
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1561185/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Binary polymer systems for biomedical applications. International Materials Reviews, 2023, 68, 184-224.	19.3	7
2	Metformin-Loaded Polymer-Based Microbubbles/Nanoparticles Generated for the Treatment of Type 2 Diabetes Mellitus. Langmuir, 2022, 38, 5040-5051.	3.5	29
3	Exploiting the antiviral potential of intermetallic nanoparticles. Emergent Materials, 2022, 5, 1251-1260.	5.7	6
4	Severe Acute Respiratory Syndrome Type 2 ausing Coronavirus: Variants and Preventive Strategies. Advanced Science, 2022, 9, e2104495.	11.2	16
5	Facile One-Pot Method for All Aqueous Green Formation of Biocompatible Silk Fibroin-Poly(Ethylene) Tj ETQq1 1 (1290-1300.	0.784314 5.2	rgBT /Over 11
6	Optimised release of tetracycline hydrochloride from core-sheath fibres produced by pressurised gyration. Journal of Drug Delivery Science and Technology, 2022, 72, 103359.	3.0	7
7	Nozzleâ€Pressurized Gyration: A Novel Fiber Manufacturing Process. Macromolecular Materials and Engineering, 2022, 307, .	3.6	9
8	The effect of solvent and pressure on polycaprolactone solutions for particle and fibre formation. European Polymer Journal, 2022, 173, 111300.	5.4	13
9	Accelerated diabetic wound healing by topical application of combination oral antidiabetic agents-loaded nanofibrous scaffolds: An in vitro and in vivo evaluation study. Materials Science and Engineering C, 2021, 119, 111586.	7.3	54
10	A novel reusable anti-COVID-19 transparent face respirator with optimized airflow. Bio-Design and Manufacturing, 2021, 4, 1-9.	7.7	32
11	Composite nanoclay-hydroxyapatite-polymer fiber scaffolds for bone tissue engineering manufactured using pressurized gyration. Composites Science and Technology, 2021, 202, 108598.	7.8	43
12	Nextâ€generation Antimicrobial Peptides (AMPs) incorporated nanofibre wound dressings. Medical Devices & Sensors, 2021, 4, e10144.	2.7	10
13	Wholly Biobased, Highly Stretchable, Hydrophobic, and Self-healing Thermoplastic Elastomer. ACS Applied Materials & Interfaces, 2021, 13, 6720-6730.	8.0	60
14	Perspective: Covid-19; emerging strategies and material technologies. Emergent Materials, 2021, 4, 3-8.	5.7	10
15	Enhancing In Vitro Stability of Albumin Microbubbles Produced Using Microfluidic T-Junction Device. Langmuir, 2021, , .	3.5	8
16	Coâ€Axial Gyroâ€Spinning of PCL/PVA/HA Coreâ€Sheath Fibrous Scaffolds for Bone Tissue Engineering. Macromolecular Bioscience, 2021, 21, e2100177.	4.1	18
17	Harnessing Polyhydroxyalkanoates and Pressurized Gyration for Hard and Soft Tissue Engineering. ACS Applied Materials & Interfaces, 2021, 13, 32624-32639.	8.0	27
18	Vitamin D3/vitamin K2/magnesium-loaded polylactic acid/tricalcium phosphate/polycaprolactone composite nanofibers demonstrated osteoinductive effect by increasing Runx2 via Wnt/l²-catenin pathway. International Journal of Biological Macromolecules, 2021, 190, 244-258.	7.5	14

MOHAN EDIRISINGHE

#	Article	IF	CITATIONS
19	Surface interactions and viability of coronaviruses. Journal of the Royal Society Interface, 2021, 18, 20200798.	3.4	31
20	Porous Graphene Composite Polymer Fibres. Polymers, 2021, 13, 76.	4.5	10
21	Utilising Co-Axial Electrospinning as a Taste-Masking Technology for Paediatric Drug Delivery. Pharmaceutics, 2021, 13, 1665.	4.5	11
22	Optimization of Processâ€Control Parameters for the Diameter of Electrospun Hydrophilic Polymeric Composite Nanofibers. Macromolecular Materials and Engineering, 2021, 306, 2100471.	3.6	4
