Marc A Hillmyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1559554/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiblock Polymers: Panacea or Pandora's Box?. Science, 2012, 336, 434-440.	12.6	930
2	Multicompartment Micelles from ABC Miktoarm Stars in Water. Science, 2004, 306, 98-101.	12.6	928
3	Polymers from Renewable Resources: A Perspective for a Special Issue of Polymer Reviews. Polymer Reviews, 2008, 48, 1-10.	10.9	808
4	Polymerization of lactide and related cyclic esters by discrete metal complexes. Dalton Transactions RSC, 2001, , 2215-2224.	2.3	787
5	<i>>50th Anniversary Perspective</i> : There Is a Great Future in Sustainable Polymers. Macromolecules, 2017, 50, 3733-3749.	4.8	700
6	Mechanically Activated, Catalyst-Free Polyhydroxyurethane Vitrimers. Journal of the American Chemical Society, 2015, 137, 14019-14022.	13.7	593
7	A Highly Active Zinc Catalyst for the Controlled Polymerization of Lactide. Journal of the American Chemical Society, 2003, 125, 11350-11359.	13.7	579
8	Nanoporous Membranes Derived from Block Copolymers: From Drug Delivery to Water Filtration. ACS Nano, 2010, 4, 3548-3553.	14.6	565
9	Ordered Nanoporous Polymers from Polystyreneâ^'Polylactide Block Copolymers. Journal of the American Chemical Society, 2002, 124, 12761-12773.	13.7	530
10	Toughening Polylactide. Polymer Reviews, 2008, 48, 85-108.	10.9	513
11	Aliphatic Polyester Block Polymers: Renewable, Degradable, and Sustainable. Accounts of Chemical Research, 2014, 47, 2390-2396.	15.6	496
12	Solvent Vapor Annealing of Block Polymer Thin Films. Macromolecules, 2013, 46, 5399-5415.	4.8	470
13	A Bicontinuous Double Gyroid Hybrid Solar Cell. Nano Letters, 2009, 9, 2807-2812.	9.1	446
14	Multicompartment Block Polymer Micelles. Macromolecules, 2012, 45, 2-19.	4.8	436
15	Polydispersity and block copolymer self-assembly. Progress in Polymer Science, 2008, 33, 875-893.	24.7	419
16	Post-polymerization functionalization of polyolefins. Chemical Society Reviews, 2005, 34, 267.	38.1	418
17	Nanostructured Thermosets from Self-Assembled Amphiphilic Block Copolymer/Epoxy Resin Mixtures. Journal of the American Chemical Society, 1998, 120, 8963-8970.	13.7	408
18	Self-Assembly and Polymerization of Epoxy Resin-Amphiphilic Block Copolymer Nanocomposites. Journal of the American Chemical Society, 1997, 119, 2749-2750.	13.7	393

#	Article	IF	CITATIONS
19	Polylactide Vitrimers. ACS Macro Letters, 2014, 3, 607-610.	4.8	386
20	High χ–Low <i>N</i> Block Polymers: How Far Can We Go?. ACS Macro Letters, 2015, 4, 1044-1050.	4.8	370
21	Self-Assembled Block Copolymer Thin Films as Water Filtration Membranes. ACS Applied Materials & Interfaces, 2010, 2, 847-853.	8.0	366
22	Graphene/polyethylene nanocomposites: Effect of polyethylene functionalization and blending methods. Polymer, 2011, 52, 1837-1846.	3.8	358
23	Approaches to Sustainable and Continually Recyclable Cross-Linked Polymers. ACS Sustainable Chemistry and Engineering, 2018, 6, 11145-11159.	6.7	348
24	Toughening of polylactide by melt blending with linear low-density polyethylene. Journal of Applied Polymer Science, 2003, 89, 3757-3768.	2.6	335
25	Templating Nanoporous Polymers with Ordered Block Copolymers. Chemistry of Materials, 2008, 20, 869-890.	6.7	333
26	Nanoporous Materials from Block Copolymer Precursors. , 0, , 137-181.		314
27	Synthesis and Characterization of Model Polyalkaneâ^Poly(ethylene oxide) Block Copolymers. Macromolecules, 1996, 29, 6994-7002.	4.8	306
28	Polymeric Bicontinuous Microemulsions. Physical Review Letters, 1997, 79, 849-852.	7.8	300
29	Polylactide stereocomplex crystallites as nucleating agents for isotactic polylactide. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 300-313.	2.1	299
30	Mechanistic Comparison of Cyclic Ester Polymerizations by Novel Iron(III)â^ Alkoxide Complexes:Â Single vs Multiple Site Catalysis. Journal of the American Chemical Society, 2002, 124, 4384-4393.	13.7	280
31	Ordered Network Mesostructures in Block Polymer Materials. Macromolecules, 2009, 42, 7221-7250.	4.8	277
32	Influence of Polydispersity on the Self-Assembly of Diblock Copolymers. Macromolecules, 2005, 38, 8803-8810.	4.8	276
33	High-Modulus, High-Conductivity Nanostructured Polymer Electrolyte Membranes via Polymerization-Induced Phase Separation. Nano Letters, 2014, 14, 122-126.	9.1	274
34	Reprocessable Acid-Degradable Polycarbonate Vitrimers. Macromolecules, 2018, 51, 389-397.	4.8	273
35	The influence of block copolymer microstructure on the toughness of compatibilized polylactide/polyethylene blends. Polymer, 2004, 45, 8809-8823.	3.8	269
36	Morphologies of Multicompartment Micelles Formed by ABC Miktoarm Star Terpolymers. Langmuir, 2006, 22, 9409-9417.	3.5	266

#	Article	IF	CITATIONS
37	Stability of the Perforated Layer (PL) Phase in Diblock Copolymer Melts. Macromolecules, 1997, 30, 3788-3795.	4.8	259
38	Reticulated Nanoporous Polymers by Controlled Polymerization-Induced Microphase Separation. Science, 2012, 336, 1422-1425.	12.6	256
39	The promise of plastics from plants. Science, 2017, 358, 868-870.	12.6	253
40	Simultaneous, Segregated Storage of Two Agents in a Multicompartment Micelle. Journal of the American Chemical Society, 2005, 127, 17608-17609.	13.7	249
41	Melt preparation and nucleation efficiency of polylactide stereocomplex crystallites. Polymer, 2006, 47, 2030-2035.	3.8	243
42	Nanochannel Array Plastics with Tailored Surface Chemistry. Journal of the American Chemical Society, 2005, 127, 13373-13379.	13.7	232
43	Polymorph Selectivity under Nanoscopic Confinement. Journal of the American Chemical Society, 2004, 126, 3382-3383.	13.7	227
44	Thermal processing of diblock copolymer melts mimics metallurgy. Science, 2017, 356, 520-523.	12.6	227
45	Processing and properties of porous poly(l-lactide)/bioactive glass composites. Biomaterials, 2004, 25, 2489-2500.	11.4	211
46	Mesoporous Polystyrene Monoliths. Journal of the American Chemical Society, 2001, 123, 1519-1520.	13.7	206
47	Toughening of Epoxies with Block Copolymer Micelles of Wormlike Morphology. Macromolecules, 2010, 43, 7238-7243.	4.8	206
48	Unambiguous Determination of the 13C and 1H NMR Stereosequence Assignments of Polylactide Using High-Resolution Solution NMR Spectroscopy. Macromolecules, 2002, 35, 7700-7707.	4.8	201
49	Aliphatic Polyester Block Polymer Design. Macromolecules, 2016, 49, 2419-2428.	4.8	200
50	Rapid and Controlled Polymerization of Lactide by Structurally Characterized Ferric Alkoxides. Journal of the American Chemical Society, 2001, 123, 339-340.	13.7	198
51	Sub-5 nm Domains in Ordered Poly(cyclohexylethylene)- <i>block</i> -poly(methyl methacrylate) Block Polymers for Lithography. Macromolecules, 2014, 47, 1411-1418.	4.8	197
52	Laterally Nanostructured Vesicles, Polygonal Bilayer Sheets, and Segmented Wormlike Micelles. Nano Letters, 2006, 6, 1245-1249.	9.1	194
53	Polyethylene-poly(L-lactide) diblock copolymers: Synthesis and compatibilization of poly(L-lactide)/polyethylene blends. Journal of Polymer Science Part A, 2001, 39, 2755-2766.	2.3	193
54	Cylinder Orientation Mechanism in Block Copolymer Thin Films Upon Solvent Evaporation. Macromolecules, 2010, 43, 7763-7770.	4.8	193

#	Article	IF	CITATIONS
55	Ring-Opening Metathesis Polymerization of Functionalized Cyclooctenes by a Ruthenium-Based Metathesis Catalyst. Macromolecules, 1995, 28, 6311-6316.	4.8	189
56	Nanoporous Poly(3-alkylthiophene) Thin Films Generated from Block Copolymer Templates. Macromolecules, 2008, 41, 67-75.	4.8	182
57	A Virtual Issue of <i>Macromolecules</i> : "Polymers from Renewable Resources― Macromolecules, 2009, 42, 7987-7989.	4.8	180
58	Micellar Shape Change and Internal Segregation Induced by Chemical Modification of a Tryptych Block Copolymer Surfactant. Journal of the American Chemical Society, 2003, 125, 10182-10183.	13.7	179
59	Utility of a Ruthenium Metathesis Catalyst for the Preparation of End-Functionalized Polybutadiene. Macromolecules, 1997, 30, 718-721.	4.8	175
60	Control of Structure in Multicompartment Micelles by Blending μ-ABC Star Terpolymers with AB Diblock Copolymers. Macromolecules, 2006, 39, 765-771.	4.8	174
61	Block Copolymer Morphologies in Dye-Sensitized Solar Cells: Probing the Photovoltaic Structureâ´'Function Relation. Nano Letters, 2009, 9, 2813-2819.	9.1	163
62	Hierarchically Porous Polymers from Hyper-cross-linked Block Polymer Precursors. Journal of the American Chemical Society, 2015, 137, 600-603.	13.7	163
63	Renewable-Resource Thermoplastic Elastomers Based on Polylactide and Polymenthide. Biomacromolecules, 2007, 8, 3634-3640.	5.4	162
64	Manipulating Crystal Growth and Polymorphism by Confinement in Nanoscale Crystallization Chambers. Accounts of Chemical Research, 2012, 45, 414-423.	15.6	162
65	Model Bicontinuous Microemulsions in Ternary Homopolymer/Block Copolymer Blends. Journal of Physical Chemistry B, 1999, 103, 4814-4824.	2.6	159
66	Block Copolymer Toughened Epoxy: Role of Cross-Link Density. Macromolecules, 2009, 42, 2333-2335.	4.8	159
67	Scalable production of mechanically tunable block polymers from sugar. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8357-8362.	7.1	159
68	Synthesis of Sequence-Specific Vinyl Copolymers by Regioselective ROMP of Multiply Substituted Cyclooctenes. ACS Macro Letters, 2012, 1, 1383-1387.	4.8	156
69	Electronic influence of ligand substituents on the rate of polymerization of ε-caprolactone by single-site aluminium alkoxide catalysts. Dalton Transactions, 2003, , 3082-3087.	3.3	155
70	A Bifunctional Monomer Derived from Lactide for Toughening Polylactide. Journal of the American Chemical Society, 2008, 130, 13826-13827.	13.7	154
71	Stereoelective polymerization of d,l-lactide using N-heterocyclic carbene based compounds. Chemical Communications, 2004, , 2504.	4.1	153
72	Sustainable Thermoplastic Elastomers from Terpene-Derived Monomers. ACS Macro Letters, 2014, 3, 717-720.	4.8	152

