Marc A Hillmyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1559554/publications.pdf

Version: 2024-02-01

577 papers 42,011 citations

107 h-index 182 g-index

619 all docs

619 docs citations

619 times ranked

23020 citing authors

#	Article	IF	Citations
1	Toward Sustainable Elastomers from the Grafting-Through Polymerization of Lactone-Containing Polyester Macromonomers. Macromolecules, 2022, 55, 1003-1014.	4.8	16
2	Site-Specific Mineralization of a Polyester Hydrolysis Product in Natural Soil. ACS Sustainable Chemistry and Engineering, 2022, 10, 1373-1378.	6.7	3
3	Protective Masks Utilizing Non-Endangered Components. Journal of Medical Devices, Transactions of the ASME, 2022, 16, 015001.	0.7	3
4	Defining the Macromolecules of Tomorrow through Synergistic Sustainable Polymer Research. Chemical Reviews, 2022, 122, 6322-6373.	47.7	99
5	Lipid Membrane Binding and Cell Protection Efficacy of Poly $(1,2$ -butylene oxide)-b-poly $($ ethylene oxide $)$ Copolymers. Biomacromolecules, 2022, , .	5.4	6
6	From Biosensors to Drug Delivery and Tissue Engineering: Open Biomaterials Research. ACS Omega, 2022, 7, 6437-6438.	3.5	0
7	Toughening Polylactide with Graft-Block Polymers. ACS Applied Polymer Materials, 2022, 4, 3408-3416.	4.4	6
8	The role of intermolecular interactions on melt memory and thermal fractionation of semicrystalline polymers. Journal of Chemical Physics, 2022, 156, 144902.	3.0	11
9	Disordered Triblock Polymers for Nanoporous Materials with Tunable Surface Properties for Ultrafiltration Applications. ACS Applied Polymer Materials, 2022, 4, 8009-8020.	4.4	5
10	Tandem ROMP/Hydrogenation Approach to Hydroxy-Telechelic Linear Polyethylene. ACS Macro Letters, 2022, 11, 608-614.	4.8	15
11	Tailored Mesoporous Microspheres by Polymerization-Induced Microphase Separation in Suspension. ACS Applied Polymer Materials, 2022, 4, 4219-4233.	4.4	9
12	Ductile gas barrier poly(ester–amide)s derived from glycolide. Polymer Chemistry, 2022, 13, 3882-3891.	3.9	4
13	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	7.6	O
14	Bicontinuous Ion-Exchange Materials through Polymerization-Induced Microphase Separation. ACS Macro Letters, 2021, 10, 60-64.	4.8	10
15	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	4.6	O
16	High molar mass poly(ricinoleic acid) <i>via</i> entropy-driven ring-opening metathesis polymerization. Polymer Chemistry, 2021, 12, 2253-2257.	3.9	7
17	Polyolefin graft copolymers through a ring-opening metathesis grafting through approach. Polymer Chemistry, 2021, 12, 2075-2083.	3.9	10
18	Precision ethylene-styrene copolymers through the ring opening metathesis polymerization of 3-phenyl cyclododecenes. Polymer Chemistry, 2021, 12, 1681-1691.	3.9	8

#	Article	IF	CITATIONS
19	Respirometry and Cell Viability Studies for Sustainable Polyesters and Their Hydrolysis Products. ACS Sustainable Chemistry and Engineering, 2021, 9, 2736-2744.	6.7	12
20	Porous Polyethylene-Supported Zeolite Carriers for Improved Wastewater Deammonification. ACS ES&T Engineering, 2021, 1, 1104-1112.	7.6	4
21	Enhanced Nitrogen Removal and Anammox Bacteria Retention with Zeolite-Coated Membrane in Simulated Mainstream Wastewater. Environmental Science and Technology Letters, 2021, 8, 468-473.	8.7	11
22	Synthesis, Microstructure, and Properties of High-Molar-Mass Polyglycolide Copolymers with Isolated Methyl Defects. Biomacromolecules, 2021, 22, 2532-2543.	5.4	10
23	Regioregular Polymers from Biobased (<i>R</i>)-1,3-Butylene Carbonate. Macromolecules, 2021, 54, 5974-5984.	4.8	9
24	Sustainable Polymers Square Table. Macromolecules, 2021, 54, 8257-8258.	4.8	2
25	Enhanced Polyester Degradation through Transesterification with Salicylates. Journal of the American Chemical Society, 2021, 143, 15784-15790.	13.7	42
26	Blend Miscibility of Poly(ethylene terephthalate) and Aromatic Polyesters from Salicylic Acid. Journal of Physical Chemistry B, 2021, 125, 450-460.	2.6	22
27	Enhanced Mechanical Properties of Aliphatic Polyester Thermoplastic Elastomers through Star Block Architectures. Macromolecules, 2021, 54, 9327-9340.	4.8	34
28	Functionalized Polymersomes from a Polyisoprene-Activated Polyacrylamide Precursor. Langmuir, 2021, 37, 490-498.	3.5	5
29	Impact of Macromonomer Molar Mass and Feed Composition on Branch Distributions in Model Graft Copolymerizations. ACS Macro Letters, 2021, 10, 1622-1628.	4.8	11
30	Poly(methyl methacrylate) Films with High Concentrations of Silicon Quantum Dots for Visibly Transparent Luminescent Solar Concentrators. ACS Applied Materials & Samp; Interfaces, 2020, 12, 4572-4578.	8.0	36
31	Processable epoxy-telechelic polyalkenamers and polyolefins for photocurable elastomers. Polymer Chemistry, 2020, 11, 712-720.	3.9	8
32	Readily Degradable Aromatic Polyesters from Salicylic Acid. ACS Macro Letters, 2020, 9, 96-102.	4.8	34
33	Role of Polymer Excipients in the Kinetic Stabilization of Drug-Rich Nanoparticles. ACS Applied Bio Materials, 2020, 3, 7243-7254.	4.6	7
34	Co-Casting Highly Selective Dual-Layer Membranes with Disordered Block Polymer Selective Layers. ACS Applied Materials & Disordered Block Polymer Selective Layers.	8.0	12
35	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	4.9	0
36	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	2.5	0

#	Article	IF	CITATIONS
37	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.	5.2	0
38	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Central Science, 2020, 6, 589-590.	11.3	0
39	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Biology, 2020, 15, 1282-1283.	3.4	0
40	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Chemical Neuroscience, 2020, 11, 1196-1197.	3. 5	0
41	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Earth and Space Chemistry, 2020, 4, 672-673.	2.7	0
42	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Energy Letters, 2020, 5, 1610-1611.	17.4	1
43	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Macro Letters, 2020, 9, 666-667.	4.8	0
44	Update to Our Reader, Reviewer, and Author Communities—April 2020. , 2020, 2, 563-564.		0
45	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Nano, 2020, 14, 5151-5152.	14.6	2
46	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Photonics, 2020, 7, 1080-1081.	6.6	0
47	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Pharmacology and Translational Science, 2020, 3, 455-456.	4.9	0
48	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.	6.7	0
49	Update to Our Reader, Reviewer, and Author Communities—April 2020. Analytical Chemistry, 2020, 92, 6187-6188.	6.5	0
50	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemistry of Materials, 2020, 32, 3678-3679.	6.7	0
51	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science and Technology Letters, 2020, 7, 280-281.	8.7	1
52	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Chemical Education, 2020, 97, 1217-1218.	2.3	1
53	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Proteome Research, 2020, 19, 1883-1884.	3.7	0
54	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	3 . 5	0

#	Article	IF	CITATIONS
55	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Polymer Materials, 2020, 2, 1739-1740.	4.4	O
56	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Combinatorial Science, 2020, 22, 223-224.	3.8	0
57	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Medicinal Chemistry Letters, 2020, 11, 1060-1061.	2.8	0
58	Hydrogenolysis of Linear Low-Density Polyethylene during Heterogeneous Catalytic Hydrogen–Deuterium Exchange. Macromolecules, 2020, 53, 6043-6055.	4.8	27
59	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		0
60	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	4.6	1
61	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	5.1	0
62	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	11.3	1
63	Sustainable Triblock Copolymers as Tunable and Degradable Pressure Sensitive Adhesives. ACS Sustainable Chemistry and Engineering, 2020, 8, 12036-12044.	6.7	19
64	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	3.7	0
65	Assembly of Graphene Oxide Nanosheets on Diamine-Treated PVDF Hollow Fiber as Nanofiltration Membranes. ACS Applied Polymer Materials, 2020, 2, 3859-3866.	4.4	16
66	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	3.0	0
67	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	2.8	0
68	Nanostructural Rearrangement of Lamellar Block Polymers Cured in the Vicinity of the Order–Disorder Transition. Macromolecules, 2020, 53, 7691-7704.	4.8	7
69	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	2.8	1
70	Confronting Racism in Chemistry Journals. Energy & Samp; Fuels, 2020, 34, 7771-7773.	5.1	0
71	Step-Growth Polyesters with Biobased (<i>R</i>)-1,3-Butanediol. Industrial & Engineering Chemistry Research, 2020, 59, 15598-15613.	3.7	13
72	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	7.8	0

#	Article	IF	Citations
73	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	14.6	2
74	Next-Generation Ultrafiltration Membranes Enabled by Block Polymers. ACS Nano, 2020, 14, 16446-16471.	14.6	108
75	Order and Disorder in ABCA′ Tetrablock Terpolymers. Journal of Physical Chemistry B, 2020, 124, 10266-10275.	2.6	6
76	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Biochemistry, 2020, 59, 1641-1642.	2.5	0
77	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical & Engineering Data, 2020, 65, 2253-2254.	1.9	0
78	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Organic Process Research and Development, 2020, 24, 872-873.	2.7	0
79	From Order to Disorder: Computational Design of Triblock Amphiphiles with $1\mathrm{nm}$ Domains. Journal of the American Chemical Society, 2020, 142, 9352-9362.	13.7	9
80	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.	3.5	0
81	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Electronic Materials, 2020, 2, 1184-1185.	4.3	0
82	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Materials & Interfaces, 2020, 12, 20147-20148.	8.0	5
83	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Physical Chemistry C, 2020, 124, 9629-9630.	3.1	0
84	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Physical Chemistry Letters, 2020, 11, 3571-3572.	4.6	0
85	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9, 979-980.	3.8	0
86	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Energy Materials, 2020, 3, 4091-4092.	5.1	0
87	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	5.3	0
88	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	3.2	0
89	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	6.5	0
90	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	2.3	0

#	Article	IF	CITATIONS
91	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	2.7	0
92	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	6.7	0
93	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	6.7	0
94	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	3. 3	0
95	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	4.0	O
96	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	5.0	0
97	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	4.4	0
98	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	3 . 4	0
99	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882.	5 . 3	O
100	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	4.6	4
101	Confronting Racism in Chemistry Journals. ACS Applied Materials & Distribution (12, 28925-28927.	8.0	13
102	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	3.0	1
		0.0	
103	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	47.7	2
103	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797. Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.		
		47.7	2
104	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	47.7 11.2	1
104	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309. Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	47.7 11.2 5.4	1 0