23	Metal-based nanoparticles for combating antibiotic resistance. Applied Physics Reviews, 2021, 8, .	11.3	21
24	Core–sheath polymer nanofiber formation by the simultaneous application of rotation and pressure in a novel purpose-designed vessel. Applied Physics Reviews, 2021, 8, .	11.3	20
25	Self-assembled micro-stripe patterning of sessile polymeric nanofluid droplets. Journal of Colloid and Interface Science, 2020, 561, 470-480.	9.4	10
26	Novel antibiotic-loaded particles conferring eradication of deep tissue bacterial reservoirs for the treatment of chronic urinary tract infection. Journal of Controlled Release, 2020, 328, 490-502.	9.9	12
27	A novel treatment strategy for preterm birth: Intra-vaginal progesterone-loaded fibrous patches. International Journal of Pharmaceutics, 2020, 588, 119782.	5.2	31
28	Rapid and label-free detection of COVID-19 using coherent anti-Stokes Raman scattering microscopy. MRS Communications, 2020, 10, 566-572.	1.8	13
29	Poly(Caprolactone)â€Poly(N â€Isopropyl Acrylamide)â€Fe 3 O 4 Magnetic Nanofibrous Structure with Stimuli Responsive Drug Release. Macromolecular Materials and Engineering, 2020, 305, 2000208.	3.6	4
30	Current methodologies and approaches for the formation of core–sheath polymer fibers for biomedical applications. Applied Physics Reviews, 2020, 7, .	11.3	56
31	Generation of Core–Sheath Polymer Nanofibers by Pressurised Gyration. Polymers, 2020, 12, 1709.	4.5	39
32	<p>Copolymer Composition and Nanoparticle Configuration Enhance in vitro Drug Release Behavior of Poorly Water-soluble Progesterone for Oral Formulations</p> . International Journal of Nanomedicine, 2020, Volume 15, 5389-5403.	6.7	14
33	COVIDâ€19: Facemasks, healthcare policies and risk factors in the crucial initial months of a global pandemic. Medical Devices & Sensors, 2020, 3, e10120.	2.7	7
34	Effectiveness of Oil-Layered Albumin Microbubbles Produced Using Microfluidic T-Junctions in Series for In Vitro Inhibition of Tumor Cells. Langmuir, 2020, 36, 11429-11441.	3.5	15
35	Microstructure of fibres pressure-spun from polyacrylonitrile–graphene oxide composite mixtures. Composites Science and Technology, 2020, 197, 108214.	7.8	6
36	The comparision of glybenclamide and metformin-loaded bacterial cellulose/gelatin nanofibres produced by a portable electrohydrodynamic gun for diabetic wound healing. European Polymer Journal, 2020, 134, 109844.	5.4	35

MOHAN EDIRISINGHE

#	Article	IF	CITATIONS
37	Microstructure and antibacterial efficacy of graphene oxide nanocomposite fibres. Journal of Colloid and Interface Science, 2020, 571, 239-252.	9.4	67
38	Comparative Study of the Antimicrobial Effects of Tungsten Nanoparticles and Tungsten Nanocomposite Fibres on Hospital Acquired Bacterial and Viral Pathogens. Nanomaterials, 2020, 10, 1017.	4.1	38
39	Viral filtration using carbonâ€based materials. Medical Devices & Sensors, 2020, 3, e10107.	2.7	27
40	Enhanced efficacy in drug-resistant cancer cells through synergistic nanoparticle mediated delivery of cisplatin and decitabine. Nanoscale Advances, 2020, 2, 1177-1186.	4.6	14
41	Evaluation of burst release and sustained release of pioglitazone-loaded fibrous mats on diabetic wound healing: an <i>in vitro</i> and <i>in vivo</i> comparison study. Journal of the Royal Society Interface, 2020, 17, 20190712.	3.4	65