#	Article	IF	CITATIONS
73	Synthesis of fluorinated polymers by chemical modification. Progress in Polymer Science, 2002, 27, 971-1005.	24.7	148
74	Nanoporous Polystyrene Containing Hydrophilic Pores from an ABC Triblock Copolymer Precursor. Macromolecules, 2005, 38, 3-5.	4.8	145
75	Toughening of Polylactide with Polymerized Soybean Oil. Macromolecules, 2010, 43, 1807-1814.	4.8	144
76	Chemically Recyclable Biobased Polyurethanes. ACS Macro Letters, 2016, 5, 515-518.	4.8	143
77	Disklike Micelles in Water from Polyethylene-Containing Diblock Copolymers. Macromolecules, 2011, 44, 3021-3028.	4.8	142
78	Bottlebrush Block Polymers: Quantitative Theory and Experiments. ACS Nano, 2015, 9, 12233-12245.	14.6	141
79	Mechanistic Study of the Stereoselective Polymerization ofd,l-Lactide Using Indium(III) Halides. Journal of the American Chemical Society, 2010, 132, 11649-11657.	13.7	140
80	Discrete Yttrium(III) Complexes as Lactide Polymerization Catalysts. Macromolecules, 1999, 32, 2400-2402.	4.8	137
81	Linear Rheology of Polyolefin-Based Bottlebrush Polymers. Macromolecules, 2015, 48, 4680-4691.	4.8	137
82	Metalloenzyme inspired dizinc catalyst for the polymerization of lactide. Chemical Communications, 2002, , 2132-2133.	4.1	136
83	Polymerization of Lactide by Monomeric Sn(II) Alkoxide Complexes. Macromolecules, 2002, 35, 644-650.	4.8	136
84	Rhodium-Catalyzed, Regiospecific Functionalization of Polyolefins in the Melt. Journal of the American Chemical Society, 2002, 124, 1164-1165.	13.7	135
85	Strong, Resilient, and Sustainable Aliphatic Polyester Thermoplastic Elastomers. Biomacromolecules, 2017, 18, 1845-1854.	5.4	134
86	Hierarchically Porous Polymer Monoliths by Combining Controlled Macro- and Microphase Separation. Journal of the American Chemical Society, 2015, 137, 8896-8899.	13.7	133
87	Effects of Polydispersity on the Orderâ~'Disorder Transition in Block Copolymer Melts. Macromolecules, 2007, 40, 8050-8055.	4.8	132
88	Synthesis of ABA Triblock Copolymers by a Tandem ROMPâ^'RAFT Strategy. Macromolecules, 2005, 38, 7890-7894.	4.8	130
89	Controlled Polymerization ofdl-Lactide and ε-Caprolactone by Structurally Well-Defined Alkoxo-Bridged Di- and Triyttrium(III) Complexes. Macromolecules, 2000, 33, 3970-3977.	4.8	129
90	Zinc N-heterocyclic carbene complexes and their polymerization of d,l-lactide. Journal of Organometallic Chemistry, 2005, 690, 5881-5891.	1.8	129

#	Article	IF	CITATIONS
91	Multicompartment Micelles from Polyester-Containing ABC Miktoarm Star Terpolymers. Macromolecules, 2008, 41, 8815-8822.	4.8	126
92	Pressure-Sensitive Adhesives from Renewable Triblock Copolymers. Macromolecules, 2011, 44, 87-94.	4.8	126
93	Catalytic Hydroxylation of Polypropylenes. Journal of the American Chemical Society, 2005, 127, 767-776.	13.7	124
94	Comparison of structurally analogous Zn2, Co2, and Mg2catalysts for the polymerization of cyclic esters. Dalton Transactions, 2006, , 928-936.	3.3	124
95	Regio- and Stereoselective Ring-Opening Metathesis Polymerization of 3-Substituted Cyclooctenes. Journal of the American Chemical Society, 2011, 133, 5794-5797.	13.7	124
96	Thermoplastic Elastomers Derived from Menthide and Tulipalin A. Biomacromolecules, 2012, 13, 3833-3840.	5.4	122
97	Polylactideâ^'Poly(dimethylsiloxane)â^'Polylactide Triblock Copolymers as Multifunctional Materials for Nanolithographic Applications. ACS Nano, 2010, 4, 725-732.	14.6	121
98	Ring-opening metathesis polymerization of 8-membered cyclic olefins. Polymer Chemistry, 2014, 5, 3507.	3.9	120
99	Gas and water liquid transport through nanoporous block copolymer membranes. Journal of Membrane Science, 2006, 286, 144-152.	8.2	119
100	Lactide polymerization activity of alkoxide, phenoxide, and amide derivatives of yttrium(III) arylamidinates. Journal of Polymer Science Part A, 2001, 39, 284-293.	2.3	116
101	Polylactide–Poly(6-methyl-ε-caprolactone)–Polylactide Thermoplastic Elastomers. Macromolecules, 2011, 44, 8537-8545.	4.8	116
102	Molecular Weight Dependence of Zero-Shear Viscosity in Atactic Polypropylene Bottlebrush Polymers. ACS Macro Letters, 2014, 3, 423-427.	4.8	116
103	Transition Mechanisms for Complex Ordered Phases in Block Copolymer Melts. Journal of Physical Chemistry B, 1998, 102, 1356-1363.	2.6	115
104	Structural and Mechanistic Studies of Bis(phenolato)amine Zinc(II) Catalysts for the Polymerization of Îμ-Caprolactone. Inorganic Chemistry, 2007, 46, 6565-6574.	4.0	114
105	Controlled Chain Walking for the Synthesis of Thermoplastic Polyolefin Elastomers: Synthesis, Structure, and Properties. Macromolecules, 2016, 49, 6743-6751.	4.8	114
106	Robust Nanoporous Membranes Templated by a Doubly Reactive Block Copolymer. Journal of the American Chemical Society, 2007, 129, 13786-13787.	13.7	111
107	Glycine Polymorphism in Nanoscale Crystallization Chambers. Crystal Growth and Design, 2008, 8, 3368-3375.	3.0	111
108	Stereoselective and controlled polymerization of d,l-lactide using indium(iii) trichloride. Chemical Communications, 2009, , 2736.	4.1	111

#	Article	IF	CITATIONS
109	Characterization of Polylactide-b-polyisoprene-b-polylactide Thermoplastic Elastomers. Biomacromolecules, 2003, 4, 216-223.	5.4	108
110	Next-Generation Ultrafiltration Membranes Enabled by Block Polymers. ACS Nano, 2020, 14, 16446-16471.	14.6	108
111	Aqueous ring-opening metathesis polymerization of carboximide-functionalized 7-oxanorbornenes. Macromolecules, 1992, 25, 3345-3350.	4.8	107
112	Efficient Formation of Multicompartment Hydrogels by Stepwise Self-Assembly of Thermoresponsive ABC Triblock Terpolymers. Journal of the American Chemical Society, 2012, 134, 10365-10368.	13.7	107
113	Conformational Asymmetry and Quasicrystal Approximants in Linear Diblock Copolymers. Physical Review Letters, 2017, 118, 207801.	7.8	107
114	Confined Crystallization and Morphology of Melt Segregated PLLA- <i>b</i> -PE and PLDA- <i>b</i> -PE Diblock Copolymers. Macromolecules, 2008, 41, 6154-6164.	4.8	106
115	Nanoporous Linear Polyethylene from a Block Polymer Precursor. Journal of the American Chemical Society, 2010, 132, 8230-8231.	13.7	106
116	Preparation of hydroxytelechelic poly(butadiene) via ring-opening metathesis polymerization employing a well-defined metathesis catalyst. Macromolecules, 1993, 26, 872-874.	4.8	105
117	Reactive Compatibilization of Poly(l-lactide) and Conjugated Soybean Oil. Macromolecules, 2010, 43, 2313-2321.	4.8	105
118	Micellization and Micellar Aggregation of Poly(ethylene- <i>alt</i> -propylene)- <i>b</i> -poly(ethylene) Tj ETQq0 0 2011, 44, 1635-1641.	0 rgBT /0 4.8	verlock 10 Tf 103
119	Structural effects on the reprocessability and stress relaxation of crosslinked polyhydroxyurethanes. Journal of Applied Polymer Science, 2017, 134, 44984.	2.6	103
120	Acrylic Triblock Copolymers Incorporating Isosorbide for Pressure Sensitive Adhesives. ACS Sustainable Chemistry and Engineering, 2016, 4, 3379-3387.	6.7	102
121	Sustainable Polyester Elastomers from Lactones: Synthesis, Properties, and Enzymatic Hydrolyzability. Journal of the American Chemical Society, 2018, 140, 963-973.	13.7	102
122	Mechanistic Study of Stress Relaxation in Urethane-Containing Polymer Networks. Journal of Physical Chemistry B, 2019, 123, 1432-1441.	2.6	102
123	Introductory Lecture : Strategies for controlling intra- and intermicellar packing in block copolymer solutions: Illustrating the flexibility of the self-assembly toolbox. Faraday Discussions, 2005, 128, 1.	3.2	101
124	Consequences of Polylactide Stereochemistry on the Properties of Polylactide-Polymenthide-Polylactide Thermoplastic Elastomers. Biomacromolecules, 2009, 10, 2904-2911.	5.4	101
125	Functional biorenewable polyesters from carvone-derived lactones. Polymer Chemistry, 2011, 2, 702-708.	3.9	100
126	Synthesis and Characterization of Model Polyisopreneâ^'Polylactide Diblock Copolymers. Macromolecules, 1999, 32, 4794-4801.	4.8	99