#	Article	IF	CITATIONS
109	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	2.3	O
110	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	13.7	1
111	Atom-Economical, One-Pot, Self-Initiated Photopolymerization of Lactose Methacrylate for Biobased Hydrogels. ACS Sustainable Chemistry and Engineering, 2020, 8, 4606-4613.	6.7	6
112	Thiol–Ene Networks from Sequence-Defined Polyurethane Macromers. Journal of the American Chemical Society, 2020, 142, 6729-6736.	13.7	35
113	Design and Characterization of Model Linear Low-Density Polyethylenes (LLDPEs) by Multidetector Size Exclusion Chromatography. Macromolecules, 2020, 53, 2344-2353.	4.8	13
114	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	15.6	0
115	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	2.5	0
116	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	17.4	0
117	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	5.4	0
118	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	3.7	0
119	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	2.6	1
120	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Agricultural and Food Chemistry, 2020, 68, 5019-5020.	5.2	0
121	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry B, 2020, 124, 3603-3604.	2.6	O
122	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	3.6	0
123	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Nano Materials, 2020, 3, 3960-3961.	5.0	O
124	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Natural Products, 2020, 83, 1357-1358.	3.0	0
125	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	3.8	O
126	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.9	0

#	Article	IF	CITATIONS
127	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Bioconjugate Chemistry, 2020, 31, 1211-1212.	3.6	O
128	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.	2.1	0
129	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Research in Toxicology, 2020, 33, 1509-1510.	3.3	0
130	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Energy & Samp; Fuels, 2020, 34, 5107-5108.	5.1	0
131	Molecular Engineering of Nanostructures in Disordered Block Polymers. ACS Macro Letters, 2020, 9, 382-388.	4.8	19
132	Mechanically robust and reprocessable imine exchange networks from modular polyester pre-polymers. Polymer Chemistry, 2020, 11, 5346-5355.	3.9	48
133	Efficient Polymerization of Methyl-ε-Caprolactone Mixtures To Access Sustainable Aliphatic Polyesters. Macromolecules, 2020, 53, 1795-1808.	4.8	32
134	Synthesis and Self-Assembly of Block Polyelectrolyte Membranes through a Mild, 2-in-1 Postpolymerization Treatment. ACS Applied Polymer Materials, 2020, 2, 817-825.	4.4	9
135	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Bio Materials, 2020, 3, 2873-2874.	4.6	0
136	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.	3.2	0
137	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of the American Society for Mass Spectrometry, 2020, 31, 1006-1007.	2.8	0
138	Solid-Contact Ion-Selective and Reference Electrodes Covalently Attached to Functionalized Poly(ethylene terephthalate). Analytical Chemistry, 2020, 92, 7621-7629.	6.5	24
139	4-Carboalkoxylated Polyvalerolactones from Malic Acid: Tough and Degradable Polyesters. Macromolecules, 2020, 53, 3194-3201.	4.8	17
140	Update to Our Reader, Reviewer, and Author Communities—April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.	15.6	0
141	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biomacromolecules, 2020, 21, 1966-1967.	5.4	0
142	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Chemical Reviews, 2020, 120, 3939-3940.	47.7	0
143	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science & Technology, 2020, 54, 5307-5308.	10.0	0
144	Update to Our Reader, Reviewer, and Author Communities—April 2020. Langmuir, 2020, 36, 4565-4566.	3. 5	0

#	Article	IF	CITATIONS
145	Update to Our Reader, Reviewer, and Author Communities—April 2020. Molecular Pharmaceutics, 2020, 17, 1445-1446.	4.6	O
146	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Infectious Diseases, 2020, 6, 891-892.	3.8	0
147	Update to Our Reader, Reviewer, and Author Communities—April 2020. Crystal Growth and Design, 2020, 2817-2818.	3.0	1
148	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.	6.4	0
149	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Physical Chemistry A, 2020, 124, 3501-3502.	2.5	0
150	Update to Our Reader, Reviewer, and Author Communities—April 2020. Nano Letters, 2020, 20, 2935-2936.	9.1	0
151	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.	7.8	0
152	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Information and Modeling, 2020, 60, 2651-2652.	5.4	0
153	Update to Our Reader, Reviewer, and Author Communities—April 2020. Industrial & Engineering Chemistry Research, 2020, 59, 8509-8510.	3.7	0
154	Nanostructured Polymer Monoliths for Biomedical Delivery Applications. ACS Applied Bio Materials, 2020, 3, 3236-3247.	4.6	14
155	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of the American Chemical Society, 2020, 142, 8059-8060.	13.7	3
156	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Inorganic Chemistry, 2020, 59, 5796-5797.	4.0	0
157	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organometallics, 2020, 39, 1665-1666.	2.3	0
158	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Organic Letters, 2020, 22, 3307-3308.	4.6	0
159	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	5.2	1
160	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	3.5	1
161	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	4.3	0
162	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	5.2	0

#	Article	IF	CITATIONS
163	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	2.7	O
164	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	8.7	0
165	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	0
166	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	3.8	0
167	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	4.6	0
168	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	3.1	0
169	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	4.8	0
170	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	4.6	1
171	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	3.5	1
172	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	6.6	0
173	Confronting Racism in Chemistry Journals. Environmental Science & Environmenta	10.0	0
174	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	2.1	0
175	Bicontinuous Porous Nanomaterials from Block Polymers Radically Cured in the Disordered State for Size-Selective Membrane Applications. ACS Applied Nano Materials, 2019, 2, 4567-4577.	5.0	24
176	Hydrolytically-degradable homo- and copolymers of a strained exocyclic hemiacetal ester. Polymer Chemistry, 2019, 10, 4573-4583.	3.9	24
177	Recent Advances in Understanding the Micro- and Nanoscale Phenomena of Amorphous Solid Dispersions. Molecular Pharmaceutics, 2019, 16, 4089-4103.	4.6	54
178	Fast Photochromic Dye Response in Rigid Block Polymer Thermosets. ACS Applied Polymer Materials, 2019, 1, 2778-2786.	4.4	22
179	Engineering <i>in Vivo</i> Production of α-Branched Polyesters. Journal of the American Chemical Society, 2019, 141, 16877-16883.	13.7	21
180	Mechanistic Study of Stress Relaxation in Urethane-Containing Polymer Networks. Journal of Physical Chemistry B, 2019, 123, 1432-1441.	2.6	102

#	Article	IF	Citations
181	Aliphatic Polyester Thermoplastic Elastomers Containing Hydrogen-Bonding Ureidopyrimidinone Endgroups. Biomacromolecules, 2019, 20, 2598-2609.	5.4	40
182	Synthesis, Simulation, and Self-Assembly of a Model Amphiphile To Push the Limits of Block Polymer Nanopatterning. Nano Letters, 2019, 19, 4458-4462.	9.1	21
183	Temporally Controlled Curing of Block Polymers in the Disordered State Using Thermally Stable Photoacid Generators for the Preparation of Nanoporous Membranes. ACS Applied Polymer Materials, 2019, 1, 1148-1154.	4.4	15
184	Entropically Driven Macrolide Polymerizations for the Synthesis of Aliphatic Polyester Copolymers Using Titanium Isopropoxide. Macromolecules, 2019, 52, 2371-2383.	4.8	31
185	Investigation of Micromechanical Behavior and Voiding of Polyethylene Terephthalate/Polyethylene- <i>stat</i> -methyl Acrylate Blends during Tensile Deformation. Industrial & Engineering Chemistry Research, 2019, 58, 6402-6412.	3.7	7
186	Mechanistic Study of Palladium-Catalyzed Hydroesterificative Copolymerization of Vinyl Benzyl Alcohol and CO. Organometallics, 2019, 38, 1778-1786.	2.3	8
187	Evaluating Large-Scale STEM Outreach Efficacy with a Consistent Theme: Thermodynamics for Elementary School Students. ACS Omega, 2019, 4, 2661-2668.	3.5	4
188	Photochemical Transformation of Poly(butylene adipate- <i>co</i> -terephthalate) and Its Effects on Enzymatic Hydrolyzability. Environmental Science & Enzymatic Hydrolyzability. Environmental Science & Enzymatic Hydrolyzability.	10.0	45
189	Dispersity and architecture driven self-assembly and confined crystallization of symmetric branched block copolymers. Polymer Chemistry, 2019, 10, 5385-5395.	3.9	10
190	Critical Excipient Properties for the Dissolution Enhancement of Phenytoin. ACS Omega, 2019, 4, 19116-19127.	3.5	6
191	Physical Aging of Polylactide-Based Graft Block Polymers. Macromolecules, 2019, 52, 8878-8894.	4.8	35
192	CdSe/CdS–poly(cyclohexylethylene) thin film luminescent solar concentrators. APL Materials, 2019, 7,	5.1	14
193	Renewable Thermosets and Thermoplastics from Itaconic Acid. ACS Sustainable Chemistry and Engineering, 2019, 7, 2691-2701.	6.7	51
194	Polylactide Foams with Tunable Mechanical Properties and Wettability using a Star Polymer Architecture and a Mixture of Surfactants. ACS Sustainable Chemistry and Engineering, 2019, 7, 1698-1706.	6.7	24
195	Silicon Quantum Dot–Poly(methyl methacrylate) Nanocomposites with Reduced Light Scattering for Luminescent Solar Concentrators. ACS Photonics, 2019, 6, 170-180.	6.6	58
196	Computational Design of High-χ Block Oligomers for Accessing 1 nm Domains. ACS Nano, 2018, 12, 4351-4361.	14.6	25
197	Consequences of Grafting Density on the Linear Viscoelastic Behavior of Graft Polymers. ACS Macro Letters, 2018, 7, 525-530.	4.8	97
198	Poly(alkyl methacrylate)-Grafted Polyolefins as Viscosity Modifiers for Engine Oil: A New Mechanism for Improved Performance. Industrial & Engineering Chemistry Research, 2018, 57, 1840-1850.	3.7	19

#	Article	lF	CITATIONS
199	Sustainable Polyester Elastomers from Lactones: Synthesis, Properties, and Enzymatic Hydrolyzability. Journal of the American Chemical Society, 2018, 140, 963-973.	13.7	102
200	Functionalized Mesoporous Polymers with Enhanced Performance as Reference Electrode Frits. ACS Applied Nano Materials, 2018, 1 , $139-144$.	5.0	10
201	Reprocessable Acid-Degradable Polycarbonate Vitrimers. Macromolecules, 2018, 51, 389-397.	4.8	273
202	Activated Polyacrylamides as Versatile Substrates for Postpolymerization Modification. ACS Macro Letters, 2018, 7, 122-126.	4.8	28
203	Multiblock Polyesters Demonstrating High Elasticity and Shape Memory Effects. Macromolecules, 2018, 51, 2466-2475.	4.8	71
204	Revisiting the Anionic Polymerization of Methyl Ethacrylate. Macromolecular Chemistry and Physics, 2018, 219, 1700282.	2.2	8
205	Techno-economic Analysis of a Chemical Process To Manufacture Methyl-Îμ-caprolactone from Cresols. ACS Sustainable Chemistry and Engineering, 2018, 6, 15316-15324.	6.7	28
206	Poly(allyl alcohol) Homo- and Block Polymers by Postpolymerization Reduction of an Activated Polyacrylamide. Journal of the American Chemical Society, 2018, 140, 11911-11915.	13.7	34
207	Editorial for a Virtual Issue "50th Anniversary Perspectives from Macromolecules― Macromolecules, 2018, 51, 4423-4423.	4.8	0
208	Straightforward synthesis of model polystyrene- <i>block</i> -poly(vinyl alcohol) diblock polymers. Polymer Chemistry, 2018, 9, 4243-4250.	3.9	18
209	Preparation, Characterization, and Formulation Development of Drug–Drug Protic Ionic Liquids of Diphenhydramine with Ibuprofen and Naproxen. Molecular Pharmaceutics, 2018, 15, 4190-4201.	4.6	40
210	Bioderived Acrylates from Alkyl Lactates via Pd-Catalyzed Hydroesterification. ACS Sustainable Chemistry and Engineering, 2018, 6, 9579-9584.	6.7	13
211	Approaches to Sustainable and Continually Recyclable Cross-Linked Polymers. ACS Sustainable Chemistry and Engineering, 2018, 6, 11145-11159.	6.7	348
212	Impact of Polymer Excipient Molar Mass and End Groups on Hydrophobic Drug Solubility Enhancement. Macromolecules, 2017, 50, 1102-1112.	4.8	39
213	Tuning Mesoporosity in Cross-Linked Nanostructured Thermosets via Polymerization-Induced Microphase Separation. Macromolecules, 2017, 50, 997-1007.	4.8	59
214	Anhydride-Additive-Free Nickel-Catalyzed Deoxygenation of Carboxylic Acids to Olefins. Organometallics, 2017, 36, 506-509.	2.3	32
215	Enhanced Performance of Blended Polymer Excipients in Delivering a Hydrophobic Drug through the Synergistic Action of Micelles and HPMCAS. Langmuir, 2017, 33, 2837-2848.	3.5	38
216	Structural effects on the reprocessability and stress relaxation of crosslinked polyhydroxyurethanes. Journal of Applied Polymer Science, 2017, 134, 44984.	2.6	103