42	A Portable Device for the Generation of Drug-Loaded Three-Compartmental Fibers Containing Metronidazole and Iodine for Topical Application. Pharmaceutics, 2020, 12, 373.	4.5	5
43	Bacterial cellulose micro-nano fibres for wound healing applications. Biotechnology Advances, 2020, 41, 107549.	11.7	144
44	Videographic Analysis of Blink Dynamics following Upper Eyelid Blepharoplasty and Its Association with Dry Eye. Plastic and Reconstructive Surgery - Global Open, 2020, 8, e2991.	0.6	3
45	Preface to the Microbubbles: Exploring Gas-Liquid Interfaces for Biomedical Applications Special Issue. Langmuir, 2019, 35, 9995-9996.	3.5	4
46	Fiber Forming Capability of Binary and Ternary Compositions in the Polymer System: Bacterial Cellulose–Polycaprolactone–Polylactic Acid. Polymers, 2019, 11, 1148.	4.5	26
47	Electrosprayed microparticles: a novel drug delivery method. Expert Opinion on Drug Delivery, 2019, 16, 895-901.	5.0	16
48	Preparation of poly(glycerol sebacate) fibers for tissue engineering applications. European Polymer Journal, 2019, 121, 109297.	5.4	30
49	Experimental and theoretical investigation of the fluid behavior during polymeric fiber formation with and without pressure. Applied Physics Reviews, 2019, 6, 041401.	11.3	94
50	Biofabrication of Gelatin Tissue Scaffolds with Uniform Pore Size via Microbubble Assembly. Macromolecular Materials and Engineering, 2019, 304, 1900394.	3.6	7
51	The influence of drug solubility and sampling frequency on metformin and glibenclamide release from double-layered particles: experimental analysis and mathematical modelling. Journal of the Royal Society Interface, 2019, 16, 20190237.	3.4	4
52	Generating Antibacterial Microporous Structures Using Microfluidic Processing. ACS Omega, 2019, 4, 2225-2233.	3.5	6
53	Empirical modelling and optimization of pressure-coupled infusion gyration parameters for the nanofibre fabrication. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475, 20190008.	2.1	6
54	Novel pressurised gyration device for making core-sheath polymer fibres. Materials and Design, 2019, 178, 107846.	7.0	33

#	Article	IF	CITATIONS
55	Effect of the Mixing Region Geometry and Collector Distance on Microbubble Formation in a Microfluidic Device Coupled with ac–dc Electric Fields. Langmuir, 2019, 35, 10052-10060.	3.5	9
56	Boron nitride nanoscrolls: Structure, synthesis, and applications. Applied Physics Reviews, 2019, 6, .	11.3	18
57	Electrospinning Optimization of Eudragit E PO with and without Chlorpheniramine Maleate Using a Design of Experiment Approach. Molecular Pharmaceutics, 2019, 16, 2557-2568.	4.6	22
58	General Computational Methodology for Modeling Electrohydrodynamic Flows: Prediction and Optimization Capability for the Generation of Bubbles and Fibers. Langmuir, 2019, 35, 10203-10212.	3.5	18
59	PEEK surface modification by fast ambient-temperature sulfonation for bone implant applications. Journal of the Royal Society Interface, 2019, 16, 20180955.	3.4	71
60	Fiber Formation from Silk Fibroin Using Pressurized Gyration. Macromolecular Materials and Engineering, 2019, 304, 1800577.	3.6	14
61	Antiâ€fungal bandages containing cinnamon extract. International Wound Journal, 2019, 16, 730-736.	2.9	30
62	Coâ€Culture of Keratinocyteâ€ <i>Staphylococcus aureus</i> on Cuâ€Agâ€Zn/CuO and Cuâ€Agâ€W Nanoparticle Loaded Bacterial Cellulose:PMMA Bandages. Macromolecular Materials and Engineering, 2019, 304, 1800537.	2 3.6	30
