Frédéric Catez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1559796/publications.pdf

Version: 2024-02-01

45 papers 4,257 citations

201674 27 h-index 243625 44 g-index

52 all docs

52 docs citations

times ranked

52

6067 citing authors

#	Article	IF	Citations
1	Alteration of ribosome function upon 5-fluorouracil treatment favors cancer cell drug-tolerance. Nature Communications, 2022, 13, 173.	12.8	23
2	Low level of Fibrillarin, a ribosome biogenesis factor, is a new independent marker of poor outcome in breast cancer. BMC Cancer, 2022, 22, 526.	2.6	10
3	Study of intracellular anabolism of 5-fluorouracil and incorporation in nucleic acids based on an LC-HRMS method. Journal of Pharmaceutical Analysis, $2021,11,77-87$.	5.3	16
4	A novel view on an old drug, 5-fluorouracil: an unexpected RNA modifier with intriguing impact on cancer cell fate. NAR Cancer, 2021, 3, zcab032.	3.1	22
5	DHX30 Coordinates Cytoplasmic Translation and Mitochondrial Function Contributing to Cancer Cell Survival. Cancers, 2021, 13, 4412.	3.7	9
6	Ribosome Biogenesis Alterations in Colorectal Cancer. Cells, 2020, 9, 2361.	4.1	28
7	Uncovering the Translational Regulatory Activity of the Tumor Suppressor BRCA1. Cells, 2020, 9, 941.	4.1	3
8	Ribosomal RNA 2â€ ² O-methylation as a novel layer of inter-tumour heterogeneity in breast cancer. NAR Cancer, 2020, 2, zcaa036.	3.1	40
9	The interferon stimulated gene 20 protein (ISG20) is an innate defense antiviral factor that discriminates self versus non-self translation. PLoS Pathogens, 2019, 15, e1008093.	4.7	50
10	Ribosomal Proteins Regulate MHC Class I Peptide Generation for Immunosurveillance. Molecular Cell, 2019, 73, 1162-1173.e5.	9.7	81
11	Emerging Role of Eukaryote Ribosomes in Translational Control. International Journal of Molecular Sciences, 2019, 20, 1226.	4.1	49
12	Ribosome biogenesis: An emerging druggable pathway for cancer therapeutics. Biochemical Pharmacology, 2019, 159, 74-81.	4.4	109
13	Externalized Keratin 8: A Target at the Interface of Microenvironment and Intracellular Signaling in Colorectal Cancer Cells. Cancers, 2018, 10, 452.	3.7	2
14	Deletion 6q Drives T-cell Leukemia Progression by Ribosome Modulation. Cancer Discovery, 2018, 8, 1614-1631.	9.4	30
15	2′-O-Methylation of Ribosomal RNA: Towards an Epitranscriptomic Control of Translation?. Biomolecules, 2018, 8, 106.	4.0	88
16	Evidence for rRNA 2′-O-methylation plasticity: Control of intrinsic translational capabilities of human ribosomes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12934-12939.	7.1	197
17	Expression Profiling of Ribosome Biogenesis Factors Reveals Nucleolin as a Novel Potential Marker to Predict Outcome in AML Patients. PLoS ONE, 2017, 12, e0170160.	2.5	25
18	Translational reprogramming of colorectal cancer cells induced by 5-fluorouracil through a miRNA-dependent mechanism. Oncotarget, 2017, 8, 46219-46233.	1.8	25