#	Article	IF	CITATIONS
217	Direct Observation of Nanostructures during Aqueous Dissolution of Polymer/Drug Particles. Macromolecules, 2017, 50, 3143-3152.	4.8	26
218	Robust Polymer Electrolyte Membranes with High Ambient-Temperature Lithium-Ion Conductivity via Polymerization-Induced Microphase Separation. ACS Applied Materials & Samp; Interfaces, 2017, 9, 14561-14565.	8.0	89
219	Effect of homopolymer in polymerization-induced microphase separation process. Polymer, 2017, 126, 338-351.	3.8	31
220	Polymer Day: Outreach Experiments for High School Students. Journal of Chemical Education, 2017, 94, 1629-1638.	2.3	31
221	<i>50th Anniversary Perspective</i> : There Is a Great Future in Sustainable Polymers. Macromolecules, 2017, 50, 3733-3749.	4.8	700
222	Strong, Resilient, and Sustainable Aliphatic Polyester Thermoplastic Elastomers. Biomacromolecules, 2017, 18, 1845-1854.	5.4	134
223	Thermal processing of diblock copolymer melts mimics metallurgy. Science, 2017, 356, 520-523.	12.6	227
224	Intrinsically Hierarchical Nanoporous Polymers via Polymerization-Induced Microphase Separation. Macromolecules, 2017, 50, 4363-4371.	4.8	25
225	Oxidatively Stable Polyolefin Thermoplastics and Elastomers for Biomedical Applications. ACS Macro Letters, 2017, 6, 613-618.	4.8	18
226	Morphological Consequences of Frustration in ABC Triblock Polymers. Macromolecules, 2017, 50, 446-458.	4.8	20
227	Nanoporous Thermosets with Percolating Pores from Block Polymers Chemically Fixed above the Order–Disorder Transition. ACS Central Science, 2017, 3, 1114-1120.	11.3	38
228	Self-Supporting, Hydrophobic, Ionic Liquid-Based Reference Electrodes Prepared by Polymerization-Induced Microphase Separation. ACS Sensors, 2017, 2, 1498-1504.	7.8	24
229	Tricontinuous Nanostructured Polymers via Polymerization-Induced Microphase Separation. ACS Macro Letters, 2017, 6, 1232-1236.	4.8	19
230	Controlled synthesis of ABCA' tetrablock terpolymers. Polymer, 2017, 124, 60-67.	3.8	10
231	Selective Decarbonylation of Fatty Acid Esters to Linear α-Olefins. Organometallics, 2017, 36, 2956-2964.	2.3	29
232	The promise of plastics from plants. Science, 2017, 358, 868-870.	12.6	253
233	Synthesis and utility of ethylene (meth)acrylate copolymers prepared by a tandem ringâ€opening polymerization hydrogenation strategy. Journal of Polymer Science Part A, 2017, 55, 3117-3126.	2.3	6
234	Conformational Asymmetry and Quasicrystal Approximants in Linear Diblock Copolymers. Physical Review Letters, 2017, 118, 207801.	7.8	107

#	Article	IF	Citations
235	Degradable Thermosets Derived from an Isosorbide/Succinic Anhydride Monomer and Glycerol. ACS Sustainable Chemistry and Engineering, 2017, 5, 9185-9190.	6.7	42
236	High surface area carbon black (BPâ€2000) as a reinforcing agent for poly[(â^')â€lactide]. Journal of Applied Polymer Science, 2016, 133, .	2.6	9
237	Design of Graft Block Polymer Thermoplastics. Macromolecules, 2016, 49, 9108-9118.	4.8	64
238	Reactive Compatibilization of Poly(ethylene terephthalate) and High-Density Polyethylene Using Amino-Telechelic Polyethylene. Macromolecules, 2016, 49, 8988-8994.	4.8	40
239	Multicompartment Micelles by Aqueous Self-Assembly of $\hat{l}/4$ -A(BC) _{<i>n</i>} <i>Mikto</i> brush Terpolymers. ACS Omega, 2016, 1, 1027-1033.	3.5	21
240	Chemically Recyclable Biobased Polyurethanes. ACS Macro Letters, 2016, 5, 515-518.	4.8	143
241	Filler-Reinforced Elastomers Based on Functional Polyolefin Prepolymers. Industrial & Engineering Chemistry Research, 2016, 55, 6106-6112.	3.7	11
242	Diels–Alder Reactions of Furans with Itaconic Anhydride: Overcoming Unfavorable Thermodynamics. Organic Letters, 2016, 18, 2584-2587.	4.6	34
243	Acrylic Triblock Copolymers Incorporating Isosorbide for Pressure Sensitive Adhesives. ACS Sustainable Chemistry and Engineering, 2016, 4, 3379-3387.	6.7	102
244	Controlled Chain Walking for the Synthesis of Thermoplastic Polyolefin Elastomers: Synthesis, Structure, and Properties. Macromolecules, 2016, 49, 6743-6751.	4.8	114
245	Poly(urea ester): A family of biodegradable polymers with high melting temperatures. Journal of Polymer Science Part A, 2016, 54, 3795-3799.	2.3	15
246	Regioselective cross metathesis for block and heterotelechelic polymer synthesis. Polymer Chemistry, 2016, 7, 6269-6278.	3.9	35
247	Avoiding Errors in Electrochemical Measurements: Effect of Frit Material on the Performance of Reference Electrodes with Porous Frit Junctions. Analytical Chemistry, 2016, 88, 8706-8713.	6. 5	55
248	Polysilylether: A Degradable Polymer from Biorenewable Feedstocks. Angewandte Chemie - International Edition, 2016, 55, 11872-11876.	13.8	30
249	Branched Diol Monomers from the Sequential Hydrogenation of Renewable Carboxylic Acids. ChemCatChem, 2016, 8, 3031-3035.	3.7	21
250	Lightweight micro-cellular plastics from polylactide/polyolefin hybrids. Polymer, 2016, 102, 73-83.	3.8	17
251	Nanoscale Concentration Quantification of Pharmaceutical Actives in Amorphous Polymer Matrices by Electron Energy-Loss Spectroscopy. Langmuir, 2016, 32, 7411-7419.	3.5	16
252	Renewable, Degradable, and Chemically Recyclable Cross-Linked Elastomers. Industrial & Engineering Chemistry Research, 2016, 55, 11097-11106.	3.7	70

#	Article	IF	Citations
253	Organocatalytic Cationic Ring-Opening Polymerization of a Cyclic Hemiacetal Ester. Industrial & Engineering Chemistry Research, 2016, 55, 11747-11755.	3.7	34
254	"Uncontrolled―Preparation of Disperse Poly(lactide)-block-poly(styrene)-block-poly(lactide) for Nanopatterning Applications. Macromolecules, 2016, 49, 8031-8040.	4.8	14
255	Polysilylether: A Degradable Polymer from Biorenewable Feedstocks. Angewandte Chemie, 2016, 128, 12051-12055.	2.0	7
256	Mechanistic Studies of $\hat{l}\mu$ -Caprolactone Polymerization by (salen)AlOR Complexes and a Predictive Model for Cyclic Ester Polymerizations. ACS Catalysis, 2016, 6, 1215-1224.	11.2	55
257	Discussion on "Aperiodic Copolymers― ACS Macro Letters, 2016, 5, 1-3.	4.8	21
258	Anhydrous Proton Conducting Polymer Electrolyte Membranes via Polymerization-Induced Microphase Separation. ACS Applied Materials & Eamp; Interfaces, 2016, 8, 6200-6210.	8.0	76
259	Tough and Sustainable Graft Block Copolymer Thermoplastics. ACS Macro Letters, 2016, 5, 407-412.	4.8	94
260	Poly(cyclohexylethylene)- <i>block</i> -Poly(lactide) Oligomers for Ultrasmall Nanopatterning Using Atomic Layer Deposition. ACS Applied Materials & Samp; Interfaces, 2016, 8, 7431-7439.	8.0	24
261	Aliphatic Polyester Block Polymer Design. Macromolecules, 2016, 49, 2419-2428.	4.8	200
262	Well-Ordered Nanoporous ABA Copolymer Thin Films via Solvent Vapor Annealing, Homopolymer Blending, and Selective Etching of ABAC Tetrablock Terpolymers. ACS Applied Materials & Emp; Interfaces, 2015, 7, 27331-27339.	8.0	11
263	Bottlebrush Block Polymers: Quantitative Theory and Experiments. ACS Nano, 2015, 9, 12233-12245.	14.6	141
264	Hierarchically Porous Polymers from Hyper-cross-linked Block Polymer Precursors. Journal of the American Chemical Society, 2015, 137, 600-603.	13.7	163
265	Size-Tuned ZnO Nanocrucible Arrays for Magnetic Nanodot Synthesis <i>via</i> Atomic Layer Deposition-Assisted Block Polymer Lithography. ACS Nano, 2015, 9, 1379-1387.	14.6	22
266	Olefins from biomass feedstocks: catalytic ester decarbonylation and tandem Heck-type coupling. Chemical Communications, 2015, 51, 2731-2733.	4.1	35
267	Evolution of Morphology, Modulus, and Conductivity in Polymer Electrolytes Prepared via Polymerization-Induced Phase Separation. Macromolecules, 2015, 48, 1418-1428.	4.8	82
268	Poly(lactide)-block-poly(l̂µ-caprolactone-co-l̂µ-decalactone)-block-poly(lactide) copolymer elastomers. Polymer Chemistry, 2015, 6, 3641-3651.	3.9	78
269	Structure of Two-Compartment Hydrogels from Thermoresponsive ABC Triblock Terpolymers. Macromolecules, 2015, 48, 5934-5943.	4.8	23
270	Hierarchically Porous Polymer Monoliths by Combining Controlled Macro- and Microphase Separation. Journal of the American Chemical Society, 2015, 137, 8896-8899.	13.7	133