63	Ethyl cellulose, cellulose acetate and carboxymethyl cellulose microstructures prepared using electrohydrodynamics and green solvents. Cellulose, 2018, 25, 1687-1703.	4.9	42
64	A Comparison of Electricâ€Fieldâ€Driven and Pressureâ€Driven Fiber Generation Methods for Drug Delivery. Macromolecular Materials and Engineering, 2018, 303, 1700577.	3.6	32
65	An Inexpensive, Portable Device for Pointâ€ofâ€Need Generation of Silverâ€Nanoparticle Doped Cellulose Acetate Nanofibers for Advanced Wound Dressing. Macromolecular Materials and Engineering, 2018, 303, 1700586.	3.6	18
66	Nanocomposites: suitable alternatives as antimicrobial agents. Nanotechnology, 2018, 29, 282001.	2.6	63
67	Polymer–Magnetic Composite Fibers for Remote-Controlled Drug Release. ACS Applied Materials & Interfaces, 2018, 10, 15524-15531.	8.0	61
68	The development of progesterone-loaded nanofibers using pressurized gyration: A novel approach to vaginal delivery for the prevention of pre-term birth. International Journal of Pharmaceutics, 2018, 540, 31-39.	5.2	38
69	Novel Making of Bacterial Cellulose Blended Polymeric Fiber Bandages. Macromolecular Materials and Engineering, 2018, 303, 1700607.	3.6	40
70	The biomedical applications of graphene. Interface Focus, 2018, 8, 20180006.	3.0	5
71	Alginate foam-based three-dimensional culture to investigate drug sensitivity in primary leukaemia cells. Journal of the Royal Society Interface, 2018, 15, 20170928.	3.4	11
72	Mucoadhesion of Progesterone-Loaded Drug Delivery Nanofiber Constructs. ACS Applied Materials & Interfaces, 2018, 10, 13381-13389.	8.0	51

#	Article	IF	CITATIONS
73	Antimicrobial activity of tellurium″oaded polymeric fiber meshes. Journal of Applied Polymer Science, 2018, 135, 46368.	2.6	34
74	Poly(3-hydroxyoctanoate), a promising new material for cardiac tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e495-e512.	2.7	50
75	Development of artificial bone marrow fibre scaffolds to study resistance to antiâ€leukaemia agents. British Journal of Haematology, 2018, 182, 924-927.	2.5	6
76	Latest developments in innovative manufacturing to combine nanotechnology with healthcare. Nanomedicine, 2018, 13, 5-8.	3.3	19
77	Novel Preparation of Monodisperse Microbubbles by Integrating Oscillating Electric Fields with Microfluidics. Micromachines, 2018, 9, 497.	2.9	12
78	Electrosprayed microparticles for intestinal delivery of prednisolone. Journal of the Royal Society Interface, 2018, 15, 20180491.	3.4	20
79	Effect of copolymer composition on particle morphology and release behavior in vitro using progesterone. Materials and Design, 2018, 159, 57-67.	7.0	23
80	Honeycomb-like PLGA- <i>b</i> -PEG Structure Creation with T-Junction Microdroplets. Langmuir, 2018, 34, 7989-7997.	3.5	18
81	Process Modeling for the Fiber Diameter of Polymer, Spun by Pressure-Coupled Infusion Gyration. ACS Omega, 2018, 3, 5470-5479.	3.5	14
82	Cellular interactions with bacterial cellulose: Polycaprolactone nanofibrous scaffolds produced by a portable electrohydrodynamic gun for pointâ€ofâ€need wound dressing. International Wound Journal, 2018, 15, 789-797.	2.9	24
83	The effect of graphene–poly(methyl methacrylate) fibres on microbial growth. Interface Focus, 2018, 8, 20170058.	3.0	50
84	Developments in Pressurized Gyration for the Mass Production of Polymeric Fibers. Macromolecular Materials and Engineering, 2018, 303, 1800218.	3.6	111
85	A comparison of methods to assess the antimicrobial activity of nanoparticle combinations on bacterial cells. PLoS ONE, 2018, 13, e0192093.	2.5	74