#	Article	IF	CITATIONS
127	Reactive Compatibilization of Polylactide/Polypropylene Blends. Industrial & Engineering Chemistry Research, 2015, 54, 6108-6114.	3.7	99
128	Defining the Macromolecules of Tomorrow through Synergistic Sustainable Polymer Research. Chemical Reviews, 2022, 122, 6322-6373.	47.7	99
129	Tough Polylactide Graft Copolymers. Macromolecules, 2010, 43, 7394-7397.	4.8	98
130	Consequences of Grafting Density on the Linear Viscoelastic Behavior of Graft Polymers. ACS Macro Letters, 2018, 7, 525-530.	4.8	97
131	Access to the Superstrong Segregation Regime with Nonionic ABC Copolymers. Macromolecules, 2004, 37, 6680-6682.	4.8	96
132	Catalytic Polymerization of a Cyclic Ester Derived from a "Cool―Natural Precursor. Biomacromolecules, 2005, 6, 2091-2095.	5.4	96
133	Perfectly Alternating Copolymer of Lactic Acid and Ethylene Oxide as a Plasticizing Agent for Polylactide. Macromolecules, 2001, 34, 8641-8648.	4.8	94
134	Tough and Sustainable Graft Block Copolymer Thermoplastics. ACS Macro Letters, 2016, 5, 407-412.	4.8	94
135	Phase Behavior and Polymorphism of Organic Crystals Confined within Nanoscale Chambers. Crystal Growth and Design, 2009, 9, 4766-4777.	3.0	92
136	Degradable Cyclooctadiene/Acetal Copolymers: Versatile Precursors to 1,4-Hydroxytelechelic Polybutadiene and Hydroxytelechelic Polyethylene. Macromolecules, 1995, 28, 7256-7261.	4.8	90
137	Synthesis and self-assembly of fluorinated block copolymers. Journal of Polymer Science Part A, 2002, 40, 1-8.	2.3	90
138	Aqueous Dispersions of Poly(ethylene oxide)-b-poly(γ-methyl-ε-caprolactone) Block Copolymers. Macromolecules, 2006, 39, 4286-4288.	4.8	90
139	Intramolecular Exciton Relaxation and Migration Dynamics in Poly(3-hexylthiophene). Journal of Physical Chemistry C, 2007, 111, 15404-15414.	3.1	89
140	Bulk Ring-Opening Transesterification Polymerization of the Renewable δ-Decalactone Using an Organocatalyst. ACS Macro Letters, 2012, 1, 131-135.	4.8	89
141	Isosorbide-based Polymethacrylates. ACS Sustainable Chemistry and Engineering, 2015, 3, 662-667.	6.7	89
142	Robust Polymer Electrolyte Membranes with High Ambient-Temperature Lithium-Ion Conductivity via Polymerization-Induced Microphase Separation. ACS Applied Materials & Interfaces, 2017, 9, 14561-14565.	8.0	89
143	Macroscopic samples of polystyrene with ordered three-dimensional nanochannels. Soft Matter, 2006, 2, 57-59.	2.7	88
144	Synthesis and Melt Processing of Sustainable Poly(ε-decalactone)- <i>block</i> -Poly(lactide) Multiblock Thermoplastic Elastomers. ACS Sustainable Chemistry and Engineering, 2014, 2, 2519-2526.	6.7	88

#	Article	IF	CITATIONS
145	Multicompartment Micelles from pH-Responsive Miktoarm Star Block Terpolymers. Langmuir, 2009, 25, 13718-13725.	3.5	86
146	Multicompartment Micelle Morphology Evolution in Degradable Miktoarm Star Terpolymers. ACS Nano, 2010, 4, 1907-1912.	14.6	86
147	Regiospecific Side-Chain Functionalization of Linear Low-Density Polyethylene with Polar Groups. Angewandte Chemie - International Edition, 2005, 44, 6410-6413.	13.8	84
148	Nanoporous Polystyrene by Chemical Etching of Poly(ethylene oxide) from Ordered Block Copolymers. Macromolecules, 2005, 38, 4038-4039.	4.8	84
149	Freestanding nanowire arrays from soft-etch block copolymer templates. Soft Matter, 2007, 3, 94-98.	2.7	84
150	Controlled Polymerization of a Cyclic Diene Prepared from the Ring-Closing Metathesis of a Naturally Occurring Monoterpene. Journal of the American Chemical Society, 2009, 131, 7960-7961.	13.7	84
151	Manipulating Crystal Orientation in Nanoscale Cylindrical Pores by Stereochemical Inhibition. Journal of the American Chemical Society, 2009, 131, 2588-2596.	13.7	84
152	Synthesis and Characterization of Triptych μ-ABC Star Triblock Copolymers. Macromolecules, 2004, 37, 8933-8940.	4.8	83
153	Diffusion and Flow Across Nanoporous Polydicyclopentadiene-Based Membranes. ACS Applied Materials & Interfaces, 2009, 1, 472-480.	8.0	83
154	Photochemically Cross-Linked Perfluoropolyether-Based Elastomers: Synthesis, Physical Characterization, and Biofouling Evaluation. Macromolecules, 2009, 42, 6999-7007.	4.8	82
155	Evolution of Morphology, Modulus, and Conductivity in Polymer Electrolytes Prepared via Polymerization-Induced Phase Separation. Macromolecules, 2015, 48, 1418-1428.	4.8	82
156	Large area nanolithographic templates by selective etching of chemically stained block copolymer thin films. Journal of Materials Chemistry, 2004, 14, 2729.	6.7	81
157	Optically Transparent, Amphiphilic Networks Based on Blends of Perfluoropolyethers and Poly(ethylene glycol). Journal of the American Chemical Society, 2008, 130, 14244-14252.	13.7	81
158	Perpendicular Domain Orientation in Thin Films of Polystyreneâ^'Polylactide Diblock Copolymers. Macromolecules, 2005, 38, 10101-10108.	4.8	80
159	Block Copolymer Self-Diffusion in the Gyroid and Cylinder Morphologies. Macromolecules, 1998, 31, 5363-5370.	4.8	79
160	Highly Selective Polymer Electrolyte Membranes from Reactive Block Polymers. Macromolecules, 2009, 42, 6075-6085.	4.8	79
161	Poly(lactide)-block-poly(ε-caprolactone-co-ε-decalactone)-block-poly(lactide) copolymer elastomers. Polymer Chemistry, 2015, 6, 3641-3651.	3.9	78
162	Structure and Properties of Semicrystallineâ^'Rubbery Multiblock Copolymers. Macromolecules, 2006, 39, 667-677.	4.8	77

#	Article	IF	CITATIONS
163	Hydrogels from ABA and ABC Triblock Polymers. Macromolecules, 2010, 43, 5396-5404.	4.8	77
164	A Stepwise "Micellization–Crystallization―Route to Oblate Ellipsoidal, Cylindrical, and Bilayer Micelles with Polyethylene Cores in Water. Macromolecules, 2012, 45, 9460-9467.	4.8	77
165	Synthesis, Characterization, and Interaction Strengths of Difluorocarbene-Modified Polystyreneâ^'Polyisoprene Block Copolymers. Macromolecules, 2000, 33, 866-876.	4.8	76
166	Anhydrous Proton Conducting Polymer Electrolyte Membranes via Polymerization-Induced Microphase Separation. ACS Applied Materials & amp; Interfaces, 2016, 8, 6200-6210.	8.0	76
167	Combining Ring-Opening Metathesis Polymerization and Cyclic Ester Ring-Opening Polymerization To Form ABA Triblock Copolymers from 1,5-Cyclooctadiene and <scp>d,l</scp> -Lactide. Macromolecules, 2009, 42, 3674-3680.	4.8	75
168	Perpendicular orientation of cylindrical domains upon solvent annealing thin films of polystyrene-b-polylactide. Thin Solid Films, 2010, 518, 3710-3715.	1.8	74
169	Roles of Monomer Binding and Alkoxide Nucleophilicity in Aluminum-Catalyzed Polymerization of ε - Caprolactone. Macromolecules, 2012, 45, 5387-5396.	4.8	73
170	Theory of Polydisperse Block Copolymer Melts: Beyond the Schulzâ^'Zimm Distribution. Macromolecules, 2008, 41, 4531-4533.	4.8	71
171	Precision Vinyl Acetate/Ethylene (VAE) Copolymers by ROMP of Acetoxy-Substituted Cyclic Alkenes. Macromolecules, 2013, 46, 2535-2543.	4.8	71
172	Multiblock Polyesters Demonstrating High Elasticity and Shape Memory Effects. Macromolecules, 2018, 51, 2466-2475.	4.8	71
173	Carboxy-Telechelic Polyolefins by ROMP Using Maleic Acid as a Chain Transfer Agent. Macromolecules, 2011, 44, 2378-2381.	4.8	70
174	Synthesis, Thermodynamics, and Dynamics of Poly(4- <i>tert</i> butylstyrene- <i>b</i> -methyl) Tj ETQq0 0 0 rgBT	/Qverlock	10 Tf 50 302
175	Renewable, Degradable, and Chemically Recyclable Cross-Linked Elastomers. Industrial & Engineering Chemistry Research, 2016, 55, 11097-11106.	3.7	70
176	Evolution of Multicompartment Micelles to Mixed Corona Micelles Using Solvent Mixtures. Langmuir, 2008, 24, 12001-12009.	3.5	69
177	Oxidized Dihydrocarvone as a Renewable Multifunctional Monomer for the Synthesis of Shape Memory Polyesters. Biomacromolecules, 2009, 10, 2003-2008.	5.4	69
178	High Tg aliphatic polyesters by the polymerization of spirolactide derivatives. Polymer Chemistry, 2010, 1, 870.	3.9	69
179	Investigation of the role of hydrophilic chain length in amphiphilic perfluoropolyether/poly(ethylene) Tj ETQq1 1 ().784314 2.2	rgBT /Overloo

180 Synthesis of Polybutadieneâ[^]Polylactide Diblock Copolymers Using Aluminum Alkoxide Macroinitiators. Kinetics and Mechanism. Macromolecules, 2000, 33, 7395-7403.

4.8 68

#	Article	IF	CITATIONS
181	Routes to Alkene and Epoxide Functionalized Nanoporous Materials from Poly(styrene-b-isoprene-b-lactide) Triblock Copolymers. Macromolecules, 2006, 39, 8772-8781.	4.8	68
182	Optimization of Long-Range Order in Solvent Vapor Annealed Poly(styrene)- <i>block</i> -poly(lactide) Thin Films for Nanolithography. ACS Applied Materials & Interfaces, 2014, 6, 13770-13781.	8.0	68
183	Microstructure and Mechanical Properties of Semicrystallineâ^'Rubberyâ^'Semicrystalline Triblock Copolymers. Macromolecules, 2005, 38, 6090-6098.	4.8	66
184	Tough Blends of Polylactide and Castor Oil. ACS Applied Materials & amp; Interfaces, 2011, 3, 3402-3410.	8.0	65
185	Template Syntheses of Polypyrrole Nanowires and CdS Nanoparticles in Porous Polymer Monoliths. Chemistry of Materials, 2004, 16, 2909-2917.	6.7	64
186	Design of Graft Block Polymer Thermoplastics. Macromolecules, 2016, 49, 9108-9118.	4.8	64
187	The key to successful acyclic diene metathesis polymerization chemistry. Die Makromolekulare Chemie, 1990, 191, 365-374.	1.1	63
188	Polydisperse block copolymers: Don't throw them away. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 3249-3251.	2.1	63
189	Enhancement of the Morphology and Open Circuit Voltage in Bilayer Polymer/Fullerene Solar Cells. Journal of Physical Chemistry C, 2009, 113, 11408-11415.	3.1	63
190	Influence of Water on the Structure and Properties of PDMS-Containing Multiblock Polyurethanes. Macromolecules, 2012, 45, 9110-9120.	4.8	62
191	Synthesis and Remarkable Efficacy of Model Polyethylene- <i>graft</i> -poly(methyl methacrylate) Copolymers as Compatibilizers in Polyethylene/Poly(methyl methacrylate) Blends. Macromolecules, 2012, 45, 9604-9610.	4.8	62
192	ABAC Tetrablock Terpolymers for Tough Nanoporous Filtration Membranes. Macromolecules, 2013, 46, 1484-1491.	4.8	61
193	Thermotropic Properties of Organic Nanocrystals Embedded in Ultrasmall Crystallization Chambers. Journal of Physical Chemistry B, 2005, 109, 1392-1399.	2.6	60
194	Glucose-Functionalized, Serum-Stable Polymeric Micelles from the Combination of Anionic and RAFT Polymerizations. Macromolecules, 2012, 45, 4322-4332.	4.8	60
195	Nanopore and Nanobushing Arrays from ABC Triblock Thin Films Containing Two Etchable Blocks. Chemistry of Materials, 2006, 18, 1719-1721.	6.7	59
196	Disk Micelles from Nonionic Coilâ^'Coil Diblock Copolymers. Macromolecules, 2006, 39, 4526-4530.	4.8	59
197	Catalytic decarbonylation of biomass-derived carboxylic acids as efficient route to commodity monomers. Green Chemistry, 2012, 14, 490.	9.0	59
198	Tuning Mesoporosity in Cross-Linked Nanostructured Thermosets via Polymerization-Induced Microphase Separation. Macromolecules, 2017, 50, 997-1007.	4.8	59