#	Article	IF	CITATIONS
271	Reactive Compatibilization of Polylactide/Polypropylene Blends. Industrial & Engineering Chemistry Research, 2015, 54, 6108-6114.	3.7	99
272	Linear Rheology of Polyolefin-Based Bottlebrush Polymers. Macromolecules, 2015, 48, 4680-4691.	4.8	137
273	Detection of Pharmaceutical Drug Crystallites in Solid Dispersions by Transmission Electron Microscopy. Molecular Pharmaceutics, 2015, 12, 983-990.	4.6	39
274	Isosorbide-based Polymethacrylates. ACS Sustainable Chemistry and Engineering, 2015, 3, 662-667.	6.7	89
275	Mechanically Activated, Catalyst-Free Polyhydroxyurethane Vitrimers. Journal of the American Chemical Society, 2015, 137, 14019-14022.	13.7	593
276	High-Performance Pressure-Sensitive Adhesives from Renewable Triblock Copolymers. Biomacromolecules, 2015, 16, 2537-2539.	5.4	42
277	Hydroxy-telechelic poly(ethylene-co-isobutylene) as a soft segment for thermoplastic polyurethanes. Polymer Chemistry, 2015, 6, 6806-6811.	3.9	26
278	Poly(cyclohexylethylene)- <i>block</i> poly(ethylene oxide) Block Polymers for Metal Oxide Templating. ACS Macro Letters, 2015, 4, 1027-1032.	4.8	18
279	High χ–Low <i>N</i> Block Polymers: How Far Can We Go?. ACS Macro Letters, 2015, 4, 1044-1050.	4.8	370
280	Functionalized regio-regular linear polyethylenes from the ROMP of 3-substituted cyclooctenes. Applied Petrochemical Research, 2015, 5, 19-25.	1.3	35
281	Divergent Mechanistic Avenues to an Aliphatic Polyesteracetal or Polyester from a Single Cyclic Esteracetal. ACS Macro Letters, 2014, 3, 1156-1160.	4.8	36
282	Interfacial Polymerization of Reactive Block Polymers for the Preparation of Composite Ultrafiltration Membranes. Industrial & Engineering Chemistry Research, 2014, 53, 18575-18579.	3.7	20
283	Optimization of Long-Range Order in Solvent Vapor Annealed Poly(styrene)- <i>block</i> -poly(lactide) Thin Films for Nanolithography. ACS Applied Materials & Interfaces, 2014, 6, 13770-13781.	8.0	68
284	High-Modulus, High-Conductivity Nanostructured Polymer Electrolyte Membranes via Polymerization-Induced Phase Separation. Nano Letters, 2014, 14, 122-126.	9.1	274
285	Poly(methyl methacrylate)- <i>block</i> -vi>block-polyethylene- <i>block</i> -poly(methyl methacrylate) Triblock Copolymers as Compatibilizers for Polyethylene/Poly(methyl methacrylate) Blends. Industrial & Samp; Engineering Chemistry Research, 2014, 53, 4718-4725.	3.7	42
286	Ring-opening metathesis polymerization of 8-membered cyclic olefins. Polymer Chemistry, 2014, 5, 3507.	3.9	120
287	Thermoplastic polyurethane elastomers from bio-based poly (\hat{l} -decalactone) diols. Polymer Chemistry, 2014, 5, 3231-3237.	3.9	49
288	Aliphatic Polyester Block Polymers: Renewable, Degradable, and Sustainable. Accounts of Chemical Research, 2014, 47, 2390-2396.	15.6	496

#	Article	IF	Citations
289	Synthesis and Melt Processing of Sustainable Poly(ε-decalactone)- <i>block</i> -Poly(lactide) Multiblock Thermoplastic Elastomers. ACS Sustainable Chemistry and Engineering, 2014, 2, 2519-2526.	6.7	88
290	Tuning of HOMO energy levels and open circuit voltages in solar cells based on statistical copolymers prepared by ADMET polymerization. Polymer Chemistry, 2014, 5, 6287-6294.	3.9	12
291	Combining block copolymers and hydrogen bonding for poly(lactide) toughening. RSC Advances, 2014, 4, 13266.	3.6	18
292	RAFT copolymerization of acid chloride-containing monomers. Polymer Chemistry, 2014, 5, 213-219.	3.9	8
293	Scalable production of mechanically tunable block polymers from sugar. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8357-8362.	7.1	159
294	Factors Controlling Selectivity in the Ring-Opening Metathesis Polymerization of 3-Substituted Cyclooctenes by Monoaryloxide Pyrrolide Imido Alkylidene (MAP) Catalysts. Journal of Organic Chemistry, 2014, 79, 11940-11948.	3.2	13
295	Molecular Weight Dependence of Zero-Shear Viscosity in Atactic Polypropylene Bottlebrush Polymers. ACS Macro Letters, 2014, 3, 423-427.	4.8	116
296	Polyether Urethane Hydrolytic Stability after Exposure to Deoxygenated Water. Macromolecules, 2014, 47, 5220-5226.	4.8	48
297	Synthetic strategies for the generation of ABCA' type asymmetric tetrablock terpolymers. Polymer Chemistry, 2014, 5, 5551.	3.9	17
298	Sub-5 nm Domains in Ordered Poly(cyclohexylethylene)- <i>block</i> -poly(methyl methacrylate) Block Polymers for Lithography. Macromolecules, 2014, 47, 1411-1418.	4.8	197
299	Carboxy-Telechelic Polyolefins in Cross-Linked Elastomers. Macromolecules, 2014, 47, 479-485.	4.8	45
300	Degradable Thermosets from Sugar-Derived Dilactones. Macromolecules, 2014, 47, 498-505.	4.8	38
301	Sustainable Thermoplastic Elastomers from Terpene-Derived Monomers. ACS Macro Letters, 2014, 3, 717-720.	4.8	152
302	Polymeric Nanocylinders by Combining Block Copolymer Self-Assembly and Nanoskiving. ACS Applied Materials & Samp; Interfaces, 2014, 6, 16283-16288.	8.0	12
303	Structural Transitions in Asymmetric Poly(styrene)- <i>block</i> -Poly(lactide) Thin Films Induced by Solvent Vapor Exposure. ACS Applied Materials & Solvent Vapor Exposure Exposure. ACS Applied Materials & Solvent Vapor Exposure Exposure. ACS Applied Materials & Solvent Vapor Exposure Exposu	8.0	25
304	Polylactide Vitrimers. ACS Macro Letters, 2014, 3, 607-610.	4.8	386
305	Preparation and Performance of Hydroxypropyl Methylcellulose Esters of Substituted Succinates for <i>in Vitro</i> Supersaturation of a Crystalline Hydrophobic Drug. Molecular Pharmaceutics, 2014, 11, 175-185.	4.6	33
306	Functionalized Nanoporous Polyethylene Derived from Miscible Block Polymer Blends. ACS Applied Materials & Samp; Interfaces, 2013, 5, 291-300.	8.0	20

#	Article	IF	Citations
307	ABAC Tetrablock Terpolymers for Tough Nanoporous Filtration Membranes. Macromolecules, 2013, 46, 1484-1491.	4.8	61
308	Intramolecular Exciton Diffusion in Poly(3-hexylthiophene). Journal of Physical Chemistry Letters, 2013, 4, 3445-3449.	4.6	18
309	Functionalized linear low-density polyethylene by ring-opening metathesis polymerization. Polymer Chemistry, 2013, 4, 1193-1198.	3.9	25
310	Nanoporous Poly(lactide) by Olefin Metathesis Degradation. Journal of the American Chemical Society, 2013, 135, 10918-10921.	13.7	41
311	Renewable carvone-based polyols for use in polyurethane thermosets. RSC Advances, 2013, 3, 20399.	3.6	18
312	Z-Selective Ring-Opening Metathesis Polymerization of 3-Substituted Cyclooctenes by Monoaryloxide Pyrrolide Imido Alkylidene (MAP) Catalysts of Molybdenum and Tungsten. Organometallics, 2013, 32, 4843-4850.	2.3	58
313	Sequential ROMP of cyclooctenes as a route to linear polyethylene block copolymers. Dalton Transactions, 2013, 42, 9079.	3.3	26
314	Precision Vinyl Acetate/Ethylene (VAE) Copolymers by ROMP of Acetoxy-Substituted Cyclic Alkenes. Macromolecules, 2013, 46, 2535-2543.	4.8	71
315	Bioresorbable Polymersomes for Targeted Delivery of Cisplatin. Bioconjugate Chemistry, 2013, 24, 533-543.	3.6	29
316	Rheological Evidence of Composition Fluctuations in an Unentangled Diblock Copolymer Melt near the Order–Disorder Transition. ACS Macro Letters, 2013, 2, 496-500.	4.8	17
317	Ultrafiltration Membranes with a Thin Poly(styrene)- <i>b</i> -poly(isoprene) Selective Layer. ACS Applied Materials & Description (applied Materials) Applied (applied Materials) Applied Materials & Description (applied Material	8.0	58
318	Effects of Olefin Content and Alkyl Chain Placement on Optoelectronic and Morphological Properties in Poly(thienylene vinylenes). Macromolecules, 2013, 46, 5184-5194.	4.8	50
319	One-Step Synthesis of Cross-Linked Block Polymer Precursor to a Nanoporous Thermoset. ACS Macro Letters, 2013, 2, 617-620.	4.8	41
320	Solvent Vapor Annealing of Block Polymer Thin Films. Macromolecules, 2013, 46, 5399-5415.	4.8	470
321	Magnetic Microrheology of Block Copolymer Solutions. ACS Applied Materials & 2013, 5, 11877-11883.	8.0	10
322	Synthesis of block polymer miktobrushes. Polymer Chemistry, 2013, 4, 166-173.	3.9	31
323	Positron lifetime spectroscopy in ordered nanoporous polymers. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1157-1161.	2.1	9
324	Synthesis of Sequence-Specific Vinyl Copolymers by Regioselective ROMP of Multiply Substituted Cyclooctenes. ACS Macro Letters, 2012, 1, 1383-1387.	4.8	156

#	Article	IF	Citations
325	ABC Triblock Terpolymers Exhibiting Both Temperature- and pH-Sensitive Micellar Aggregation and Gelation in Aqueous Solution. Langmuir, 2012, 28, 17785-17794.	3.5	32
326	A Stepwise "Micellization–Crystallization―Route to Oblate Ellipsoidal, Cylindrical, and Bilayer Micelles with Polyethylene Cores in Water. Macromolecules, 2012, 45, 9460-9467.	4.8	77
327	Reactive triblock polymers from tandem ring-opening polymerization for nanostructured vinyl thermosets. Polymer Chemistry, 2012, 3, 1827-1837.	3.9	15
328	Selectivity in Ring-Opening Metathesis Polymerization of <i>Z</i> -Cyclooctenes Catalyzed by a Second-generation Grubbs Catalyst. ACS Catalysis, 2012, 2, 2547-2556.	11.2	55
329	Copolymerization of isoprene and hydroxyl containing monomers by controlled radical and emulsion methods. Polymer Chemistry, 2012, 3, 1510.	3.9	22
330	Manipulating Crystal Growth and Polymorphism by Confinement in Nanoscale Crystallization Chambers. Accounts of Chemical Research, 2012, 45, 414-423.	15.6	162
331	Catalytic decarbonylation of biomass-derived carboxylic acids as efficient route to commodity monomers. Green Chemistry, 2012, 14, 490.	9.0	59
332	Bulk Ring-Opening Transesterification Polymerization of the Renewable Î'-Decalactone Using an Organocatalyst. ACS Macro Letters, 2012, 1, 131-135.	4.8	89
333	Thermoplastic Elastomers Derived from Menthide and Tulipalin A. Biomacromolecules, 2012, 13, 3833-3840.	5.4	122
334	An ADMET Route to Low-Band-Gap Poly(3-hexadecylthienylene vinylene): A Systematic Study of Molecular Weight on Photovoltaic Performance. Macromolecules, 2012, 45, 2190-2199.	4.8	41
335	Synthesis, Thermodynamics, and Dynamics of Poly(4- <i>tert</i> -butylstyrene- <i>b</i> -methyl) Tj ETQq1 1 0.7843	14.rgBT / 4.8	Overlock 10
336	Influence of Water on the Structure and Properties of PDMS-Containing Multiblock Polyurethanes. Macromolecules, 2012, 45, 9110-9120.	4.8	62
337	Efficient Formation of Multicompartment Hydrogels by Stepwise Self-Assembly of Thermoresponsive ABC Triblock Terpolymers. Journal of the American Chemical Society, 2012, 134, 10365-10368.	13.7	107
338	Multiblock Polymers: Panacea or Pandora's Box?. Science, 2012, 336, 434-440.	12.6	930
339	Band Gap and HOMO Level Control in Poly(thienylene vinylene)s Prepared by ADMET Polymerization. ACS Macro Letters, 2012, 1, 986-990.	4.8	40
340	Multicompartment Block Polymer Micelles. Macromolecules, 2012, 45, 2-19.	4.8	436
341	Polyurethanes based on renewable polyols from bioderived lactones. Polymer Chemistry, 2012, 3, 2941.	3.9	41
342	Alignment of Organic Crystals under Nanoscale Confinement. Crystal Growth and Design, 2012, 12, 4494-4504.	3.0	26