86	Gyrospun antimicrobial nanoparticle loaded fibrous polymeric filters. Materials Science and Engineering C, 2017, 74, 315-324.	7.3	29
87	The generation of compartmentalized nanoparticles containing siRNA and cisplatin using a multi-needle electrohydrodynamic strategy. Nanoscale, 2017, 9, 5975-5985.	5.6	15
88	Highly Stretchable and Highly Resilient Polymer–Clay Nanocomposite Hydrogels with Low Hysteresis. ACS Applied Materials & Interfaces, 2017, 9, 22223-22234.	8.0	65
89	Core/shell microencapsulation of indomethacin/paracetamol by co-axial electrohydrodynamic atomization. Materials and Design, 2017, 136, 204-213.	7.0	26
90	Drug Delivery Strategies for Platinum-Based Chemotherapy. ACS Nano, 2017, 11, 8560-8578.	14.6	172

#	Article	IF	CITATIONS
91	Simultaneous Application of Pressure-Infusion-Gyration to Generate Polymeric Nanofibers. Macromolecular Materials and Engineering, 2017, 302, 1600564.	3.6	39
92	Evolution of self-generating porous microstructures in polyacrylonitrile-cellulose acetate blend fibres. Materials and Design, 2017, 134, 259-271.	7.0	11
93	Preparation of Nano- and Microstructures For Drug Delivery. AAPS PharmSciTech, 2017, 18, 1427-1427.	3.3	1
94	New Generation of Tunable Bioactive Shape Memory Mats Integrated with Genetically Engineered Proteins. Macromolecular Bioscience, 2017, 17, 1600270.	4.1	20
95	Evolution of Surface Nanopores in Pressurised Gyrospun Polymeric Microfibers. Polymers, 2017, 9, 508.	4.5	19
96	Characterisation of the Chemical Composition and Structural Features of Novel Antimicrobial Nanoparticles. Nanomaterials, 2017, 7, 152.	4.1	13
97	Electrohydrodynamic fabrication of core–shell PLGA nanoparticles with controlled release of cisplatin for enhanced cancer treatment. International Journal of Nanomedicine, 2017, Volume 12, 3913-3926.	6.7	39
98	Making Nonwoven Fibrous Poly(ε aprolactone) Constructs for Antimicrobial and Tissue Engineering Applications by Pressurized Melt Gyration. Macromolecular Materials and Engineering, 2016, 301, 922-934.	3.6	42
99	Electrohydrodynamic encapsulation of cisplatin in poly (lactic-co-glycolic acid) nanoparticles for controlled drug delivery. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1919-1929.	3.3	64
100	Analysis of blink dynamics in patients with blepharoptosis. Journal of the Royal Society Interface, 2016, 13, 20150932.	3.4	17
101	Investigating the particle to fibre transition threshold during electrohydrodynamic atomization of a polymer solution. Materials Science and Engineering C, 2016, 65, 240-250.	7.3	60
102	Electrosprayed nanoparticle delivery system for controlled release. Materials Science and Engineering C, 2016, 66, 138-146.	7.3	70
103	Graphene nanoplatelets loaded polyurethane and phenolic resin fibres by combination of pressure and gyration. Composites Science and Technology, 2016, 129, 173-182.	7.8	28
104	Combining microfluidic devices with coarse capillaries to reduce the size of monodisperse microbubbles. RSC Advances, 2016, 6, 63568-63577.	3.6	17
105	Manufacturing Man-Made Magnetosomes: High-Throughput In Situ Synthesis of Biomimetic Magnetite Loaded Nanovesicles. Macromolecular Bioscience, 2016, 16, 1555-1561.	4.1	8
106	The effect of needle tip displacement in co-axial electrohydrodynamic processing. RSC Advances, 2016, 6, 75258-75268.	3.6	5
107	Novel Preparation, Microstructure, and Properties of Polyacrylonitrile-Based Carbon Nanofiber–Graphene Nanoplatelet Materials. ACS Omega, 2016, 1, 202-211.	3.5	28