#	Article	IF	CITATIONS
199	Chain Transfer in the Ring-Opening Metathesis Polymerization of Cyclooctadiene Using Discrete Metal Alkylidenes. Macromolecules, 1995, 28, 8662-8667.	4.8	58
200	Poly(3-hexyl-2,5-thienylene vinylene) by ADMET Polymerization of a Dipropenyl Monomer. Macromolecules, 2009, 42, 6429-6432.	4.8	58
201	Z-Selective Ring-Opening Metathesis Polymerization of 3-Substituted Cyclooctenes by Monoaryloxide Pyrrolide Imido Alkylidene (MAP) Catalysts of Molybdenum and Tungsten. Organometallics, 2013, 32, 4843-4850.	2.3	58
202	Ultrafiltration Membranes with a Thin Poly(styrene)- <i>b</i> poly(isoprene) Selective Layer. ACS Applied Materials & Interfaces, 2013, 5, 5044-5050.	8.0	58
203	Silicon Quantum Dot–Poly(methyl methacrylate) Nanocomposites with Reduced Light Scattering for Luminescent Solar Concentrators. ACS Photonics, 2019, 6, 170-180.	6.6	58
204	Hydrolytic Degradation Behavior of a Renewable Thermoplastic Elastomer. Biomacromolecules, 2009, 10, 443-448.	5.4	57
205	Main-Chain Ferroelectric Liquid Crystal Oligomers by Acyclic Diene Metathesis Polymerization1. Journal of the American Chemical Society, 1996, 118, 2740-2741.	13.7	56
206	Synthesis and characterization of polylactide-block-polyisoprene-block-polylactide triblock copolymers: new thermoplastic elastomers containing biodegradable segments. Macromolecular Rapid Communications, 2000, 21, 1317-1322.	3.9	56
207	Influence of Conformational Asymmetry on Polymerâ^'Polymer Interactions:  An Entropic or Enthalpic Effect?. Macromolecules, 2002, 35, 7685-7691.	4.8	56
208	An Ordered Nanoporous Monolith from an Elastomeric Crosslinked Block Copolymer Precursor. Macromolecular Rapid Communications, 2004, 25, 704-709.	3.9	56
209	Block copolymer synthesis. Current Opinion in Solid State and Materials Science, 1999, 4, 559-564.	11.5	55
210	Effect of Selective Perfluoroalkylation on the Segregation Strength of Polystyreneâ^'1,2-Polybutadiene Block Copolymers. Macromolecules, 2002, 35, 3889-3894.	4.8	55
211	A New Synthetic Route to Poly[3-hydroxypropionic acid] (P[3-HP]):Â Ring-Opening Polymerization of 3-HP Macrocyclic Esters. Macromolecules, 2004, 37, 8198-8200.	4.8	55
212	Composite Block Polymerâ^'Microfabricated Silicon Nanoporous Membrane. ACS Applied Materials & Interfaces, 2009, 1, 888-893.	8.0	55
213	Selectivity in Ring-Opening Metathesis Polymerization of <i>Z</i> -Cyclooctenes Catalyzed by a Second-generation Grubbs Catalyst. ACS Catalysis, 2012, 2, 2547-2556.	11.2	55
214	Avoiding Errors in Electrochemical Measurements: Effect of Frit Material on the Performance of Reference Electrodes with Porous Frit Junctions. Analytical Chemistry, 2016, 88, 8706-8713.	6.5	55
215	Mechanistic Studies of ε-Caprolactone Polymerization by (salen)AlOR Complexes and a Predictive Model for Cyclic Ester Polymerizations. ACS Catalysis, 2016, 6, 1215-1224.	11.2	55
216	Selective and Mild Oxyfunctionalization of Model Polyolefins. Macromolecules, 2003, 36, 7027-7034.	4.8	54

#	Article	IF	CITATIONS
217	Micelles Made to Order. Science, 2007, 317, 604-605.	12.6	54
218	Synthesis, Optical Properties, and Microstructure of a Fullerene-Terminated Poly(3-hexylthiophene). Macromolecules, 2009, 42, 4118-4126.	4.8	54
219	Recent Advances in Understanding the Micro- and Nanoscale Phenomena of Amorphous Solid Dispersions. Molecular Pharmaceutics, 2019, 16, 4089-4103.	4.6	54
220	Formation of Nanostructured Poly(dicyclopentadiene) Thermosets Using Reactive Block Polymers. Macromolecules, 2010, 43, 3924-3934.	4.8	53
221	Synthesis and characterization of reactive PEO–PMCL polymersomes. Polymer Chemistry, 2010, 1, 1281.	3.9	52
222	Ordered Nanoporous Poly(cyclohexylethylene)â€. Langmuir, 2003, 19, 6553-6560.	3.5	51
223	Persistence of the Gyroid Morphology at Strong Segregation in Diblock Copolymers. Macromolecules, 2003, 36, 4682-4685.	4.8	51
224	Melt Chain Dimensions of Polylactide. Macromolecules, 2004, 37, 1857-1862.	4.8	51
225	Relationship between Diode Saturation Current and Open Circuit Voltage in Poly(3-alkylthiophene) Solar Cells as a Function of Device Architecture, Processing Conditions, and Alkyl Side Chain Length. Journal of Physical Chemistry C, 2011, 115, 20806-20816.	3.1	51
226	Renewable Thermosets and Thermoplastics from Itaconic Acid. ACS Sustainable Chemistry and Engineering, 2019, 7, 2691-2701.	6.7	51
227	Phase Behavior of Isotactic Polypropyleneâ~Poly(ethylene/ethylethylene) Random Copolymer Blends. Macromolecules, 1997, 30, 3650-3657.	4.8	50
228	A Simple and Mild Route to Highly Fluorinated Model Polymers. Macromolecules, 2001, 34, 4780-4787.	4.8	50
229	Morphological behavior of model poly(ethylene-alt-propylene)-b-polylactide diblock copolymers. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 2364-2376.	2.1	50
230	Mapping Large Regions of Diblock Copolymer Phase Space by Selective Chemical Modification. Macromolecules, 2004, 37, 397-407.	4.8	50
231	Distannylated Isothianaphthene: A Versatile Building Block for Low Bandgap Conjugated Polymers. Macromolecules, 2008, 41, 5563-5570.	4.8	50
232	Effects of Olefin Content and Alkyl Chain Placement on Optoelectronic and Morphological Properties in Poly(thienylene vinylenes). Macromolecules, 2013, 46, 5184-5194.	4.8	50
233	A New Class of Fluorinated Polymers by a Mild, Selective, and Quantitative Fluorination. Journal of the American Chemical Society, 1998, 120, 6830-6831.	13.7	49
234	Thermoplastic polyurethane elastomers from bio-based poly(δ-decalactone) diols. Polymer Chemistry, 2014, 5, 3231-3237.	3.9	49

#	Article	IF	CITATIONS
235	Polyether Urethane Hydrolytic Stability after Exposure to Deoxygenated Water. Macromolecules, 2014, 47, 5220-5226.	4.8	48
236	Mechanically robust and reprocessable imine exchange networks from modular polyester pre-polymers. Polymer Chemistry, 2020, 11, 5346-5355.	3.9	48
237	Control of pore hydrophilicity in ordered nanoporous polystyrene using an AB/AC block copolymer blending strategy. Faraday Discussions, 2005, 128, 149.	3.2	47
238	Phase Inversion in Polylactide/Soybean Oil Blends Compatibilized by Poly(isoprene-b-lactide) Block Copolymers. ACS Applied Materials & Interfaces, 2009, 1, 2390-2399.	8.0	47
239	Low Band Gap Poly(thienylene vinylene)/Fullerene Bulk Heterojunction Photovoltaic Cells. Journal of Physical Chemistry C, 2009, 113, 10790-10797.	3.1	47
240	Molecular Weight Effects in the Hydrogenation of Model Polystyrenes Using Platinum Supported on Wide-Pore Silica. Macromolecules, 2002, 35, 602-609.	4.8	46
241	Carboxy-Telechelic Polyolefins in Cross-Linked Elastomers. Macromolecules, 2014, 47, 479-485.	4.8	45
242	Photochemical Transformation of Poly(butylene adipate- <i>co</i> -terephthalate) and Its Effects on Enzymatic Hydrolyzability. Environmental Science & Technology, 2019, 53, 2472-2481.	10.0	45
243	The role of polydispersity in the lamellar mesophase of model diblock copolymers. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 3386-3393.	2.1	43
244	Bottom-up Approach toward Titanosilicate Mesoporous Pillared Planar Nanochannels for Nanofluidic Applications. Chemistry of Materials, 2010, 22, 5687-5694.	6.7	42
245	Poly(methyl methacrylate)- <i>block</i> -polyethylene- <i>block</i> -poly(methyl methacrylate) Triblock Copolymers as Compatibilizers for Polyethylene/Poly(methyl methacrylate) Blends. Industrial & Engineering Chemistry Research, 2014, 53, 4718-4725.	3.7	42
246	High-Performance Pressure-Sensitive Adhesives from Renewable Triblock Copolymers. Biomacromolecules, 2015, 16, 2537-2539.	5.4	42
247	Degradable Thermosets Derived from an Isosorbide/Succinic Anhydride Monomer and Glycerol. ACS Sustainable Chemistry and Engineering, 2017, 5, 9185-9190.	6.7	42
248	Enhanced Polyester Degradation through Transesterification with Salicylates. Journal of the American Chemical Society, 2021, 143, 15784-15790.	13.7	42
249	Cross-Linked Nanoporous Materials from Reactive and Multifunctional Block Polymers. Macromolecules, 2011, 44, 9310-9318.	4.8	41
250	An ADMET Route to Low-Band-Gap Poly(3-hexadecylthienylene vinylene): A Systematic Study of Molecular Weight on Photovoltaic Performance. Macromolecules, 2012, 45, 2190-2199.	4.8	41
251	Polyurethanes based on renewable polyols from bioderived lactones. Polymer Chemistry, 2012, 3, 2941.	3.9	41
252	Nanoporous Poly(lactide) by Olefin Metathesis Degradation. Journal of the American Chemical Society, 2013, 135, 10918-10921.	13.7	41