#	Article	IF	CITATIONS
343	Nanoscale Rings from Silicon-Containing Triblock Terpolymers. ACS Applied Materials & Samp; Interfaces, 2012, 4, 3550-3557.	8.0	12
344	Synthesis of Tri- and Multiblock Polymers with Asymmetric Poly(ethylene oxide) End Blocks. ACS Macro Letters, 2012, 1, 768-771.	4.8	18
345	Synthesis and Remarkable Efficacy of Model Polyethylene- <i>graft</i> -poly(methyl methacrylate) Copolymers as Compatibilizers in Polyethylene/Poly(methyl methacrylate) Blends. Macromolecules, 2012, 45, 9604-9610.	4.8	62
346	Glucose-Functionalized, Serum-Stable Polymeric Micelles from the Combination of Anionic and RAFT Polymerizations. Macromolecules, 2012, 45, 4322-4332.	4.8	60
347	Roles of Monomer Binding and Alkoxide Nucleophilicity in Aluminum-Catalyzed Polymerization of $\hat{l}\mu < b > - < /b >$ Caprolactone. Macromolecules, 2012, 45, 5387-5396.	4.8	73
348	Reticulated Nanoporous Polymers by Controlled Polymerization-Induced Microphase Separation. Science, 2012, 336, 1422-1425.	12.6	256
349	Water transport and clustering behavior in homopolymer and graft copolymer polylactide. Journal of Membrane Science, 2012, 396, 50-56.	8.2	23
350	Disklike Micelles in Water from Polyethylene-Containing Diblock Copolymers. Macromolecules, 2011, 44, 3021-3028.	4.8	142
351	Carboxy-Telechelic Polyolefins by ROMP Using Maleic Acid as a Chain Transfer Agent. Macromolecules, 2011, 44, 2378-2381.	4.8	70
352	Relationship between Diode Saturation Current and Open Circuit Voltage in Poly(3-alkylthiophene) Solar Cells as a Function of Device Architecture, Processing Conditions, and Alkyl Side Chain Length. Journal of Physical Chemistry C, 2011, 115, 20806-20816.	3.1	51
353	Micellization and Micellar Aggregation of Poly(ethylene- <i>alt</i> propylene)- <i>b</i> poly(ethylene) Tj ETQq1 1 2011, 44, 1635-1641.		rgBT /Ovedo 103
354	Regio- and Stereoselective Ring-Opening Metathesis Polymerization of 3-Substituted Cyclooctenes. Journal of the American Chemical Society, 2011, 133, 5794-5797.	13.7	124
355	In situ Electrochemical Monitoring of Selective Etching in Ordered Mesoporous Block-Copolymer Templates. ACS Applied Materials & Interfaces, 2011, 3, 1375-1379.	8.0	16
356	Polylactide–Poly(6-methyl-ε-caprolactone)–Polylactide Thermoplastic Elastomers. Macromolecules, 2011, 44, 8537-8545.	4.8	116
357	Characterization of Nanoporous Polystyrene Thin Films by Environmental Ellipsometric Porosimetry. Macromolecules, 2011, 44, 8892-8897.	4.8	20
358	Amino-Functionalized Polyethylene for Enhancing the Adhesion between Polyolefins and Polyurethanes. Industrial & Description (Chemistry Research, 2011, 50, 3274-3279.)	3.7	27
359	Catalytic synthesis and post-polymerization functionalization of conjugated polyisoprene. Polymer Chemistry, 2011, 2, 2062.	3.9	16
360	Functional biorenewable polyesters from carvone-derived lactones. Polymer Chemistry, 2011, 2, 702-708.	3.9	100

#	Article	IF	CITATIONS
361	Cross-Linked Nanoporous Materials from Reactive and Multifunctional Block Polymers. Macromolecules, 2011, 44, 9310-9318.	4.8	41
362	Tough Blends of Polylactide and Castor Oil. ACS Applied Materials & Samp; Interfaces, 2011, 3, 3402-3410.	8.0	65
363	Non-lift-off Block Copolymer Lithography of 25 nm Magnetic Nanodot Arrays. ACS Applied Materials & Samp; Interfaces, 2011, 3, 3472-3481.	8.0	40
364	Pressure-Sensitive Adhesives from Renewable Triblock Copolymers. Macromolecules, 2011, 44, 87-94.	4.8	126
365	Liquid Water Transport in Polylactide Homo and Graft Copolymers. ACS Applied Materials & Discrete Liquid Water Transport in Polylactide Homo and Graft Copolymers. ACS Applied Materials & Discrete Liquid Water Transport in Polylactide Homo and Graft Copolymers. ACS Applied Materials & Discrete Liquid Water Transport in Polylactide Homo and Graft Copolymers. ACS Applied Materials & Discrete Liquid Water Transport in Polylactide Homo and Graft Copolymers. ACS Applied Materials & Discrete Liquid Water Transport in Polylactide Homo and Graft Copolymers. ACS Applied Materials & Discrete Liquid Water Transport in Polylactide Homo and Graft Copolymers. ACS Applied Materials & Discrete Liquid Water Transport in Polylactide Homo and Graft Copolymers. ACS Applied Materials & Discrete Liquid Water Transport in Polylactide Homo and Graft Copolymers. ACS Applied Materials & Discrete Liquid Water Transport in Polylactide Homo and Graft Copolymers. ACS Applied Materials & Discrete Liquid Water Transport in Polylactide Homo and Graft Copolymers. ACS Applied Materials & Discrete Liquid Water Transport in Polylactide Homo and Graft Copolymers. ACS Applied Materials & Discrete Liquid Water Transport in Polylactide Homo and Graft Copolymers. ACS Applied Materials & Discrete Liquid Water Transport in Polylactide Homo and Copolymers. ACS Applied Materials & Discrete Liquid Water Transport in Polylactide Homo and Copolymers. ACS Applied Materials & Discrete Liquid Water Transport in Polylactide Homo and Copolymers. ACS Applied Water Transport in Polylactide Homo and Copolymers. ACS Applied Materials & Discrete Liquid Water Transport in Polylactide Homo and Copolymers. ACS Applied Materials & Discrete Liquid Water Transport in Polylactide Homo and Copolymers. ACS Applied Materials & Discrete Liquid Water Transport in Polylactide Homo and Copolymers. ACS Applied Water Transport in Polylactide Homo and Copolymers. ACS Applied Water Transport in Polylactide Homo and Copolymers. ACS Applied Water Transport in Polylactide Homo and Copolymer	8.0	27
366	Functionalized Nanoporous Membranes from Reactive Triblock Polymers. Australian Journal of Chemistry, 2011, 64, 1074.	0.9	14
367	Graphene/polyethylene nanocomposites: Effect of polyethylene functionalization and blending methods. Polymer, 2011, 52, 1837-1846.	3.8	358
368	Investigation of the role of hydrophilic chain length in amphiphilic perfluoropolyether/poly(ethylene) Tj ETQq0 0	0 rgBT /Ον	rerlock 10 Tf
369	Control of gyroid forming block copolymer templates: effects of an electric field and surface topography. Soft Matter, 2010, 6, 670-676.	2.7	34
370	Perpendicular orientation of cylindrical domains upon solvent annealing thin films of polystyrene-b-polylactide. Thin Solid Films, 2010, 518, 3710-3715.	1.8	74
371	Biorenewable Multiphase Polymers. MRS Bulletin, 2010, 35, 194-200.	3.5	12
372	Model Linear Low Density Polyethylenes from the ROMP of 5-Hexylcyclooct-1-ene. Australian Journal of Chemistry, 2010, 63, 1201.	0.9	16
373	High Modulus, Low Surface Energy, Photochemically Cured Materials from Liquid Precursors. Macromolecules, 2010, 43, 10397-10405.	4.8	15
374	Multicompartment Micelle Morphology Evolution in Degradable Miktoarm Star Terpolymers. ACS Nano, 2010, 4, 1907-1912.	14.6	86
375	Polylactideâ^'Polythiopheneâ^'Polylactide Triblock Copolymers. Macromolecules, 2010, 43, 3566-3569.	4.8	39
376	High Tg aliphatic polyesters by the polymerization of spirolactide derivatives. Polymer Chemistry, 2010, 1, 870.	3.9	69
377	Synthesis and characterization of reactive PEO–PMCL polymersomes. Polymer Chemistry, 2010, 1, 1281.	3.9	52
378	Reactive Compatibilization of Poly(I-lactide) and Conjugated Soybean Oil. Macromolecules, 2010, 43, 2313-2321.	4.8	105

#	Article	IF	CITATIONS
379	Formation of Nanostructured Poly(dicyclopentadiene) Thermosets Using Reactive Block Polymers. Macromolecules, 2010, 43, 3924-3934.	4.8	53
380	Polylactideâ^'Poly(dimethylsiloxane)â^'Polylactide Triblock Copolymers as Multifunctional Materials for Nanolithographic Applications. ACS Nano, 2010, 4, 725-732.	14.6	121
381	Toughening of Epoxies with Block Copolymer Micelles of Wormlike Morphology. Macromolecules, 2010, 43, 7238-7243.	4.8	206
382	Tough Polylactide Graft Copolymers. Macromolecules, 2010, 43, 7394-7397.	4.8	98
383	Soft-Etch Mesoporous Hole-Conducting Block Copolymer Templates. ACS Nano, 2010, 4, 962-966.	14.6	40
384	Hydrogels from ABA and ABC Triblock Polymers. Macromolecules, 2010, 43, 5396-5404.	4.8	77
385	Synthesis of Linear, H-Shaped, and Arachnearm Block Copolymers By Tandem Ring-Opening Polymerizations. Macromolecules, 2010, 43, 8018-8025.	4.8	40
386	Block Copolymer Derived Membranes for Sustained Carbon Dioxideâ^'Methane Separations. Industrial & Lamp; Engineering Chemistry Research, 2010, 49, 12051-12059.	3.7	8
387	Mechanistic Study of the Stereoselective Polymerization ofd,l-Lactide Using Indium(III) Halides. Journal of the American Chemical Society, 2010, 132, 11649-11657.	13.7	140
388	Bottom-up Approach toward Titanosilicate Mesoporous Pillared Planar Nanochannels for Nanofluidic Applications. Chemistry of Materials, 2010, 22, 5687-5694.	6.7	42
389	Nanoporous Membranes Derived from Block Copolymers: From Drug Delivery to Water Filtration. ACS Nano, 2010, 4, 3548-3553.	14.6	565
390	Nanoporous Linear Polyethylene from a Block Polymer Precursor. Journal of the American Chemical Society, 2010, 132, 8230-8231.	13.7	106
391	Toughening of Polylactide with Polymerized Soybean Oil. Macromolecules, 2010, 43, 1807-1814.	4.8	144
392	Cylinder Orientation Mechanism in Block Copolymer Thin Films Upon Solvent Evaporation. Macromolecules, 2010, 43, 7763-7770.	4.8	193
393	Self-Assembled Block Copolymer Thin Films as Water Filtration Membranes. ACS Applied Materials & Lamp; Interfaces, 2010, 2, 847-853.	8.0	366
394	Oxidized Dihydrocarvone as a Renewable Multifunctional Monomer for the Synthesis of Shape Memory Polyesters. Biomacromolecules, 2009, 10, 2003-2008.	5.4	69
395	Polydispersity effects in poly(isoprene-b-styrene-b-ethylene oxide) triblock terpolymers. Journal of Chemical Physics, 2009, 130, 234903.	3.0	30
396	Seeking an ammonia selective membrane based on nanostructured sulfonated block copolymers. Journal of Membrane Science, 2009, 337, 39-46.	8.2	35