#	Article	IF	Citations
19	Proffered Paper: The rRNA epigenetic hypothesis: role of ribosome heterogeneity in tumorigenesis. European Journal of Cancer, 2016, 61, S3.	2.8	O
20	Ribosome heterogeneity in tumorigenesis: the rRNA point of view. Molecular and Cellular Oncology, 2015, 2, e983755.	0.7	34
21	p53, a translational regulator: contribution to its tumour-suppressor activity. Oncogene, 2015, 34, 5513-5523.	5.9	71
22	Ribosomal RNA Methylation and Cancer. , 2015, , 115-139.		4
23	Detection of the Genome and Transcripts of a Persistent DNA Virus in Neuronal Tissues by Fluorescent <i>In situ</i> Hybridization Combined with Immunostaining. Journal of Visualized Experiments, 2014, , e51091.	0.3	7
24	p53 Acts as a Safeguard of Translational Control by Regulating Fibrillarin and rRNA Methylation in Cancer. Cancer Cell, 2013, 24, 318-330.	16.8	246
25	Ribosomes: the future of targeted therapies?. Oncotarget, 2013, 4, 1554-1555.	1.8	11
26	HSV-1 Genome Subnuclear Positioning and Associations with Host-Cell PML-NBs and Centromeres Regulate LAT Locus Transcription during Latency in Neurons. PLoS Pathogens, 2012, 8, e1002852.	4.7	74
27	Centromere Architecture Breakdown Induced by the Viral E3 Ubiquitin Ligase ICPO Protein of Herpes Simplex Virus Type 1. PLoS ONE, 2012, 7, e44227.	2.5	27
28	Binding and interplay of HMG proteins on chromatin: Lessons from live cell imaging. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2010, 1799, 15-27.	1.9	56
29	Activation of ATM depends on chromatin interactions occurring before induction of DNA damage. Nature Cell Biology, 2009, 11 , 92-96.	10.3	123
30	Cell Cycle-dependent Binding of HMGN Proteins to Chromatin. Molecular Biology of the Cell, 2008, 19, 1816-1824.	2.1	32
31	Delineation of the Protein Module That Anchors HMGN Proteins to Nucleosomes in the Chromatin of Living Cells. Molecular and Cellular Biology, 2008, 28, 2872-2883.	2.3	47
32	A novel cell response triggered by interphase centromere structural instability. Journal of Cell Biology, 2007, 177, 757-768.	5. 2	42
33	Determinants of histone H1 mobility and chromatin binding in living cells. Nature Structural and Molecular Biology, 2006, 13, 305-310.	8.2	147
34	Down-Regulation of Nucleosomal Binding Protein HMGN1 Expression during Embryogenesis Modulates Sox9 Expression in Chondrocytes. Molecular and Cellular Biology, 2006, 26, 592-604.	2.3	61
35	Increased Tumorigenicity and Sensitivity to Ionizing Radiation upon Loss of Chromosomal Protein HMGN1. Cancer Research, 2005, 65, 6711-6718.	0.9	71
36	The Dynamics of Histone H1 Function in Chromatin. Molecular Cell, 2005, 17, 617-620.	9.7	208

Frédéric Catez

#	Article	IF	CITATIONS
37	Network of Dynamic Interactions between Histone H1 and High-Mobility-Group Proteins in Chromatin. Molecular and Cellular Biology, 2004, 24, 4321-4328.	2.3	239
38	Chromosomal Protein HMGN1 Modulates Histone H3 Phosphorylation. Molecular Cell, 2004, 15, 573-584.	9.7	117
39	Preparation and Functional Analysis of HMGN Proteins. Methods in Enzymology, 2003, 375, 323-342.	1.0	21
40	HMGN dynamics and chromatin function. Biochemistry and Cell Biology, 2003, 81, 113-122.	2.0	32
41	Influence of testosterone on regulation of ODC, antizyme, and N1-SSAT gene expression in mouse kidney. American Journal of Physiology - Renal Physiology, 2003, 285, F498-F506.	2.7	16
42	Unique Motif for Nucleolar Retention and Nuclear Export Regulated by Phosphorylation. Molecular and Cellular Biology, 2002, 22, 1126-1139.	2.3	34
43	Mitotic Phosphorylation of Chromosomal Protein HMGN1 Inhibits Nuclear Import and Promotes Interaction with 14.3.3 Proteins. Molecular and Cellular Biology, 2002, 22, 6809-6819.	2.3	32
44	Competition between histone H1 and HMGN proteins for chromatin binding sites. EMBO Reports, 2002, 3, 760-766.	4.5	125
45	The Role of Dynamin-Related Protein 1, a Mediator of Mitochondrial Fission, in Apoptosis. Developmental Cell, 2001, 1, 515-525.	7.0	1,564