108	Porous Polymeric Films from Microbubbles Generated Using a T-Junction Microfluidic Device. Langmuir, 2016, 32, 13377-13385.	3.5	21

#	Article	IF	CITATIONS
109	Tailoring the surface of polymeric nanofibres generated by pressurised gyration. Surface Innovations, 2016, 4, 167-178.	2.3	14
110	Beads, beaded-fibres and fibres: Tailoring the morphology of poly(caprolactone) using pressurised gyration. Materials Science and Engineering C, 2016, 69, 1373-1382.	7.3	33
111	Macromol. Biosci. 11/2016. Macromolecular Bioscience, 2016, 16, 1736-1736.	4.1	1
112	Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces. Materials Science and Engineering C, 2016, 63, 172-184.	7.3	43
113	Development and Characterization of Amorphous Nanofiber Drug Dispersions Prepared Using Pressurized Gyration. Molecular Pharmaceutics, 2015, 12, 3851-3861.	4.6	35
114	Coupling Infusion and Gyration for the Nanoscale Assembly of Functional Polymer Nanofibers Integrated with Genetically Engineered Proteins. Macromolecular Rapid Communications, 2015, 36, 1322-1328.	3.9	50
115	Solubility–spinnability map and model for the preparation of fibres of polyethylene (terephthalate) using gyration and pressure. Chemical Engineering Journal, 2015, 280, 344-353.	12.7	57
116	Formation of Protein and Protein–Gold Nanoparticle Stabilized Microbubbles by Pressurized Gyration. Langmuir, 2015, 31, 659-666.	3.5	65
117	Making nanofibres of mucoadhesive polymer blends for vaginal therapies. European Polymer Journal, 2015, 70, 186-196.	5.4	38
118	Changing the Size and Surface Roughness of Polymer Nanospheres Formed Using a Microfluidic Technique. Jom, 2015, 67, 811-817.	1.9	7
119	Facile one-pot formation of ceramic fibres from preceramic polymers by pressurised gyration. Ceramics International, 2015, 41, 6067-6073.	4.8	24
120	Antibacterial Activity and Biosensing of PVA-Lysozyme Microbubbles Formed by Pressurized Gyration. Langmuir, 2015, 31, 9771-9780.	3.5	42
121	Physio-chemical and antibacterial characteristics of pressure spun nylon nanofibres embedded with functional silver nanoparticles. Materials Science and Engineering C, 2015, 56, 195-204.	7.3	36
122	Preparation of polymeric nanoparticles by novel electrospray nanoprecipitation. Polymer International, 2015, 64, 183-187.	3.1	34
123	The effect of surfactant type and concentration on the size and stability of microbubbles produced in a capillary embedded T-junction device. RSC Advances, 2015, 5, 10751-10762.	3.6	49
124	Stress-relaxation and fatigue behaviour of synthetic brow-suspension materials. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 42, 116-128.	3.1	3
125	Bioinspired preparation of alginate nanoparticles using microbubble bursting. Materials Science and Engineering C, 2015, 46, 132-139.	7.3	18
126	Microfluidic preparation of polymer nanospheres. Journal of Nanoparticle Research, 2014, 16, 2626.	1.9	19

#	Article	IF	CITATIONS
127	Utilization of microfluidic V-junction device to prepare surface itraconazole adsorbed nanospheres. International Journal of Pharmaceutics, 2014, 472, 339-346.	5.2	14
128	Novel preparation of controlled porosity particle/fibre loaded scaffolds using a hybrid micro-fluidic and electrohydrodynamic technique. Biofabrication, 2014, 6, 045010.	7.1	17
129	Preparation of Multilayered Polymeric Structures Using a Novel Fourâ€Needle Coaxial Electrohydrodynamic Device. Macromolecular Rapid Communications, 2014, 35, 618-623.	3.9	70