#	Article	IF	Citations
397	Controlled Polymerization of a Cyclic Diene Prepared from the Ring-Closing Metathesis of a Naturally Occurring Monoterpene. Journal of the American Chemical Society, 2009, 131, 7960-7961.	13.7	84
398	Hydrolytic Degradation Behavior of a Renewable Thermoplastic Elastomer. Biomacromolecules, 2009, 10, 443-448.	5.4	57
399	Diffusion and Flow Across Nanoporous Polydicyclopentadiene-Based Membranes. ACS Applied Materials & Diffusion and Flow Across Nanoporous Polydicyclopentadiene-Based Membranes. ACS Applied Materials & Diffusion and Flow Across Nanoporous Polydicyclopentadiene-Based Membranes. ACS Applied Materials & Diffusion and Flow Across Nanoporous Polydicyclopentadiene-Based Membranes. ACS Applied Materials & Diffusion and Flow Across Nanoporous Polydicyclopentadiene-Based Membranes. ACS Applied Materials & Diffusion and Flow Across Nanoporous Polydicyclopentadiene-Based Membranes. ACS Applied Materials & Diffusion and Polydicyclopentadiene-Based Membranes. ACS Applied Materials & Diffusion and Polydicyclopentadiene-Based Membranes.	8.0	83
400	Block Copolymer Toughened Epoxy: Role of Cross-Link Density. Macromolecules, 2009, 42, 2333-2335.	4.8	159
401	Phase Inversion in Polylactide/Soybean Oil Blends Compatibilized by Poly(isoprene-b-lactide) Block Copolymers. ACS Applied Materials & Samp; Interfaces, 2009, 1, 2390-2399.	8.0	47
402	Low Band Gap Poly(thienylene vinylene)/Fullerene Bulk Heterojunction Photovoltaic Cells. Journal of Physical Chemistry C, 2009, 113, 10790-10797.	3.1	47
403	High Open-Circuit Voltage Photovoltaic Cells with a Low Bandgap Copolymer of Isothianaphthene, Thiophene, and Benzothiadiazole Units. Journal of Physical Chemistry C, 2009, 113, 21928-21936.	3.1	21
404	Synthesis and Self-Assembly of RGD-Functionalized PEO-PB Amphiphiles. Biomacromolecules, 2009, 10, 1554-1563.	5.4	39
405	Manipulating Crystal Orientation in Nanoscale Cylindrical Pores by Stereochemical Inhibition. Journal of the American Chemical Society, 2009, 131, 2588-2596.	13.7	84
406	Composite Block Polymerâ [^] Microfabricated Silicon Nanoporous Membrane. ACS Applied Materials & Lamp; Interfaces, 2009, 1, 888-893.	8.0	55
407	Multicompartment Micelles from pH-Responsive Miktoarm Star Block Terpolymers. Langmuir, 2009, 25, 13718-13725.	3.5	86
408	Highly Selective Polymer Electrolyte Membranes from Reactive Block Polymers. Macromolecules, 2009, 42, 6075-6085.	4.8	79
409	Poly(3-hexyl-2,5-thienylene vinylene) by ADMET Polymerization of a Dipropenyl Monomer. Macromolecules, 2009, 42, 6429-6432.	4.8	58
410	Synthesis, Optical Properties, and Microstructure of a Fullerene-Terminated Poly(3-hexylthiophene). Macromolecules, 2009, 42, 4118-4126.	4.8	54
411	Enhancement of the Morphology and Open Circuit Voltage in Bilayer Polymer/Fullerene Solar Cells. Journal of Physical Chemistry C, 2009, 113, 11408-11415.	3.1	63
412	Combining Ring-Opening Metathesis Polymerization and Cyclic Ester Ring-Opening Polymerization To Form ABA Triblock Copolymers from 1,5-Cyclooctadiene and <scp>d,l </scp> -Lactide. Macromolecules, 2009, 42, 3674-3680.	4.8	75
413	Mechanically and Thermally Robust Ordered Nanoporous Monoliths Using Norbornene-Functional Block Polymers. Macromolecules, 2009, 42, 4237-4243.	4.8	36
414	A Virtual Issue of <i>Macromolecules</i> : "Polymers from Renewable Resources― Macromolecules, 2009, 42, 7987-7989.	4.8	180

#	Article	IF	Citations
415	Photochemically Cross-Linked Perfluoropolyether-Based Elastomers: Synthesis, Physical Characterization, and Biofouling Evaluation. Macromolecules, 2009, 42, 6999-7007.	4.8	82
416	Phase Behavior and Polymorphism of Organic Crystals Confined within Nanoscale Chambers. Crystal Growth and Design, 2009, 9, 4766-4777.	3.0	92
417	Consequences of Polylactide Stereochemistry on the Properties of Polylactide-Polymenthide-Polylactide Thermoplastic Elastomers. Biomacromolecules, 2009, 10, 2904-2911.	5.4	101
418	Stereoselective and controlled polymerization of d,l-lactide using indium(iii) trichloride. Chemical Communications, 2009, , 2736.	4.1	111
419	A Bicontinuous Double Gyroid Hybrid Solar Cell. Nano Letters, 2009, 9, 2807-2812.	9.1	446
420	Ordered Network Mesostructures in Block Polymer Materials. Macromolecules, 2009, 42, 7221-7250.	4.8	277
421	Block Copolymer Morphologies in Dye-Sensitized Solar Cells: Probing the Photovoltaic Structureâ [^] Function Relation. Nano Letters, 2009, 9, 2813-2819.	9.1	163
422	A Compartmentalized Hydrogel from a Linear ABC Terpolymer. Macromolecules, 2009, 42, 1796-1800.	4.8	24
423	Poly(<scp>D</scp> â€lactide)–Poly(menthide)–Poly(<scp>D</scp> â€lactide) Triblock Copolymers as Crystal Nucleating Agents for Poly(<scp>L</scp> â€lactide). Macromolecular Symposia, 2009, 283–284, 130-138.	0.7	21
424	Exciton relaxation and energy transfer dynamics in size selected polythiophenes., 2009,,.		0
425	Morphological Behavior of Polystyrene <i>â€blockâ€</i> Polylactide/Polystyrene <i>â€blockâ€</i> Poly(ethylene) Tj	Е <u>Т</u> Qq1 1 (0.784314 rg
426	Polydispersity and block copolymer self-assembly. Progress in Polymer Science, 2008, 33, 875-893.	24.7	419
427	Nanoporous Poly(3-alkylthiophene) Thin Films Generated from Block Copolymer Templates. Macromolecules, 2008, 41, 67-75.	4.8	182
428	Toughening Polylactide. Polymer Reviews, 2008, 48, 85-108.	10.9	513
429	Confined Crystallization and Morphology of Melt Segregated PLLA- <i>b</i> -PE and PLDA- <i>b</i> -PE Diblock Copolymers. Macromolecules, 2008, 41, 6154-6164.	4.8	106
430	Optically Transparent, Amphiphilic Networks Based on Blends of Perfluoropolyethers and Poly(ethylene glycol). Journal of the American Chemical Society, 2008, 130, 14244-14252.	13.7	81
431	Distannylated Isothianaphthene: A Versatile Building Block for Low Bandgap Conjugated Polymers. Macromolecules, 2008, 41, 5563-5570.	4.8	50
432	Templating Nanoporous Polymers with Ordered Block Copolymers. Chemistry of Materials, 2008, 20, 869-890.	6.7	333

#	Article	IF	CITATIONS
433	Polymers from Renewable Resources: A Perspective for a Special Issue of Polymer Reviews. Polymer Reviews, 2008, 48, 1-10.	10.9	808
434	A Bifunctional Monomer Derived from Lactide for Toughening Polylactide. Journal of the American Chemical Society, 2008, 130, 13826-13827.	13.7	154
435	Mechanical Consequences of Molecular Composition on Failure in Polyolefin Composites Containing Glassy, Elastomeric, and Semicrystalline Components. Macromolecules, 2008, 41, 1341-1351.	4.8	18
436	Multicompartment Micelles from Polyester-Containing ABC Miktoarm Star Terpolymers. Macromolecules, 2008, 41, 8815-8822.	4.8	126
437	Glycine Polymorphism in Nanoscale Crystallization Chambers. Crystal Growth and Design, 2008, 8, 3368-3375.	3.0	111
438	Structure and Mechanical Properties of an O ⁷⁰ (<i>Fddd</i>) Network-Forming Pentablock Terpolymer. Macromolecules, 2008, 41, 5809-5817.	4.8	34
439	Polydispersity-Induced Stabilization of the Coreâ-'Shell Gyroid. Macromolecules, 2008, 41, 6272-6275.	4.8	29
440	Evolution of Multicompartment Micelles to Mixed Corona Micelles Using Solvent Mixtures. Langmuir, 2008, 24, 12001-12009.	3.5	69
441	Theory of Polydisperse Block Copolymer Melts: Beyond the Schulzâ^'Zimm Distribution. Macromolecules, 2008, 41, 4531-4533.	4.8	71
442	Facile loading of metal ions in the nanopores of polymer thin films and in situgeneration of metal sulfide nanoparticle arrays. Nanotechnology, 2008, 19, 365304.	2.6	3
443	Micelles Made to Order. Science, 2007, 317, 604-605.	12.6	54
444	Robust Nanoporous Membranes Templated by a Doubly Reactive Block Copolymer. Journal of the American Chemical Society, 2007, 129, 13786-13787.	13.7	111
445	Viscoelastic Synergy in Aqueous Mixtures of Wormlike Micelles and Model Amphiphilic Triblock Copolymers. Macromolecules, 2007, 40, 1615-1623.	4.8	39
446	SANS Evidence for the Cross-Linking of Wormlike Micelles by a Model Hydrophobically Modified Polymer. Macromolecules, 2007, 40, 4728-4731.	4.8	29
447	Renewable-Resource Thermoplastic Elastomers Based on Polylactide and Polymenthide. Biomacromolecules, 2007, 8, 3634-3640.	5.4	162
448	Freestanding nanowire arrays from soft-etch block copolymer templates. Soft Matter, 2007, 3, 94-98.	2.7	84
449	Intramolecular Exciton Relaxation and Migration Dynamics in Poly(3-hexylthiophene). Journal of Physical Chemistry C, 2007, 111, 15404-15414.	3.1	89
450	Control of Mechanical Behavior in Polyolefin Composites:Â Integration of Glassy, Rubbery, and Semicrystalline Components. Macromolecules, 2007, 40, 1585-1593.	4.8	38

