
Geraldine Seydoux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1560330/publications.pdf Version: 2024-02-01

CERALDINE SEVOLUX

#	Article	IF	CITATIONS
1	Nuage condensates: accelerators or circuit breakers for sRNA silencing pathways?. Rna, 2022, 28, 58-66.	3.5	21
2	Sperm granules mediate epigenetic inheritance. Nature Cell Biology, 2022, 24, 129-130.	10.3	1
3	Improving the specificity of nucleic acid detection with endonuclease-actuated degradation. Communications Biology, 2022, 5, 290.	4.4	3
4	The conserved helicase ZNFX-1 memorializes silenced RNAs in perinuclear condensates. Nature Cell Biology, 2022, 24, 1129-1140.	10.3	19
5	Cell-free reconstitution of multi-condensate assemblies. Methods in Enzymology, 2021, 646, 83-113.	1.0	3
6	Protein-based condensation mechanisms drive the assembly of RNA-rich P granules. ELife, 2021, 10, .	6.0	16
7	Regulation of biomolecular condensates by interfacial protein clusters. Science, 2021, 373, 1218-1224.	12.6	104
8	Recruitment of mRNAs to P granules by condensation with intrinsically-disordered proteins. ELife, 2020, 9, .	6.0	96
9	Puromycin reactivity does not accurately localize translation at the subcellular level. ELife, 2020, 9, .	6.0	51
10	Rapid Tagging of Human Proteins with Fluorescent Reporters by Genome Engineering using Double‧tranded DNA Donors. Current Protocols in Molecular Biology, 2019, 129, e102.	2.9	9
11	P Granules Protect RNA Interference Genes from Silencing by piRNAs. Developmental Cell, 2019, 50, 716-728.e6.	7.0	85
12	Dynamics of mRNA entry into stress granules. Nature Cell Biology, 2019, 21, 116-117.	10.3	20
13	Phase separation in biology and disease—a symposium report. Annals of the New York Academy of Sciences, 2019, 1452, 3-11.	3.8	14
14	Spatial regulation of the polarity kinase PAR-1 by parallel inhibitory mechanisms. Development (Cambridge), 2019, 146, .	2.5	16
15	A gel phase promotes condensation of liquid P granules in Caenorhabditis elegans embryos. Nature Structural and Molecular Biology, 2019, 26, 220-226.	8.2	184
16	Phase Separation in Biology and Disease. Journal of Molecular Biology, 2018, 430, 4603-4606.	4.2	68
17	Single-molecule study reveals the frenetic lives of proteins in gradients. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9336-9338.	7.1	8
18	The P Granules of C. elegans: A Genetic Model for the Study of RNA–Protein Condensates. Journal of Molecular Biology, 2018, 430, 4702-4710.	4.2	129

GERALDINE SEYDOUX

#	Article	IF	CITATIONS
19	Precision genome editing using CRISPR-Cas9 and linear repair templates in C. elegans. Methods, 2017, 121-122, 86-93.	3.8	194
20	MIP-MAP: High-Throughput Mapping of <i>Caenorhabditis elegans</i> Temperature-Sensitive Mutants via Molecular Inversion Probes. Genetics, 2017, 207, 447-463.	2.9	23
21	Not just Salk. Science, 2017, 357, 1105-1106.	12.6	4
22	Precision genome editing using synthesis-dependent repair of Cas9-induced DNA breaks. Proceedings of the United States of America, 2017, 114, E10745-E10754.	7.1	175
23	Loss-of-function genetic tools for animal models: cross-species and cross-platform differences. Nature Reviews Genetics, 2017, 18, 24-40.	16.3	159
24	Nanos promotes epigenetic reprograming of the germline by down-regulation of the THAP transcription factor LIN-15B. ELife, 2017, 6, .	6.0	47
25	Spatial patterning of P granules by RNA-induced phase separation of the intrinsically-disordered protein MEG-3. ELife, 2016, 5, .	6.0	195
26	Cas9-assisted recombineering in <i>C. elegans</i> : genome editing using <i>in vivo</i> assembly of linear DNAs. Nucleic Acids Research, 2016, 44, gkw502.	14.5	92
27	High Efficiency, Homology-Directed Genome Editing in <i>Caenorhabditis elegans</i> Using CRISPR-Cas9 Ribonucleoprotein Complexes. Genetics, 2015, 201, 47-54.	2.9	600
28	Regulation of RNA granule dynamics by phosphorylation of serine-rich, intrinsically disordered proteins in C. elegans. ELife, 2014, 3, e04591.	6.0	323
29	Identification of Suppressors of <i>mbk-2/DYRK</i> by Whole-Genome Sequencing. G3: Genes, Genomes, Genetics, 2014, 4, 231-241.	1.8	15
30	Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science, 2014, 346, 1257998.	12.6	1,567
31	Scalable and Versatile Genome Editing Using Linear DNAs with Microhomology to Cas9 Sites in <i>Caenorhabditis elegans</i> . Genetics, 2014, 198, 1347-1356.	2.9	292
32	P granules. Current Biology, 2014, 24, R637-R638.	3.9	27
33	The PAR network: redundancy and robustness in a symmetry-breaking system. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130010.	4.0	79
34	'Goldilocks' suppressor screen identifies web of polarity regulators. Nature Cell Biology, 2013, 15, 9-10.	10.3	2
35	Germ Cell Specification. Advances in Experimental Medicine and Biology, 2013, 757, 17-39.	1.6	57
36	Regulation of the MEX-5 Gradient by a Spatially Segregated Kinase/Phosphatase Cycle. Cell, 2011, 146, 955-968.	28.9	122

GERALDINE SEYDOUX

#	Article	IF	CITATIONS
37	RNA Granules in Germ Cells. Cold Spring Harbor Perspectives in Biology, 2011, 3, a002774-a002774.	5.5	302
38	Microtubules induce self-organization of polarized PAR domains in Caenorhabditis elegans zygotes. Nature Cell Biology, 2011, 13, 1361-1367.	10.3	163
39	Cytoplasmic Partitioning of P Granule Components Is Not Required to Specify the Germline in <i>C. elegans</i> . Science, 2010, 330, 1685-1689.	12.6	121
40	Symmetry breaking and polarization of the <i>C. elegans</i> zygote by the polarity protein PAR-2. Development (Cambridge), 2010, 137, 1669-1677.	2.5	123
41	Processing bodies and germ granules are distinct RNA granules that interact in C. elegans embryos. Developmental Biology, 2008, 323, 76-87.	2.0	133
42	Pathway to Totipotency: Lessons from Germ Cells. Cell, 2006, 127, 891-904.	28.9	363
43	Surfing the Actomyosin Wave. Developmental Cell, 2004, 7, 285-286.	7.0	2
44	Coordinate Activation of Maternal Protein Degradation during the Egg-to-Embryo Transition in C. elegans. Developmental Cell, 2003, 5, 451-462.	7.0	135
45	PIE-1 is a bifunctional protein that regulates maternal and zygotic gene expression in the embryonic germ line of Caenorhabditis elegans. Genes and Development, 2001, 15, 1031-1040.	5.9	350
46	Polarization of the anterior–posterior axis of C. elegans is a microtubule-directed process. Nature, 2000, 408, 89-92.	27.8	170
47	Metaphase to Anaphase (mat) Transition–Defective Mutants inCaenorhabditis elegans. Journal of Cell Biology, 2000, 151, 1469-1482.	5.2	159
48	Repression of gene expression in the embryonic germ lineage of C. elegans. Nature, 1996, 382, 713-716.	27.8	299