#	Article	IF	CITATIONS
253	One-Step Synthesis of Cross-Linked Block Polymer Precursor to a Nanoporous Thermoset. ACS Macro Letters, 2013, 2, 617-620.	4.8	41
254	Solubility of CF2-Modified Polybutadiene and Polyisoprene in Supercritical Carbon Dioxide. Macromolecules, 2002, 35, 4653-4657.	4.8	40
255	Soft-Etch Mesoporous Hole-Conducting Block Copolymer Templates. ACS Nano, 2010, 4, 962-966.	14.6	40
256	Synthesis of Linear, H-Shaped, and Arachnearm Block Copolymers By Tandem Ring-Opening Polymerizations. Macromolecules, 2010, 43, 8018-8025.	4.8	40
257	Non-lift-off Block Copolymer Lithography of 25 nm Magnetic Nanodot Arrays. ACS Applied Materials & Interfaces, 2011, 3, 3472-3481.	8.0	40
258	Band Gap and HOMO Level Control in Poly(thienylene vinylene)s Prepared by ADMET Polymerization. ACS Macro Letters, 2012, 1, 986-990.	4.8	40
259	Reactive Compatibilization of Poly(ethylene terephthalate) and High-Density Polyethylene Using Amino-Telechelic Polyethylene. Macromolecules, 2016, 49, 8988-8994.	4.8	40
260	Preparation, Characterization, and Formulation Development of Drug–Drug Protic Ionic Liquids of Diphenhydramine with Ibuprofen and Naproxen. Molecular Pharmaceutics, 2018, 15, 4190-4201.	4.6	40
261	Aliphatic Polyester Thermoplastic Elastomers Containing Hydrogen-Bonding Ureidopyrimidinone Endgroups. Biomacromolecules, 2019, 20, 2598-2609.	5.4	40
262	Viscoelastic Synergy in Aqueous Mixtures of Wormlike Micelles and Model Amphiphilic Triblock Copolymers. Macromolecules, 2007, 40, 1615-1623.	4.8	39
263	Synthesis and Self-Assembly of RGD-Functionalized PEO-PB Amphiphiles. Biomacromolecules, 2009, 10, 1554-1563.	5.4	39
264	Polylactideâ^'Polythiopheneâ^'Polylactide Triblock Copolymers. Macromolecules, 2010, 43, 3566-3569.	4.8	39
265	Detection of Pharmaceutical Drug Crystallites in Solid Dispersions by Transmission Electron Microscopy. Molecular Pharmaceutics, 2015, 12, 983-990.	4.6	39
266	Impact of Polymer Excipient Molar Mass and End Groups on Hydrophobic Drug Solubility Enhancement. Macromolecules, 2017, 50, 1102-1112.	4.8	39
267	Highly Cross-Linked Self-Assembled Monolayer Stationary Phases:Â An Approach to Greatly Enhancing the Low pH Stability of Silica-Based Stationary Phases. Analytical Chemistry, 2002, 74, 4634-4639.	6.5	38
268	Control of Mechanical Behavior in Polyolefin Composites:Â Integration of Glassy, Rubbery, and Semicrystalline Components. Macromolecules, 2007, 40, 1585-1593.	4.8	38
269	Degradable Thermosets from Sugar-Derived Dilactones. Macromolecules, 2014, 47, 498-505.	4.8	38
270	Enhanced Performance of Blended Polymer Excipients in Delivering a Hydrophobic Drug through the Synergistic Action of Micelles and HPMCAS. Langmuir, 2017, 33, 2837-2848.	3.5	38

#	Article	IF	CITATIONS
271	Nanoporous Thermosets with Percolating Pores from Block Polymers Chemically Fixed above the Order–Disorder Transition. ACS Central Science, 2017, 3, 1114-1120.	11.3	38
272	Mechanically and Thermally Robust Ordered Nanoporous Monoliths Using Norbornene-Functional Block Polymers. Macromolecules, 2009, 42, 4237-4243.	4.8	36
273	Divergent Mechanistic Avenues to an Aliphatic Polyesteracetal or Polyester from a Single Cyclic Esteracetal. ACS Macro Letters, 2014, 3, 1156-1160.	4.8	36
274	Poly(methyl methacrylate) Films with High Concentrations of Silicon Quantum Dots for Visibly Transparent Luminescent Solar Concentrators. ACS Applied Materials & Interfaces, 2020, 12, 4572-4578.	8.0	36
275	Seeking an ammonia selective membrane based on nanostructured sulfonated block copolymers. Journal of Membrane Science, 2009, 337, 39-46.	8.2	35
276	Olefins from biomass feedstocks: catalytic ester decarbonylation and tandem Heck-type coupling. Chemical Communications, 2015, 51, 2731-2733.	4.1	35
277	Functionalized regio-regular linear polyethylenes from the ROMP of 3-substituted cyclooctenes. Applied Petrochemical Research, 2015, 5, 19-25.	1.3	35
278	Regioselective cross metathesis for block and heterotelechelic polymer synthesis. Polymer Chemistry, 2016, 7, 6269-6278.	3.9	35
279	Physical Aging of Polylactide-Based Graft Block Polymers. Macromolecules, 2019, 52, 8878-8894.	4.8	35
280	Thiol–Ene Networks from Sequence-Defined Polyurethane Macromers. Journal of the American Chemical Society, 2020, 142, 6729-6736.	13.7	35
281	Structure and Mechanical Properties of an O ⁷⁰ (<i>Fddd</i>) Network-Forming Pentablock Terpolymer. Macromolecules, 2008, 41, 5809-5817.	4.8	34
282	Control of gyroid forming block copolymer templates: effects of an electric field and surface topography. Soft Matter, 2010, 6, 670-676.	2.7	34
283	Diels–Alder Reactions of Furans with Itaconic Anhydride: Overcoming Unfavorable Thermodynamics. Organic Letters, 2016, 18, 2584-2587.	4.6	34
284	Organocatalytic Cationic Ring-Opening Polymerization of a Cyclic Hemiacetal Ester. Industrial & Engineering Chemistry Research, 2016, 55, 11747-11755.	3.7	34
285	Poly(allyl alcohol) Homo- and Block Polymers by Postpolymerization Reduction of an Activated Polyacrylamide. Journal of the American Chemical Society, 2018, 140, 11911-11915.	13.7	34
286	Readily Degradable Aromatic Polyesters from Salicylic Acid. ACS Macro Letters, 2020, 9, 96-102.	4.8	34
287	Enhanced Mechanical Properties of Aliphatic Polyester Thermoplastic Elastomers through Star Block Architectures. Macromolecules, 2021, 54, 9327-9340.	4.8	34
288	Preparation and Performance of Hydroxypropyl Methylcellulose Esters of Substituted Succinates for <i>i>in Vitro</i> Supersaturation of a Crystalline Hydrophobic Drug. Molecular Pharmaceutics, 2014, 11, 175-185.	4.6	33

#	Article	IF	CITATIONS
289	Influence of crystallinity on the morphology of poly(ethylene oxide) containing diblock copolymers. Macromolecular Symposia, 1997, 117, 121-130.	0.7	32
290	Direct Observation of Stereodefect Sites in Semicrystalline Poly(lactide) Using 13C Solid-State NMR. Journal of the American Chemical Society, 1998, 120, 12672-12673.	13.7	32
291	ABC Triblock Terpolymers Exhibiting Both Temperature- and pH-Sensitive Micellar Aggregation and Gelation in Aqueous Solution. Langmuir, 2012, 28, 17785-17794.	3.5	32
292	Anhydride-Additive-Free Nickel-Catalyzed Deoxygenation of Carboxylic Acids to Olefins. Organometallics, 2017, 36, 506-509.	2.3	32
293	Efficient Polymerization of Methyl-ε-Caprolactone Mixtures To Access Sustainable Aliphatic Polyesters. Macromolecules, 2020, 53, 1795-1808.	4.8	32
294	Adhesion of polymer–inorganic interfaces by nanoindentation. Journal of Materials Research, 2001, 16, 3378-3388.	2.6	31
295	Recognition by Lipases of ω-Hydroxyl Macroinitiators for Diblock Copolymer Synthesis. Macromolecules, 2002, 35, 7606-7611.	4.8	31
296	Nucleation and Crystallization of PLDA-b-PE and PLLA-b-PE Diblock Copolymers. Macromolecular Symposia, 2006, 242, 174-181.	0.7	31
297	Synthesis of block polymer miktobrushes. Polymer Chemistry, 2013, 4, 166-173.	3.9	31
298	Effect of homopolymer in polymerization-induced microphase separation process. Polymer, 2017, 126, 338-351.	3.8	31
299	Polymer Day: Outreach Experiments for High School Students. Journal of Chemical Education, 2017, 94, 1629-1638.	2.3	31
300	Entropically Driven Macrolide Polymerizations for the Synthesis of Aliphatic Polyester Copolymers Using Titanium Isopropoxide. Macromolecules, 2019, 52, 2371-2383.	4.8	31
301	Polydispersity effects in poly(isoprene-b-styrene-b-ethylene oxide) triblock terpolymers. Journal of Chemical Physics, 2009, 130, 234903.	3.0	30
302	Polysilylether: A Degradable Polymer from Biorenewable Feedstocks. Angewandte Chemie - International Edition, 2016, 55, 11872-11876.	13.8	30
303	Synthesis of semifluorinated block copolymers by atom transfer radical polymerization. Journal of Polymer Science Part A, 2004, 42, 853-861.	2.3	29
304	SANS Evidence for the Cross-Linking of Wormlike Micelles by a Model Hydrophobically Modified Polymer. Macromolecules, 2007, 40, 4728-4731.	4.8	29
305	Polydispersity-Induced Stabilization of the Coreâ Shell Gyroid. Macromolecules, 2008, 41, 6272-6275.	4.8	29
306	Bioresorbable Polymersomes for Targeted Delivery of Cisplatin. Bioconjugate Chemistry, 2013, 24, 533-543.	3.6	29