#	Article	IF	Citations
451	Block Copolymer Vesicles in Liquid CO2. Macromolecules, 2007, 40, 4917-4923.	4.8	25
452	Synthesis of Monodisperse \hat{l}_{\pm} -Hydroxypoly(styrene) in Hydrocarbon Media Using a Functional Organolithium. Macromolecules, 2007, 40, 760-762.	4.8	18
453	Polydispersity-Driven Transition from the OrthorhombicFdddNetwork to Lamellae in Poly(isoprene-b-styrene-b-ethylene oxide) Triblock Terpolymers. Macromolecules, 2007, 40, 7072-7074.	4.8	27
454	Structural and Mechanistic Studies of Bis(phenolato)amine Zinc(II) Catalysts for the Polymerization of $\hat{l}\mu$ -Caprolactone. Inorganic Chemistry, 2007, 46, 6565-6574.	4.0	114
455	Effects of Polydispersity on the Orderâ^'Disorder Transition in Block Copolymer Melts. Macromolecules, 2007, 40, 8050-8055.	4.8	132
456	ABA triblock copolymers with a ring-opening metathesis polymerization/macromolecular chain-transfer agent approach. Journal of Polymer Science Part A, 2007, 45, 361-373.	2.3	24
457	The role of polydispersity in the lamellar mesophase of model diblock copolymers. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 3386-3393.	2.1	43
458	Polydisperse block copolymers: Don't throw them away. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 3249-3251.	2.1	63
459	Macroscopic samples of polystyrene with ordered three-dimensional nanochannels. Soft Matter, 2006, 2, 57-59.	2.7	88
460	Comparison of structurally analogous Zn2, Co2, and Mg2catalysts for the polymerization of cyclic esters. Dalton Transactions, 2006, , 928-936.	3.3	124
461	Control of Structure in Multicompartment Micelles by Blending μ-ABC Star Terpolymers with AB Diblock Copolymers. Macromolecules, 2006, 39, 765-771.	4.8	174
462	Nucleation and Crystallization of PLDA-b-PE and PLLA-b-PE Diblock Copolymers. Macromolecular Symposia, 2006, 242, 174-181.	0.7	31
463	Structure and Properties of Semicrystallineâ-'Rubbery Multiblock Copolymers. Macromolecules, 2006, 39, 667-677.	4.8	77
464	Morphologies of Multicompartment Micelles Formed by ABC Miktoarm Star Terpolymers. Langmuir, 2006, 22, 9409-9417.	3.5	266
465	Nanopore and Nanobushing Arrays from ABC Triblock Thin Films Containing Two Etchable Blocks. Chemistry of Materials, 2006, 18, 1719-1721.	6.7	59
466	Disk Micelles from Nonionic Coilâ-'Coil Diblock Copolymers. Macromolecules, 2006, 39, 4526-4530.	4.8	59
467	Aqueous Dispersions of Poly(ethylene oxide)-b-poly(γ-methyl-ε-caprolactone) Block Copolymers. Macromolecules, 2006, 39, 4286-4288.	4.8	90
468	Laterally Nanostructured Vesicles, Polygonal Bilayer Sheets, and Segmented Wormlike Micelles. Nano Letters, 2006, 6, 1245-1249.	9.1	194

#	Article	IF	Citations
469	Melt preparation and nucleation efficiency of polylactide stereocomplex crystallites. Polymer, 2006, 47, 2030-2035.	3.8	243
470	Gas and water liquid transport through nanoporous block copolymer membranes. Journal of Membrane Science, 2006, 286, 144-152.	8.2	119
471	Routes to Alkene and Epoxide Functionalized Nanoporous Materials from Poly(styrene-b-isoprene-b-lactide) Triblock Copolymers. Macromolecules, 2006, 39, 8772-8781.	4.8	68
472	Zinc N-heterocyclic carbene complexes and their polymerization of d,l-lactide. Journal of Organometallic Chemistry, 2005, 690, 5881-5891.	1.8	129
473	Barrier membranes of self-assembled lamellar poly(lactide-isoprene-lactide) triblock copolymers. Journal of Membrane Science, 2005, 259, 1-9.	8.2	11
474	Control of pore hydrophilicity in ordered nanoporous polystyrene using an AB/AC block copolymer blending strategy. Faraday Discussions, 2005, 128, 149.	3.2	47
475	Regiospecific Side-Chain Functionalization of Linear Low-Density Polyethylene with Polar Groups. Angewandte Chemie - International Edition, 2005, 44, 6410-6413.	13.8	84
476	Post-Polymerization Functionalization of Polyolefins. ChemInform, 2005, 36, no.	0.0	0
477	Synthesis and self-assembly of highly incompatible polybutadiene-poly(hexafluoropropylene oxide) diblock copolymers. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 3685-3694.	2.1	27
478	Simultaneous, Segregated Storage of Two Agents in a Multicompartment Micelle. Journal of the American Chemical Society, 2005, 127, 17608-17609.	13.7	249
479	Introductory Lecture: Strategies for controlling intra- and intermicellar packing in block copolymer solutions: Illustrating the flexibility of the self-assembly toolbox. Faraday Discussions, 2005, 128, 1.	3.2	101
480	Synthesis of ABA Triblock Copolymers by a Tandem ROMPâ^RAFT Strategy. Macromolecules, 2005, 38, 7890-7894.	4.8	130
481	Thermotropic Properties of Organic Nanocrystals Embedded in Ultrasmall Crystallization Chambers. Journal of Physical Chemistry B, 2005, 109, 1392-1399.	2.6	60
482	Catalytic Polymerization of a Cyclic Ester Derived from a "Cool―Natural Precursor. Biomacromolecules, 2005, 6, 2091-2095.	5.4	96
483	Microstructure and Mechanical Properties of Semicrystallineâ^'Rubberyâ^'Semicrystalline Triblock Copolymers. Macromolecules, 2005, 38, 6090-6098.	4.8	66
484	Influence of Polydispersity on the Self-Assembly of Diblock Copolymers. Macromolecules, 2005, 38, 8803-8810.	4.8	276
485	Nanochannel Array Plastics with Tailored Surface Chemistry. Journal of the American Chemical Society, 2005, 127, 13373-13379.	13.7	232
486	Catalytic Hydroxylation of Polypropylenes. Journal of the American Chemical Society, 2005, 127, 767-776.	13.7	124

#	Article	IF	Citations
487	Nanoporous Polystyrene by Chemical Etching of Poly(ethylene oxide) from Ordered Block Copolymers. Macromolecules, 2005, 38, 4038-4039.	4.8	84
488	Post-polymerization functionalization of polyolefins. Chemical Society Reviews, 2005, 34, 267.	38.1	418
489	Perpendicular Domain Orientation in Thin Films of Polystyreneâ^'Polylactide Diblock Copolymers. Macromolecules, 2005, 38, 10101-10108.	4.8	80
490	Nanoporous Polystyrene Containing Hydrophilic Pores from an ABC Triblock Copolymer Precursor. Macromolecules, 2005, 38, 3-5.	4.8	145
491	Controlled polymerization of \hat{l} ±-methyl- \hat{l} 2-pentyl- \hat{l} 2-propiolactone by a discrete zinc alkoxide complex. Tetrahedron, 2004, 60, 7177-7185.	1.9	22
492	Synthesis of semifluorinated block copolymers by atom transfer radical polymerization. Journal of Polymer Science Part A, 2004, 42, 853-861.	2.3	29
493	An Ordered Nanoporous Monolith from an Elastomeric Crosslinked Block Copolymer Precursor. Macromolecular Rapid Communications, 2004, 25, 704-709.	3.9	56
494	Processing and properties of porous poly(l-lactide)/bioactive glass composites. Biomaterials, 2004, 25, 2489-2500.	11.4	211
495	The influence of block copolymer microstructure on the toughness of compatibilized polylactide/polyethylene blends. Polymer, 2004, 45, 8809-8823.	3.8	269
496	Mapping Large Regions of Diblock Copolymer Phase Space by Selective Chemical Modification. Macromolecules, 2004, 37, 397-407.	4.8	50
497	Large area nanolithographic templates by selective etching of chemically stained block copolymer thin films. Journal of Materials Chemistry, 2004, 14, 2729.	6.7	81
498	Isotactic Polymers with Alternating Lactic Acid and Oxetane Subunits from the Endoentropic Polymerization of a 14-Membered Ring. Macromolecules, 2004, 37, 5274-5281.	4.8	24
499	Access to the Superstrong Segregation Regime with Nonionic ABC Copolymers. Macromolecules, 2004, 37, 6680-6682.	4.8	96
500	A New Synthetic Route to Poly[3-hydroxypropionic acid] (P[3-HP]):Â Ring-Opening Polymerization of 3-HP Macrocyclic Esters. Macromolecules, 2004, 37, 8198-8200.	4.8	55
501	Synthesis and Characterization of Triptych $\hat{l}^{1}/4$ -ABC Star Triblock Copolymers. Macromolecules, 2004, 37, 8933-8940.	4.8	83
502	Melt Chain Dimensions of Polylactide. Macromolecules, 2004, 37, 1857-1862.	4.8	51
503	Star Polymer Synthesis Using Hexafluoropropylene Oxide as an Efficient Multifunctional Coupling Agent. Macromolecules, 2004, 37, 6355-6361.	4.8	13
504	Stereoelective polymerization of d,l-lactide using N-heterocyclic carbene based compounds. Chemical Communications, 2004, , 2504.	4.1	153

#	Article	IF	Citations
505	Polymorph Selectivity under Nanoscopic Confinement. Journal of the American Chemical Society, 2004, 126, 3382-3383.	13.7	227
506	High Strength Polyolefin Block Copolymers. Macromolecules, 2004, 37, 5847-5850.	4.8	20
507	Multicompartment Micelles from ABC Miktoarm Stars in Water. Science, 2004, 306, 98-101.	12.6	928
508	Template Syntheses of Polypyrrole Nanowires and CdS Nanoparticles in Porous Polymer Monoliths. Chemistry of Materials, 2004, 16, 2909-2917.	6.7	64
509	Fluorinated Amphiphilic Block Copolymers: Combining Anionic Polymerization and Selective Polymer Modification. Macromolecular Symposia, 2004, 215, 51-56.	0.7	10
510	Synthesis and characterization of hypercrosslinked, surface-confined, ultra-stable silica-based stationary phases. Journal of Chromatography A, 2004, 1060, 61-76.	3.7	6
511	Toughening of polylactide by melt blending with linear low-density polyethylene. Journal of Applied Polymer Science, 2003, 89, 3757-3768.	2.6	335
512	High Glass Transition Temperature Polyolefins Obtained by the Catalytic Hydrogenation of Polyindene. Macromolecules, 2003, 36, 71-76.	4.8	22
513	Ordered Nanoporous Poly(cyclohexylethylene)â€. Langmuir, 2003, 19, 6553-6560.	3.5	51
514	Selective and Mild Oxyfunctionalization of Model Polyolefins. Macromolecules, 2003, 36, 7027-7034.	4.8	54
515	Micellar Shape Change and Internal Segregation Induced by Chemical Modification of a Tryptych Block Copolymer Surfactant. Journal of the American Chemical Society, 2003, 125, 10182-10183.	13.7	179
516	Characterization of Polylactide-b-polyisoprene-b-polylactide Thermoplastic Elastomers. Biomacromolecules, 2003, 4, 216-223.	5.4	108
517	Persistence of the Gyroid Morphology at Strong Segregation in Diblock Copolymers. Macromolecules, 2003, 36, 4682-4685.	4.8	51
518	A Highly Active Zinc Catalyst for the Controlled Polymerization of Lactide. Journal of the American Chemical Society, 2003, 125, 11350-11359.	13.7	579
519	Electronic influence of ligand substituents on the rate of polymerization of $\hat{l}\mu$ -caprolactone by single-site aluminium alkoxide catalysts. Dalton Transactions, 2003, , 3082-3087.	3.3	155
520	An Ultra Acid Stable Reversed Stationary Phase. Journal of the American Chemical Society, 2003, 125, 10504-10505.	13.7	19
521	Rhodium-Catalyzed, Regiospecific Functionalization of Polyolefins in the Melt. Journal of the American Chemical Society, 2002, 124, 1164-1165.	13.7	135
522	Solubility of CF2-Modified Polybutadiene and Polyisoprene in Supercritical Carbon Dioxide. Macromolecules, 2002, 35, 4653-4657.	4.8	40