130	Core-Liquid-Induced Transition from Coaxial Electrospray to Electrospinning of Low-Viscosity Poly(lactide- <i>co</i> -glycolide) Sheath Solution. Macromolecules, 2014, 47, 7930-7938.	4.8	40
131	Microstructure and mechanical properties of synthetic brow-suspension materials. Materials Science and Engineering C, 2014, 35, 220-230.	7.3	17
132	Effect of humidity on the generation and control of the morphology of honeycomb-like polymeric structures by electrospinning. European Polymer Journal, 2014, 61, 72-82.	5.4	11
133	Novel encapsulation systems and processes for overcoming the challenges of polypharmacy. Current Opinion in Pharmacology, 2014, 18, 28-34.	3.5	11
134	Generation of poly(N-vinylpyrrolidone) nanofibres using pressurised gyration. Materials Science and Engineering C, 2014, 39, 168-176.	7.3	42
135	Preparation of monodisperse microbubbles using an integrated embedded capillary T-junction with electrohydrodynamic focusing. Lab on A Chip, 2014, 14, 2437-2446.	6.0	49
136	Facile synthesis of both needle-like and spherical hydroxyapatite nanoparticles: Effect of synthetic temperature and calcination on morphology, crystallite size and crystallinity. Materials Science and Engineering C, 2014, 42, 83-90.	7.3	85
137	A portable device for in situ deposition of bioproducts. Bioinspired, Biomimetic and Nanobiomaterials, 2014, 3, 94-105.	0.9	22
138	The Design and Construction of an Electrohydrodynamic Cartesian Robot for the Preparation of Tissue Engineering Constructs. PLoS ONE, 2014, 9, e112166.	2.5	11
139	Electrohydrodynamic printing of silk fibroin. Macromolecular Research, 2013, 21, 339-342.	2.4	6
140	Creating "hotels―for cells by electrospinning honeycomb-like polymeric structures. Materials Science and Engineering C, 2013, 33, 4384-4391.	7.3	13
141	Novel electrically driven direct-writing methods with managed control on in-situ shape and encapsulation polymer forming. International Journal of Material Forming, 2013, 6, 281-288.	2.0	6
142	Effect of operating conditions and liquid physical properties on the size of monodisperse microbubbles produced in a capillary embedded T-junction device. Microfluidics and Nanofluidics, 2013, 14, 797-808.	2.2	34
143	Continuous Generation of Ethyl Cellulose Drug Delivery Nanocarriers from Microbubbles. Pharmaceutical Research, 2013, 30, 225-237.	3.5	43
144	Application of Electrohydrodynamic Technology for Folic Acid Encapsulation. Food and Bioprocess Technology, 2013, 6, 1837-1846.	4.7	37

#	Article	IF	CITATIONS
145	Forming of Polymer Nanofibers by a Pressurised Gyration Process. Macromolecular Rapid Communications, 2013, 34, 1134-1139.	3.9	188
146	Design, construction and performance of a portable handheld electrohydrodynamic multi-needle spray gun for biomedical applications. Materials Science and Engineering C, 2013, 33, 213-223.	7.3	59
147	An encapsulated drug delivery system for recalcitrant urinary tract infection. Journal of the Royal Society Interface, 2013, 10, 20130747.	3.4	15
148	Bioinspired bubble design for particle generation. Journal of the Royal Society Interface, 2012, 9, 389-395.	3.4	13
149	Controlled preparation of drug-exchange phase loaded polymeric fibres. Bioinspired, Biomimetic and Nanobiomaterials, 2012, 1, 48-56.	0.9	6
150	Release profile and characteristics of electrosprayed particles for oral delivery of a practically insoluble drug. Journal of the Royal Society Interface, 2012, 9, 2437-2449.	3.4	52