#	Article	IF	CITATIONS
307	Selective Decarbonylation of Fatty Acid Esters to Linear α-Olefins. Organometallics, 2017, 36, 2956-2964.	2.3	29
308	Activated Polyacrylamides as Versatile Substrates for Postpolymerization Modification. ACS Macro Letters, 2018, 7, 122-126.	4.8	28
309	Techno-economic Analysis of a Chemical Process Το Manufacture Methyl-Îμ-caprolactone from Cresols. ACS Sustainable Chemistry and Engineering, 2018, 6, 15316-15324.	6.7	28
310	Synthesis and self-assembly of highly incompatible polybutadiene-poly(hexafluoropropylene oxide) diblock copolymers. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 3685-3694.	2.1	27
311	Polydispersity-Driven Transition from the OrthorhombicFdddNetwork to Lamellae in Poly(isoprene-b-styrene-b-ethylene oxide) Triblock Terpolymers. Macromolecules, 2007, 40, 7072-7074.	4.8	27
312	Amino-Functionalized Polyethylene for Enhancing the Adhesion between Polyolefins and Polyurethanes. Industrial & amp; Engineering Chemistry Research, 2011, 50, 3274-3279.	3.7	27
313	Liquid Water Transport in Polylactide Homo and Graft Copolymers. ACS Applied Materials & Interfaces, 2011, 3, 3997-4006.	8.0	27
314	Hydrogenolysis of Linear Low-Density Polyethylene during Heterogeneous Catalytic Hydrogen–Deuterium Exchange. Macromolecules, 2020, 53, 6043-6055.	4.8	27
315	The macrocyclization reaction of terminal dibromoalkanes with sulfide on alumina. The use of a solid support as an alternative to the high dilution technique Tetrahedron Letters, 1992, 33, 7709-7712.	1.4	26
316	A Study of the Lewis Acidâ `Base Interactions of Vinylphosphonic Acid-Modified Polybutadiene-Coated Zirconia. Analytical Chemistry, 2001, 73, 3323-3331.	6.5	26
317	Alignment of Organic Crystals under Nanoscale Confinement. Crystal Growth and Design, 2012, 12, 4494-4504.	3.0	26
318	Sequential ROMP of cyclooctenes as a route to linear polyethylene block copolymers. Dalton Transactions, 2013, 42, 9079.	3.3	26
319	Hydroxy-telechelic poly(ethylene-co-isobutylene) as a soft segment for thermoplastic polyurethanes. Polymer Chemistry, 2015, 6, 6806-6811.	3.9	26
320	Direct Observation of Nanostructures during Aqueous Dissolution of Polymer/Drug Particles. Macromolecules, 2017, 50, 3143-3152.	4.8	26
321	Block Copolymer Vesicles in Liquid CO2. Macromolecules, 2007, 40, 4917-4923.	4.8	25
322	Functionalized linear low-density polyethylene by ring-opening metathesis polymerization. Polymer Chemistry, 2013, 4, 1193-1198.	3.9	25
323	Structural Transitions in Asymmetric Poly(styrene)- <i>block</i> -Poly(lactide) Thin Films Induced by Solvent Vapor Exposure. ACS Applied Materials & Interfaces, 2014, 6, 12146-12152.	8.0	25
324	Intrinsically Hierarchical Nanoporous Polymers via Polymerization-Induced Microphase Separation. Macromolecules, 2017, 50, 4363-4371.	4.8	25

#	Article	IF	CITATIONS
325	Computational Design of High-χ Block Oligomers for Accessing 1 nm Domains. ACS Nano, 2018, 12, 4351-4361.	14.6	25
326	Isotactic Polymers with Alternating Lactic Acid and Oxetane Subunits from the Endoentropic Polymerization of a 14-Membered Ring. Macromolecules, 2004, 37, 5274-5281.	4.8	24
327	ABA triblock copolymers with a ring-opening metathesis polymerization/macromolecular chain-transfer agent approach. Journal of Polymer Science Part A, 2007, 45, 361-373.	2.3	24
328	Morphological Behavior of Polystyrene <i>â€blockâ€</i> Polylactide/Polystyrene <i>â€blockâ€</i> Poly(ethylene) T	j ETQq0 0 2.2	0 rgBT /Over
329	A Compartmentalized Hydrogel from a Linear ABC Terpolymer. Macromolecules, 2009, 42, 1796-1800.	4.8	24
330	Poly(cyclohexylethylene)- <i>block</i> -Poly(lactide) Oligomers for Ultrasmall Nanopatterning Using Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2016, 8, 7431-7439.	8.0	24
331	Self-Supporting, Hydrophobic, Ionic Liquid-Based Reference Electrodes Prepared by Polymerization-Induced Microphase Separation. ACS Sensors, 2017, 2, 1498-1504.	7.8	24
332	Bicontinuous Porous Nanomaterials from Block Polymers Radically Cured in the Disordered State for Size-Selective Membrane Applications. ACS Applied Nano Materials, 2019, 2, 4567-4577.	5.0	24
333	Hydrolytically-degradable homo- and copolymers of a strained exocyclic hemiacetal ester. Polymer Chemistry, 2019, 10, 4573-4583.	3.9	24
334	Polylactide Foams with Tunable Mechanical Properties and Wettability using a Star Polymer Architecture and a Mixture of Surfactants. ACS Sustainable Chemistry and Engineering, 2019, 7, 1698-1706.	6.7	24
335	Solid-Contact Ion-Selective and Reference Electrodes Covalently Attached to Functionalized Poly(ethylene terephthalate). Analytical Chemistry, 2020, 92, 7621-7629.	6.5	24
336	Water transport and clustering behavior in homopolymer and graft copolymer polylactide. Journal of Membrane Science, 2012, 396, 50-56.	8.2	23
337	Structure of Two-Compartment Hydrogels from Thermoresponsive ABC Triblock Terpolymers. Macromolecules, 2015, 48, 5934-5943.	4.8	23
338	High Class Transition Temperature Polyolefins Obtained by the Catalytic Hydrogenation of Polyindene. Macromolecules, 2003, 36, 71-76.	4.8	22
339	Controlled polymerization of α-methyl-β-pentyl-β-propiolactone by a discrete zinc alkoxide complex. Tetrahedron, 2004, 60, 7177-7185.	1.9	22
340	Copolymerization of isoprene and hydroxyl containing monomers by controlled radical and emulsion methods. Polymer Chemistry, 2012, 3, 1510.	3.9	22
341	Size-Tuned ZnO Nanocrucible Arrays for Magnetic Nanodot Synthesis <i>via</i> Atomic Layer Deposition-Assisted Block Polymer Lithography. ACS Nano, 2015, 9, 1379-1387.	14.6	22
342	Fast Photochromic Dye Response in Rigid Block Polymer Thermosets. ACS Applied Polymer Materials, 2019, 1, 2778-2786.	4.4	22

#	Article	IF	CITATIONS
343	Blend Miscibility of Poly(ethylene terephthalate) and Aromatic Polyesters from Salicylic Acid. Journal of Physical Chemistry B, 2021, 125, 450-460.	2.6	22
344	High Open-Circuit Voltage Photovoltaic Cells with a Low Bandgap Copolymer of Isothianaphthene, Thiophene, and Benzothiadiazole Units. Journal of Physical Chemistry C, 2009, 113, 21928-21936.	3.1	21
345	Poly(<scp>D</scp> ″actide)–Poly(menthide)–Poly(<scp>D</scp> ″actide) Triblock Copolymers as Crystal Nucleating Agents for Poly(<scp>L</scp> ″actide). Macromolecular Symposia, 2009, 283–284, 130-138.	0.7	21
346	Multicompartment Micelles by Aqueous Self-Assembly of μ-A(BC) _{<i>n</i>} <i>Mikto</i> brush Terpolymers. ACS Omega, 2016, 1, 1027-1033.	3.5	21
347	Branched Diol Monomers from the Sequential Hydrogenation of Renewable Carboxylic Acids. ChemCatChem, 2016, 8, 3031-3035.	3.7	21
348	Discussion on "Aperiodic Copolymers― ACS Macro Letters, 2016, 5, 1-3.	4.8	21
349	Engineering <i>in Vivo</i> Production of α-Branched Polyesters. Journal of the American Chemical Society, 2019, 141, 16877-16883.	13.7	21
350	Synthesis, Simulation, and Self-Assembly of a Model Amphiphile To Push the Limits of Block Polymer Nanopatterning. Nano Letters, 2019, 19, 4458-4462.	9.1	21
351	High Strength Polyolefin Block Copolymers. Macromolecules, 2004, 37, 5847-5850.	4.8	20
352	Characterization of Nanoporous Polystyrene Thin Films by Environmental Ellipsometric Porosimetry. Macromolecules, 2011, 44, 8892-8897.	4.8	20
353	Functionalized Nanoporous Polyethylene Derived from Miscible Block Polymer Blends. ACS Applied Materials & Interfaces, 2013, 5, 291-300.	8.0	20
354	Interfacial Polymerization of Reactive Block Polymers for the Preparation of Composite Ultrafiltration Membranes. Industrial & Engineering Chemistry Research, 2014, 53, 18575-18579.	3.7	20
355	Morphological Consequences of Frustration in ABC Triblock Polymers. Macromolecules, 2017, 50, 446-458.	4.8	20
356	Perfluorocarbenes Produced by Thermal Cracking. Barriers to Generation and Rearrangement. Journal of Organic Chemistry, 1999, 64, 4850-4859.	3.2	19
357	An Ultra Acid Stable Reversed Stationary Phase. Journal of the American Chemical Society, 2003, 125, 10504-10505.	13.7	19
358	Tricontinuous Nanostructured Polymers via Polymerization-Induced Microphase Separation. ACS Macro Letters, 2017, 6, 1232-1236.	4.8	19
359	Poly(alkyl methacrylate)-Grafted Polyolefins as Viscosity Modifiers for Engine Oil: A New Mechanism for Improved Performance. Industrial & amp; Engineering Chemistry Research, 2018, 57, 1840-1850.	3.7	19
360	Sustainable Triblock Copolymers as Tunable and Degradable Pressure Sensitive Adhesives. ACS Sustainable Chemistry and Engineering, 2020, 8, 12036-12044.	6.7	19

#	Article	IF	CITATIONS
361	Molecular Engineering of Nanostructures in Disordered Block Polymers. ACS Macro Letters, 2020, 9, 382-388.	4.8	19
362	Synthesis of Monodisperse α-Hydroxypoly(styrene) in Hydrocarbon Media Using a Functional Organolithium. Macromolecules, 2007, 40, 760-762.	4.8	18
363	Mechanical Consequences of Molecular Composition on Failure in Polyolefin Composites Containing Glassy, Elastomeric, and Semicrystalline Components. Macromolecules, 2008, 41, 1341-1351.	4.8	18
364	Synthesis of Tri- and Multiblock Polymers with Asymmetric Poly(ethylene oxide) End Blocks. ACS Macro Letters, 2012, 1, 768-771.	4.8	18
365	Intramolecular Exciton Diffusion in Poly(3-hexylthiophene). Journal of Physical Chemistry Letters, 2013, 4, 3445-3449.	4.6	18
366	Renewable carvone-based polyols for use in polyurethane thermosets. RSC Advances, 2013, 3, 20399.	3.6	18
367	Combining block copolymers and hydrogen bonding for poly(lactide) toughening. RSC Advances, 2014, 4, 13266.	3.6	18
368	Poly(cyclohexylethylene)- <i>block</i> -poly(ethylene oxide) Block Polymers for Metal Oxide Templating. ACS Macro Letters, 2015, 4, 1027-1032.	4.8	18
369	Oxidatively Stable Polyolefin Thermoplastics and Elastomers for Biomedical Applications. ACS Macro Letters, 2017, 6, 613-618.	4.8	18
370	Straightforward synthesis of model polystyrene- <i>block</i> -poly(vinyl alcohol) diblock polymers. Polymer Chemistry, 2018, 9, 4243-4250.	3.9	18
371	Rheological Evidence of Composition Fluctuations in an Unentangled Diblock Copolymer Melt near the Order–Disorder Transition. ACS Macro Letters, 2013, 2, 496-500.	4.8	17
372	Synthetic strategies for the generation of ABCA' type asymmetric tetrablock terpolymers. Polymer Chemistry, 2014, 5, 5551.	3.9	17
373	Lightweight micro-cellular plastics from polylactide/polyolefin hybrids. Polymer, 2016, 102, 73-83.	3.8	17
374	4-Carboalkoxylated Polyvalerolactones from Malic Acid: Tough and Degradable Polyesters. Macromolecules, 2020, 53, 3194-3201.	4.8	17
375	Ringâ€opening metathesis copolymerization employing rutheniumâ€based metathesis catalysts. Macromolecular Symposia, 1995, 89, 411-419.	0.7	16
376	Model Linear Low Density Polyethylenes from the ROMP of 5-Hexylcyclooct-1-ene. Australian Journal of Chemistry, 2010, 63, 1201.	0.9	16
377	In situ Electrochemical Monitoring of Selective Etching in Ordered Mesoporous Block-Copolymer Templates. ACS Applied Materials & Interfaces, 2011, 3, 1375-1379.	8.0	16
378	Catalytic synthesis and post-polymerization functionalization of conjugated polyisoprene. Polymer Chemistry, 2011, 2, 2062.	3.9	16