#	Article	IF	Citations
523	Effect of Selective Perfluoroalkylation on the Segregation Strength of Polystyreneâ°1,2-Polybutadiene Block Copolymers. Macromolecules, 2002, 35, 3889-3894.	4.8	55
524	Influence of Conformational Asymmetry on Polymerâ^'Polymer Interactions:  An Entropic or Enthalpic Effect?. Macromolecules, 2002, 35, 7685-7691.	4.8	56
525	Recognition by Lipases of i‰-Hydroxyl Macroinitiators for Diblock Copolymer Synthesis. Macromolecules, 2002, 35, 7606-7611.	4.8	31
526	Mechanistic Comparison of Cyclic Ester Polymerizations by Novel Iron(III)â^'Alkoxide Complexes:Â Single vs Multiple Site Catalysis. Journal of the American Chemical Society, 2002, 124, 4384-4393.	13.7	280
527	Ordered Nanoporous Polymers from Polystyreneâ^Polylactide Block Copolymers. Journal of the American Chemical Society, 2002, 124, 12761-12773.	13.7	530
528	Molecular Weight Effects in the Hydrogenation of Model Polystyrenes Using Platinum Supported on Wide-Pore Silica. Macromolecules, 2002, 35, 602-609.	4.8	46
529	Metalloenzyme inspired dizinc catalyst for the polymerization of lactide. Chemical Communications, 2002, , 2132-2133.	4.1	136
530	Polymerization of Lactide by Monomeric Sn(II) Alkoxide Complexes. Macromolecules, 2002, 35, 644-650.	4.8	136
531	Highly Cross-Linked Self-Assembled Monolayer Stationary Phases:Â An Approach to Greatly Enhancing the Low pH Stability of Silica-Based Stationary Phases. Analytical Chemistry, 2002, 74, 4634-4639.	6.5	38
532	Synthesis and self-assembly of fluorinated block copolymers. Journal of Polymer Science Part A, 2002, 40, 1-8.	2.3	90
533	Morphological behavior of model poly(ethylene-alt-propylene)-b-polylactide diblock copolymers. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 2364-2376.	2.1	50
534	Synthesis of fluorinated polymers by chemical modification. Progress in Polymer Science, 2002, 27, 971-1005.	24.7	148
535	Unambiguous Determination of the 13C and 1H NMR Stereosequence Assignments of Polylactide Using High-Resolution Solution NMR Spectroscopy. Macromolecules, 2002, 35, 7700-7707.	4.8	201
536	Mesoporous Polystyrene Monoliths. Journal of the American Chemical Society, 2001, 123, 1519-1520.	13.7	206
537	A Simple and Mild Route to Highly Fluorinated Model Polymers. Macromolecules, 2001, 34, 4780-4787.	4.8	50
538	Rapid and Controlled Polymerization of Lactide by Structurally Characterized Ferric Alkoxides. Journal of the American Chemical Society, 2001, 123, 339-340.	13.7	198
539	A Study of the Lewis Acidâ^'Base Interactions of Vinylphosphonic Acid-Modified Polybutadiene-Coated Zirconia. Analytical Chemistry, 2001, 73, 3323-3331.	6.5	26
540	Perfectly Alternating Copolymer of Lactic Acid and Ethylene Oxide as a Plasticizing Agent for Polylactide. Macromolecules, 2001, 34, 8641-8648.	4.8	94

#	Article	IF	CITATIONS
541	Polyethylene-poly(L-lactide) diblock copolymers: Synthesis and compatibilization of poly(L-lactide)/polyethylene blends. Journal of Polymer Science Part A, 2001, 39, 2755-2766.	2.3	193
542	Polylactide stereocomplex crystallites as nucleating agents for isotactic polylactide. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 300-313.	2.1	299
543	Lactide polymerization activity of alkoxide, phenoxide, and amide derivatives of yttrium(III) arylamidinates. Journal of Polymer Science Part A, 2001, 39, 284-293.	2.3	116
544	Polymerization of lactide and related cyclic esters by discrete metal complexes. Dalton Transactions RSC, 2001, , 2215-2224.	2.3	787
545	Adhesion of polymer–inorganic interfaces by nanoindentation. Journal of Materials Research, 2001, 16, 3378-3388.	2.6	31
546	Polylactide stereocomplex crystallites as nucleating agents for isotactic polylactide. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 300-313.	2.1	6
547	Synthesis and characterization of polylactide-block-polyisoprene-block-polylactide triblock copolymers: new thermoplastic elastomers containing biodegradable segments. Macromolecular Rapid Communications, 2000, 21, 1317-1322.	3.9	56
548	Synthesis, Characterization, and Interaction Strengths of Difluorocarbene-Modified Polystyreneá^'Polyisoprene Block Copolymers. Macromolecules, 2000, 33, 866-876.	4.8	76
549	Synthesis of Polybutadieneâ^'Polylactide Diblock Copolymers Using Aluminum Alkoxide Macroinitiators. Kinetics and Mechanism. Macromolecules, 2000, 33, 7395-7403.	4.8	68
550	Controlled Polymerization ofdl-Lactide and ε-Caprolactone by Structurally Well-Defined Alkoxo-Bridged Di- and Triyttrium(III) Complexes. Macromolecules, 2000, 33, 3970-3977.	4.8	129
551	Block copolymer synthesis. Current Opinion in Solid State and Materials Science, 1999, 4, 559-564.	11.5	55
552	Synthesis and Characterization of Model Polyisopreneâ^'Polylactide Diblock Copolymers. Macromolecules, 1999, 32, 4794-4801.	4.8	99
553	Discrete Yttrium(III) Complexes as Lactide Polymerization Catalysts. Macromolecules, 1999, 32, 2400-2402.	4.8	137
554	Model Bicontinuous Microemulsions in Ternary Homopolymer/Block Copolymer Blends. Journal of Physical Chemistry B, 1999, 103, 4814-4824.	2.6	159
555	Perfluorocarbenes Produced by Thermal Cracking. Barriers to Generation and Rearrangement. Journal of Organic Chemistry, 1999, 64, 4850-4859.	3.2	19
556	Direct Observation of Stereodefect Sites in Semicrystalline Poly(lactide) Using 13C Solid-State NMR. Journal of the American Chemical Society, 1998, 120, 12672-12673.	13.7	32
557	Nanostructured Thermosets from Self-Assembled Amphiphilic Block Copolymer/Epoxy Resin Mixtures. Journal of the American Chemical Society, 1998, 120, 8963-8970.	13.7	408
558	Transition Mechanisms for Complex Ordered Phases in Block Copolymer Melts. Journal of Physical Chemistry B, 1998, 102, 1356-1363.	2.6	115

#	Article	IF	CITATIONS
559	A New Class of Fluorinated Polymers by a Mild, Selective, and Quantitative Fluorination. Journal of the American Chemical Society, 1998, 120, 6830-6831.	13.7	49
560	Block Copolymer Self-Diffusion in the Gyroid and Cylinder Morphologies. Macromolecules, 1998, 31, 5363-5370.	4.8	79
561	Polymeric Bicontinuous Microemulsions. Physical Review Letters, 1997, 79, 849-852.	7.8	300
562	Influence of crystallinity on the morphology of poly(ethylene oxide) containing diblock copolymers. Macromolecular Symposia, 1997, 117, 121-130.	0.7	32
563	Phase Behavior of Isotactic Polypropyleneâ^Poly(ethylene/ethylethylene) Random Copolymer Blends. Macromolecules, 1997, 30, 3650-3657.	4.8	50
564	Stability of the Perforated Layer (PL) Phase in Diblock Copolymer Melts. Macromolecules, 1997, 30, 3788-3795.	4.8	259
565	Self-Assembly and Polymerization of Epoxy Resin-Amphiphilic Block Copolymer Nanocomposites. Journal of the American Chemical Society, 1997, 119, 2749-2750.	13.7	393
566	Utility of a Ruthenium Metathesis Catalyst for the Preparation of End-Functionalized Polybutadiene. Macromolecules, 1997, 30, 718-721.	4.8	175
567	Synthesis and Characterization of Model Polyalkaneâ^'Poly(ethylene oxide) Block Copolymers. Macromolecules, 1996, 29, 6994-7002.	4.8	306
568	Main-Chain Ferroelectric Liquid Crystal Oligomers by Acyclic Diene Metathesis Polymerization 1. Journal of the American Chemical Society, 1996, 118, 2740-2741.	13.7	56
569	Ringâ€opening metathesis copolymerization employing rutheniumâ€based metathesis catalysts. Macromolecular Symposia, 1995, 89, 411-419.	0.7	16
570	Chain Transfer in the Ring-Opening Metathesis Polymerization of Cyclooctadiene Using Discrete Metal Alkylidenes. Macromolecules, 1995, 28, 8662-8667.	4.8	58
571	Ring-Opening Metathesis Polymerization of Functionalized Cyclooctenes by a Ruthenium-Based Metathesis Catalyst. Macromolecules, 1995, 28, 6311-6316.	4.8	189
572	Degradable Cyclooctadiene/Acetal Copolymers: Versatile Precursors to 1,4-Hydroxytelechelic Polybutadiene and Hydroxytelechelic Polyethylene. Macromolecules, 1995, 28, 7256-7261.	4.8	90
573	Preparation of hydroxytelechelic poly(butadiene) via ring-opening metathesis polymerization employing a well-defined metathesis catalyst. Macromolecules, 1993, 26, 872-874.	4.8	105
574	Aqueous ring-opening metathesis polymerization of carboximide-functionalized 7-oxanorbornenes. Macromolecules, 1992, 25, 3345-3350.	4.8	107
575	The macrocyclization reaction of terminal dibromoalkanes with sulfide on alumina. The use of a solid support as an alternative to the high dilution technique Tetrahedron Letters, 1992, 33, 7709-7712.	1.4	26
576	The key to successful acyclic diene metathesis polymerization chemistry. Die Makromolekulare Chemie, 1990, 191, 365-374.	1.1	63

ARTICLE IF CITATIONS

577 Nanoporous Materials from Block Copolymer Precursors., 0, , 137-181. 314