on Resurrected Ancestral Proteins Reveal Conservation of Site-Specific Amino Acid Preferences throughout Evolutionary History. Molecular Biology and Evolution, 2015, 32, 440-455.	8.9	71
6	De novo active sites for resurrected Precambrian enzymes. Nature Communications, 2017, 8, 16113.	12.8	60
7	Biotechnological and protein-engineering implications of ancestral protein resurrection. Current Opinion in Structural Biology, 2018, 51, 106-115.	5.7	60
8	Phenotypic comparisons of consensus variants versus laboratory resurrections of Precambrian proteins. Proteins: Structure, Function and Bioinformatics, 2014, 82, 887-896.	2.6	56
9	Hinge-shift mechanism as a protein design principle for the evolution of $\hat{1}^2$ -lactamases from substrate promiscuity to specificity. Nature Communications, 2021, 12, 1852.	12.8	43
10	Manipulating Conformational Dynamics To Repurpose Ancient Proteins for Modern Catalytic Functions. ACS Catalysis, 2020, 10, 4863-4870.	11.2	42
11	Thermostable and promiscuous <scp>P</scp> recambrian proteins. Environmental Microbiology, 2014, 16, 1485-1489.	3.8	33
12	Radiation synthesis of seroalbumin nanoparticles. Radiation Physics and Chemistry, 2012, 81, 1417-1421.	2.8	29
13	Engineering ancestral protein hyperstability. Biochemical Journal, 2016, 473, 3611-3620.	3.7	29
14	Effects of Serine-to-Cysteine Mutations on β-Lactamase Folding. Biophysical Journal, 2007, 93, 1707-1718.	0.5	26
15	Enhancing a <i>de novo</i> enzyme activity by computationally-focused ultra-low-throughput screening. Chemical Science, 2020, 11, 6134-6148.	7.4	24
16	Mapping the Distribution of Conformational Information Throughout a Protein Sequence. Journal of Molecular Biology, 2006, 358, 280-288.	4.2	23
17	Consensus Design of an Evolved High-Redox Potential Laccase. Frontiers in Bioengineering and Biotechnology, 2020, 8, 354.	4.1	22
18	Directed -in vitro- evolution of Precambrian and extant Rubiscos. Scientific Reports, 2018, 8, 5532.	3.3	20

VALERIA A RISSO

#	Article	IF	CITATIONS
19	Heme-binding enables allosteric modulation in an ancient TIM-barrel glycosidase. Nature Communications, 2021, 12, 380.	12.8	20
20	Folding of an Abridged Î ² -Lactamase. Biochemistry, 2004, 43, 1715-1723.	2.5	17
21	Non-conservation of folding rates in the thioredoxin family reveals degradation of ancestral unassisted-folding. Biochemical Journal, 2019, 476, 3631-3647.	3.7	16
22	Selection for Protein Kinetic Stability Connects Denaturation Temperatures to Organismal Temperatures and Provides Clues to Archaean Life. PLoS ONE, 2016, 11, e0156657.	2.5	16
23	Ancestral Resurrection and Directed Evolution of Fungal Mesozoic Laccases. Applied and Environmental Microbiology, 2020, 86, .	3.1	14
24	Resurrected Ancestral Proteins as Scaffolds for Protein Engineering. , 2017, , 229-255.		8
25	Expression and physicochemical characterization of an extracellular segment of the receptor protein tyrosine phosphatase IA-2. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 174-181.	2.3	7
26	Biophysical Characterization of the Membrane-proximal Ectodomain of the Receptor-type Protein-tyrosine Phosphatase Phogrin. Protein and Peptide Letters, 2013, 20, 1009-1017.	0.9	7
27	Reâ€engineering a βâ€ŀactamase using prototype peptides from a library of local structural motifs. Protein Science, 2009, 18, 440-449.	7.6	6
28	Protein-Protein Interactions in Crystals of the Human Receptor-Type Protein Tyrosine Phosphatase ICA512 Ectodomain. PLoS ONE, 2011, 6, e24191.	2.5	6
29	Xâ€ray evidence of a native state with increased compactness populated by tryptophanâ€less <i>B. licheniformis</i> βâ€lactamase. Protein Science, 2012, 21, 964-976.	7.6	6
30	Optical studies of single-tryptophan B. licheniformis β-lactamase variants. Biophysical Chemistry, 2010, 151, 111-118.	2.8	5
31	Preparation and biophysical characterization of recombinant Pseudomonas aeruginosa phosphorylcholine phosphatase. Protein Expression and Purification, 2010, 71, 153-159.	1.3	5
32	Combining Ancestral Reconstruction with Folding-Landscape Simulations to Engineer Heterologous Protein Expression. Journal of Molecular Biology, 2021, 433, 167321.	4.2	5
33	Evidence for a role of phenotypic mutations in virus adaptation. IScience, 2021, 24, 102257.	4.1	2
34	Equilibrium partially folded states of B. licheniformis \$\$eta \$\$ β -lactamase. European Biophysics Journal, 2019, 48, 341-348.	2.2	1
35	A protocol to study bacteriophage adaptation to new hosts. STAR Protocols, 2021, 2, 100784.	1.2	1
36	Mechanistic Insights of β-Lactmases Evolution. Biophysical Journal, 2014, 106, 663a.	0.5	0