#	Article	IF	CITATIONS
379	Nanoscale Concentration Quantification of Pharmaceutical Actives in Amorphous Polymer Matrices by Electron Energy-Loss Spectroscopy. Langmuir, 2016, 32, 7411-7419.	3.5	16
380	Assembly of Graphene Oxide Nanosheets on Diamine-Treated PVDF Hollow Fiber as Nanofiltration Membranes. ACS Applied Polymer Materials, 2020, 2, 3859-3866.	4.4	16
381	Toward Sustainable Elastomers from the Grafting-Through Polymerization of Lactone-Containing Polyester Macromonomers. Macromolecules, 2022, 55, 1003-1014.	4.8	16
382	High Modulus, Low Surface Energy, Photochemically Cured Materials from Liquid Precursors. Macromolecules, 2010, 43, 10397-10405.	4.8	15
383	Reactive triblock polymers from tandem ring-opening polymerization for nanostructured vinyl thermosets. Polymer Chemistry, 2012, 3, 1827-1837.	3.9	15
384	Poly(urea ester): A family of biodegradable polymers with high melting temperatures. Journal of Polymer Science Part A, 2016, 54, 3795-3799.	2.3	15
385	Temporally Controlled Curing of Block Polymers in the Disordered State Using Thermally Stable Photoacid Generators for the Preparation of Nanoporous Membranes. ACS Applied Polymer Materials, 2019, 1, 1148-1154.	4.4	15
386	Tandem ROMP/Hydrogenation Approach to Hydroxy-Telechelic Linear Polyethylene. ACS Macro Letters, 2022, 11, 608-614.	4.8	15
387	Functionalized Nanoporous Membranes from Reactive Triblock Polymers. Australian Journal of Chemistry, 2011, 64, 1074.	0.9	14
388	"Uncontrolled―Preparation of Disperse Poly(lactide)-block-poly(styrene)-block-poly(lactide) for Nanopatterning Applications. Macromolecules, 2016, 49, 8031-8040.	4.8	14
389	CdSe/CdS–poly(cyclohexylethylene) thin film luminescent solar concentrators. APL Materials, 2019, 7, ·	5.1	14
390	Nanostructured Polymer Monoliths for Biomedical Delivery Applications. ACS Applied Bio Materials, 2020, 3, 3236-3247.	4.6	14
391	Star Polymer Synthesis Using Hexafluoropropylene Oxide as an Efficient Multifunctional Coupling Agent. Macromolecules, 2004, 37, 6355-6361.	4.8	13
392	Factors Controlling Selectivity in the Ring-Opening Metathesis Polymerization of 3-Substituted Cyclooctenes by Monoaryloxide Pyrrolide Imido Alkylidene (MAP) Catalysts. Journal of Organic Chemistry, 2014, 79, 11940-11948.	3.2	13
393	Bioderived Acrylates from Alkyl Lactates via Pd-Catalyzed Hydroesterification. ACS Sustainable Chemistry and Engineering, 2018, 6, 9579-9584.	6.7	13
394	Step-Growth Polyesters with Biobased (<i>R</i>)-1,3-Butanediol. Industrial & Engineering Chemistry Research, 2020, 59, 15598-15613.	3.7	13
395	Confronting Racism in Chemistry Journals. ACS Applied Materials & Interfaces, 2020, 12, 28925-28927.	8.0	13
396	Design and Characterization of Model Linear Low-Density Polyethylenes (LLDPEs) by Multidetector Size Exclusion Chromatography. Macromolecules, 2020, 53, 2344-2353.	4.8	13

#	Article	IF	CITATIONS
397	Biorenewable Multiphase Polymers. MRS Bulletin, 2010, 35, 194-200.	3.5	12
398	Nanoscale Rings from Silicon-Containing Triblock Terpolymers. ACS Applied Materials & Interfaces, 2012, 4, 3550-3557.	8.0	12
399	Tuning of HOMO energy levels and open circuit voltages in solar cells based on statistical copolymers prepared by ADMET polymerization. Polymer Chemistry, 2014, 5, 6287-6294.	3.9	12
400	Polymeric Nanocylinders by Combining Block Copolymer Self-Assembly and Nanoskiving. ACS Applied Materials & Interfaces, 2014, 6, 16283-16288.	8.0	12
401	Co-Casting Highly Selective Dual-Layer Membranes with Disordered Block Polymer Selective Layers. ACS Applied Materials & Interfaces, 2020, 12, 45351-45362.	8.0	12
402	Respirometry and Cell Viability Studies for Sustainable Polyesters and Their Hydrolysis Products. ACS Sustainable Chemistry and Engineering, 2021, 9, 2736-2744.	6.7	12
403	Barrier membranes of self-assembled lamellar poly(lactide-isoprene-lactide) triblock copolymers. Journal of Membrane Science, 2005, 259, 1-9.	8.2	11
404	Well-Ordered Nanoporous ABA Copolymer Thin Films via Solvent Vapor Annealing, Homopolymer Blending, and Selective Etching of ABAC Tetrablock Terpolymers. ACS Applied Materials & Interfaces, 2015, 7, 27331-27339.	8.0	11
405	Filler-Reinforced Elastomers Based on Functional Polyolefin Prepolymers. Industrial & Engineering Chemistry Research, 2016, 55, 6106-6112.	3.7	11
406	Enhanced Nitrogen Removal and Anammox Bacteria Retention with Zeolite-Coated Membrane in Simulated Mainstream Wastewater. Environmental Science and Technology Letters, 2021, 8, 468-473.	8.7	11
407	Impact of Macromonomer Molar Mass and Feed Composition on Branch Distributions in Model Graft Copolymerizations. ACS Macro Letters, 2021, 10, 1622-1628.	4.8	11
408	The role of intermolecular interactions on melt memory and thermal fractionation of semicrystalline polymers. Journal of Chemical Physics, 2022, 156, 144902.	3.0	11
409	Fluorinated Amphiphilic Block Copolymers: Combining Anionic Polymerization and Selective Polymer Modification. Macromolecular Symposia, 2004, 215, 51-56.	0.7	10
410	Magnetic Microrheology of Block Copolymer Solutions. ACS Applied Materials & Interfaces, 2013, 5, 11877-11883.	8.0	10
411	Controlled synthesis of ABCA' tetrablock terpolymers. Polymer, 2017, 124, 60-67.	3.8	10
412	Functionalized Mesoporous Polymers with Enhanced Performance as Reference Electrode Frits. ACS Applied Nano Materials, 2018, 1, 139-144.	5.0	10
413	Dispersity and architecture driven self-assembly and confined crystallization of symmetric branched block copolymers. Polymer Chemistry, 2019, 10, 5385-5395.	3.9	10
414	Bicontinuous Ion-Exchange Materials through Polymerization-Induced Microphase Separation. ACS Macro Letters, 2021, 10, 60-64.	4.8	10

#	Article	IF	CITATIONS
415	Polyolefin graft copolymers through a ring-opening metathesis grafting through approach. Polymer Chemistry, 2021, 12, 2075-2083.	3.9	10
416	Synthesis, Microstructure, and Properties of High-Molar-Mass Polyglycolide Copolymers with Isolated Methyl Defects. Biomacromolecules, 2021, 22, 2532-2543.	5.4	10
417	Positron lifetime spectroscopy in ordered nanoporous polymers. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1157-1161.	2.1	9
418	High surface area carbon black (BPâ€2000) as a reinforcing agent for poly[(â^)â€lactide]. Journal of Applied Polymer Science, 2016, 133, .	2.6	9
419	From Order to Disorder: Computational Design of Triblock Amphiphiles with 1 nm Domains. Journal of the American Chemical Society, 2020, 142, 9352-9362.	13.7	9
420	Synthesis and Self-Assembly of Block Polyelectrolyte Membranes through a Mild, 2-in-1 Postpolymerization Treatment. ACS Applied Polymer Materials, 2020, 2, 817-825.	4.4	9
421	Regioregular Polymers from Biobased (<i>R</i>)-1,3-Butylene Carbonate. Macromolecules, 2021, 54, 5974-5984.	4.8	9
422	Tailored Mesoporous Microspheres by Polymerization-Induced Microphase Separation in Suspension. ACS Applied Polymer Materials, 2022, 4, 4219-4233.	4.4	9
423	Block Copolymer Derived Membranes for Sustained Carbon Dioxideâ^'Methane Separations. Industrial & Engineering Chemistry Research, 2010, 49, 12051-12059.	3.7	8
424	RAFT copolymerization of acid chloride-containing monomers. Polymer Chemistry, 2014, 5, 213-219.	3.9	8
425	Revisiting the Anionic Polymerization of Methyl Ethacrylate. Macromolecular Chemistry and Physics, 2018, 219, 1700282.	2.2	8
426	Mechanistic Study of Palladium-Catalyzed Hydroesterificative Copolymerization of Vinyl Benzyl Alcohol and CO. Organometallics, 2019, 38, 1778-1786.	2.3	8
427	Processable epoxy-telechelic polyalkenamers and polyolefins for photocurable elastomers. Polymer Chemistry, 2020, 11, 712-720.	3.9	8
428	Precision ethylene-styrene copolymers through the ring opening metathesis polymerization of 3-phenyl cyclododecenes. Polymer Chemistry, 2021, 12, 1681-1691.	3.9	8
429	Polysilylether: A Degradable Polymer from Biorenewable Feedstocks. Angewandte Chemie, 2016, 128, 12051-12055.	2.0	7
430	Investigation of Micromechanical Behavior and Voiding of Polyethylene Terephthalate/Polyethylene- <i>stat</i> -methyl Acrylate Blends during Tensile Deformation. Industrial & Engineering Chemistry Research, 2019, 58, 6402-6412.	3.7	7
431	Role of Polymer Excipients in the Kinetic Stabilization of Drug-Rich Nanoparticles. ACS Applied Bio Materials, 2020, 3, 7243-7254.	4.6	7
432	Nanostructural Rearrangement of Lamellar Block Polymers Cured in the Vicinity of the Order〓Disorder Transition. Macromolecules, 2020, 53, 7691-7704.	4.8	7