151	Electrospraying and Electrospinning of Chocolate Suspensions. Food and Bioprocess Technology, 2012, 5, 2285-2300.	4.7	48
152	Calcium Alginate Foams Prepared by a Microfluidic T-Junction System: Stability and Food Applications. Food and Bioprocess Technology, 2012, 5, 2848-2857.	4.7	21
153	Mapping the Influence of Solubility and Dielectric Constant on Electrospinning Polycaprolactone Solutions. Macromolecules, 2012, 45, 4669-4680.	4.8	211
154	Electrospinning versus fibre production methods: from specifics to technological convergence. Chemical Society Reviews, 2012, 41, 4708.	38.1	548
155	A novel hybrid system for the fabrication of a fibrous mesh with micro-inclusions. Carbohydrate Polymers, 2012, 89, 222-229.	10.2	9
156	A device for the fabrication of multifunctional particles from microbubble suspensions. Materials Science and Engineering C, 2012, 32, 1005-1010.	7.3	10
157	Fabrication of Biomaterials via Controlled Protein Bubble Generation and Manipulation. Biomacromolecules, 2011, 12, 4291-4300.	5.4	34
158	Electrospinning short polymer micro-fibres with average aspect ratios in the range of 10–200. Journal of Polymer Research, 2011, 18, 2515-2522.	2.4	22
159	Forming of Protein Bubbles and Porous Films Using Coâ€Axial Electrohydrodynamic Flow Processing. Macromolecular Materials and Engineering, 2011, 296, 8-13.	3.6	12
160	Direct Writing of Polycaprolactone Polymer for Potential Biomedical Engineering Applications. Advanced Engineering Materials, 2011, 13, B296.	3.5	38
161	(Adv. Eng. Mater. 9/2011). Advanced Engineering Materials, 2011, 13, n/a-n/a.	3.5	0
162	Electrohydrodynamic Direct Writing of Biomedical Polymers and Composites. Macromolecular Materials and Engineering, 2010, 295, 315-319.	3.6	71

MOHAN EDIRISINGHE

#	Article	IF	CITATIONS
163	A novel method of selecting solvents for polymer electrospinning. Polymer, 2010, 51, 1654-1662.	3.8	269
164	Scaling the heights—challenges in medical materials. Journal of the Royal Society Interface, 2010, 7, S501-2.	3.4	0
165	Scaling the heights—challenges in medical materials. Journal of the Royal Society Interface, 2010, 7, S377-8.	3.4	1
166	Controlling the thickness of hollow polymeric microspheres prepared by electrohydrodynamic atomization. Journal of the Royal Society Interface, 2010, 7, S451-60.	3.4	60
167	A New Method for the Preparation of Monoporous Hollow Microspheres. Langmuir, 2010, 26, 5115-5121.	3.5	108
168	One-step electrohydrodynamic production of drug-loaded micro- and nanoparticles. Journal of the Royal Society Interface, 2010, 7, 667-675.	3.4	96
169	Engineering a material for biomedical applications with electric field assisted processing. Applied Physics A: Materials Science and Processing, 2009, 97, 31-37.	2.3	35
170	A novel process for drug encapsulation using a liquid to vapour phase change material. Soft Matter, 2009, 5, 5029.	2.7	33
171	Novel microbubble preparation technologies. Soft Matter, 2008, 4, 2350.	2.7	219
172	Generation of multilayered structures for biomedical applications using a novel tri-needle coaxial device and electrohydrodynamic flow. Journal of the Royal Society Interface, 2008, 5, 1255-1261.	3.4	109
173	Preparation of Polymeric and Ceramic Porous Capsules by a Novel Electrohydrodynamic Process. Pharmaceutical Development and Technology, 2008, 13, 425-432.	2.4	32
174	Dynamics of Bubble Formation in Highly Viscous Liquids. Langmuir, 2008, 24, 4388-4393.	3.5	69