#	Article	IF	CITATIONS
433	High molar mass poly(ricinoleic acid) <i>via</i> entropy-driven ring-opening metathesis polymerization. Polymer Chemistry, 2021, 12, 2253-2257.	3.9	7
434	Synthesis and utility of ethylene (meth)acrylate copolymers prepared by a tandem ringâ€opening polymerization hydrogenation strategy. Journal of Polymer Science Part A, 2017, 55, 3117-3126.	2.3	6
435	Critical Excipient Properties for the Dissolution Enhancement of Phenytoin. ACS Omega, 2019, 4, 19116-19127.	3.5	6
436	Order and Disorder in ABCA′ Tetrablock Terpolymers. Journal of Physical Chemistry B, 2020, 124, 10266-10275.	2.6	6
437	Atom-Economical, One-Pot, Self-Initiated Photopolymerization of Lactose Methacrylate for Biobased Hydrogels. ACS Sustainable Chemistry and Engineering, 2020, 8, 4606-4613.	6.7	6
438	Polylactide stereocomplex crystallites as nucleating agents for isotactic polylactide. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 300-313.	2.1	6
439	Lipid Membrane Binding and Cell Protection Efficacy of Poly(1,2-butylene oxide)-b-poly(ethylene oxide) Copolymers. Biomacromolecules, 2022, , .	5.4	6
440	Synthesis and characterization of hypercrosslinked, surface-confined, ultra-stable silica-based stationary phases. Journal of Chromatography A, 2004, 1060, 61-76.	3.7	6
441	Toughening Polylactide with Graft-Block Polymers. ACS Applied Polymer Materials, 2022, 4, 3408-3416.	4.4	6
442	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Materials & Interfaces, 2020, 12, 20147-20148.	8.0	5
443	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	9.1	5
444	Functionalized Polymersomes from a Polyisoprene-Activated Polyacrylamide Precursor. Langmuir, 2021, 37, 490-498.	3.5	5
445	Disordered Triblock Polymers for Nanoporous Materials with Tunable Surface Properties for Ultrafiltration Applications. ACS Applied Polymer Materials, 2022, 4, 8009-8020.	4.4	5
446	Evaluating Large-Scale STEM Outreach Efficacy with a Consistent Theme: Thermodynamics for Elementary School Students. ACS Omega, 2019, 4, 2661-2668.	3.5	4
447	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	4.6	4
448	Porous Polyethylene-Supported Zeolite Carriers for Improved Wastewater Deammonification. ACS ES&T Engineering, 2021, 1, 1104-1112.	7.6	4
449	Ductile gas barrier poly(ester–amide)s derived from glycolide. Polymer Chemistry, 2022, 13, 3882-3891. 	3.9	4
450	Facile loading of metal ions in the nanopores of polymer thin films andin situgeneration of metal sulfide nanoparticle arrays. Nanotechnology, 2008, 19, 365304.	2.6	3

#	Article	IF	CITATIONS
451	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Chemical Society, 2020, 142, 8059-8060.	13.7	3
452	Site-Specific Mineralization of a Polyester Hydrolysis Product in Natural Soil. ACS Sustainable Chemistry and Engineering, 2022, 10, 1373-1378.	6.7	3
453	Protective Masks Utilizing Non-Endangered Components. Journal of Medical Devices, Transactions of the ASME, 2022, 16, 015001.	0.7	3
454	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Nano, 2020, 14, 5151-5152.	14.6	2
455	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	14.6	2
456	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	47.7	2
457	Sustainable Polymers Square Table. Macromolecules, 2021, 54, 8257-8258.	4.8	2
458	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Energy Letters, 2020, 5, 1610-1611.	17.4	1
459	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science and Technology Letters, 2020, 7, 280-281.	8.7	1
460	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Education, 2020, 97, 1217-1218.	2.3	1
461	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	4.6	1
462	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	11.3	1
463	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	2.8	1
464	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	3.0	1
465	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	11.2	1
466	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	13.7	1
467	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	2.6	1
468	Update to Our Reader, Reviewer, and Author Communities—April 2020. Crystal Growth and Design, 2020, 20, 2817-2818.	3.0	1

#	Article	IF	CITATIONS
469	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	5.2	1
470	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	3.5	1
471	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	4.6	1
472	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	3.5	1
473	Post-Polymerization Functionalization of Polyolefins. ChemInform, 2005, 36, no.	0.0	Ο
474	Editorial for a Virtual Issue "50th Anniversary Perspectives from Macromolecules― Macromolecules, 2018, 51, 4423-4423.	4.8	0
475	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	4.9	0
476	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	2.5	0
477	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.	5.2	Ο
478	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Central Science, 2020, 6, 589-590.	11.3	0
479	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Biology, 2020, 15, 1282-1283.	3.4	Ο
480	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Neuroscience, 2020, 11, 1196-1197.	3.5	0
481	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Earth and Space Chemistry, 2020, 4, 672-673.	2.7	Ο
482	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Macro Letters, 2020, 9, 666-667.	4.8	0
483	Update to Our Reader, Reviewer, and Author Communities—April 2020. , 2020, 2, 563-564.		Ο
484	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Photonics, 2020, 7, 1080-1081.	6.6	0
485	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Pharmacology and Translational Science, 2020, 3, 455-456.	4.9	0
486	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.	6.7	0

#	Article	IF	CITATIONS
487	Update to Our Reader, Reviewer, and Author Communities—April 2020. Analytical Chemistry, 2020, 92, 6187-6188.	6.5	Ο
488	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemistry of Materials, 2020, 32, 3678-3679.	6.7	0
489	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Proteome Research, 2020, 19, 1883-1884.	3.7	Ο
490	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	3.5	0
491	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Polymer Materials, 2020, 2, 1739-1740.	4.4	Ο
492	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Combinatorial Science, 2020, 22, 223-224.	3.8	0
493	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Medicinal Chemistry Letters, 2020, 11, 1060-1061.	2.8	Ο
494	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		0
495	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	5.1	Ο
496	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	3.7	0
497	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	3.0	Ο
498	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	2.8	0
499	Confronting Racism in Chemistry Journals. Energy & amp; Fuels, 2020, 34, 7771-7773.	5.1	0
500	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	7.8	0
501	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biochemistry, 2020, 59, 1641-1642.	2.5	0
502	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical & Engineering Data, 2020, 65, 2253-2254.	1.9	0
503	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Process Research and Development, 2020, 24, 872-873.	2.7	0
504	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.	3.5	0

#	Article	IF	CITATIONS
505	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Electronic Materials, 2020, 2, 1184-1185.	4.3	Ο
506	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry C, 2020, 124, 9629-9630.	3.1	0
507	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry Letters, 2020, 11, 3571-3572.	4.6	0
508	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9, 979-980.	3.8	0
509	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Energy Materials, 2020, 3, 4091-4092.	5.1	0
510	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	5.3	0
511	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	3.2	Ο
512	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	6.5	0
513	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	2.3	Ο
514	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	2.7	0
515	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	6.7	0
516	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	6.7	0
517	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	3.3	0
518	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	4.0	0
519	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	5.0	0
520	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	4.4	0
521	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	3.4	0
522	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882.	5.3	0

#	Article	IF	CITATIONS
523	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	5.4	Ο
524	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	6.4	0
525	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	4.8	Ο
526	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	2.3	0
527	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	15.6	0
528	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	2.5	0
529	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	17.4	0
530	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	5.4	0
531	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	3.7	0
532	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Agricultural and Food Chemistry, 2020, 68, 5019-5020.	5.2	0
533	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry B, 2020, 124, 3603-3604.	2.6	0
534	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	3.6	0
535	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Nano Materials, 2020, 3, 3960-3961.	5.0	0
536	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Natural Products, 2020, 83, 1357-1358.	3.0	0
537	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	3.8	0
538	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.9	0
539	Update to Our Reader, Reviewer, and Author Communities—April 2020. Bioconjugate Chemistry, 2020, 31, 1211-1212.	3.6	0
540	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.	2.1	0

#	Article	IF	CITATIONS
541	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Research in Toxicology, 2020, 33, 1509-1510.	3.3	0
542	Update to Our Reader, Reviewer, and Author Communities—April 2020. Energy & Fuels, 2020, 34, 5107-5108.	5.1	0
543	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Bio Materials, 2020, 3, 2873-2874.	4.6	0
544	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.	3.2	0
545	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Society for Mass Spectrometry, 2020, 31, 1006-1007.	2.8	0
546	Update to Our Reader, Reviewer, and Author Communities—April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.	15.6	0
547	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biomacromolecules, 2020, 21, 1966-1967.	5.4	0
548	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Reviews, 2020, 120, 3939-3940.	47.7	0
549	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science & Technology, 2020, 54, 5307-5308.	10.0	0
550	Update to Our Reader, Reviewer, and Author Communities—April 2020. Langmuir, 2020, 36, 4565-4566.	3.5	0
551	Update to Our Reader, Reviewer, and Author Communities—April 2020. Molecular Pharmaceutics, 2020, 17, 1445-1446.	4.6	0
552	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Infectious Diseases, 2020, 6, 891-892.	3.8	0
553	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.	6.4	0
554	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry A, 2020, 124, 3501-3502.	2.5	0
555	Update to Our Reader, Reviewer, and Author Communities—April 2020. Nano Letters, 2020, 20, 2935-2936.	9.1	0
556	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.	7.8	0
557	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Information and Modeling, 2020, 60, 2651-2652.	5.4	0
558	Update to Our Reader, Reviewer, and Author Communities—April 2020. Industrial & Engineering Chemistry Research, 2020, 59, 8509-8510.	3.7	0

#	Article	IF	CITATIONS
559	Update to Our Reader, Reviewer, and Author Communities—April 2020. Inorganic Chemistry, 2020, 59, 5796-5797.	4.0	0
560	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organometallics, 2020, 39, 1665-1666.	2.3	0
561	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Letters, 2020, 22, 3307-3308.	4.6	0
562	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	7.6	0
563	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	4.6	0
564	Exciton relaxation and energy transfer dynamics in size selected polythiophenes. , 2009, , .		0
565	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	4.3	0
566	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	5.2	0
567	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	2.7	0
568	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	8.7	0
569	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	0
570	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	3.8	0
571	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	4.6	0
572	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	3.1	0
573	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	4.8	0
574	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	6.6	0
575	Confronting Racism in Chemistry Journals. Environmental Science & Technology, 2020, 54, 7735-7737.	10.0	0
576	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	2.1	0

#	Article	IF	CITATIONS
577	From Biosensors to Drug Delivery and Tissue Engineering: Open Biomaterials Research. ACS Omega, 2022, 7, 6437-6438.	3.5	0