Youfa Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1558867/publications.pdf Version: 2024-02-01

YOUEA CHENIC

#	Article	IF	CITATIONS
1	Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues inArabidopsis. Genes and Development, 2006, 20, 1790-1799.	5.9	997
2	Rapid Synthesis of Auxin via a New Tryptophan-Dependent Pathway Is Required for Shade Avoidance in Plants. Cell, 2008, 133, 164-176.	28.9	928
3	Auxin Synthesized by the YUCCA Flavin Monooxygenases Is Essential for Embryogenesis and Leaf Formation in <i>Arabidopsis</i> . Plant Cell, 2007, 19, 2430-2439.	6.6	601
4	Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF <i>ARABIDOPSIS</i> and YUCCAs in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18518-18523.	7.1	580
5	REVEILLE1, a Myb-like transcription factor, integrates the circadian clock and auxin pathways. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16883-16888.	7.1	226
6	Pattern of Auxin and Cytokinin Responses for Shoot Meristem Induction Results from the Regulation of Cytokinin Biosynthesis by AUXIN RESPONSE FACTOR3 Â Â. Plant Physiology, 2012, 161, 240-251.	4.8	218
7	Auxin Overproduction in Shoots Cannot Rescue Auxin Deficiencies in Arabidopsis Roots. Plant and Cell Physiology, 2014, 55, 1072-1079.	3.1	202
8	The jasmonic acid signaling pathway is linked to auxin homeostasis through the modulation of <i><scp>YUCCA</scp>8</i> and <i><scp>YUCCA</scp>9</i> gene expression. Plant Journal, 2013, 74, 626-637.	5.7	178
9	<i>NPY</i> genes and AGC kinases define two key steps in auxin-mediated organogenesis in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 21017-21022.	7.1	139
10	NPY1, a BTB-NPH3-like protein, plays a critical role in auxin-regulated organogenesis in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18825-18829.	7.1	125
11	An Allelic Mutant Series of <i>ATM3</i> Reveals Its Key Role in the Biogenesis of Cytosolic Iron-Sulfur Proteins in Arabidopsis Â. Plant Physiology, 2009, 151, 590-602.	4.8	120
12	A Role for Auxin in Flower Development. Journal of Integrative Plant Biology, 2007, 49, 99-104.	8.5	112
13	AtCAND1, A HEAT-Repeat Protein That Participates in Auxin Signaling in Arabidopsis. Plant Physiology, 2004, 135, 1020-1026.	4.8	90
14	Genetic and chemical analyses of the action mechanisms of sirtinol in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3129-3134.	7.1	81
15	Possible Interactions between the Biosynthetic Pathways of Indole Clucosinolate and Auxin. Frontiers in Plant Science, 2017, 8, 2131.	3.6	81
16	NPY Genes Play an Essential Role in Root Gravitropic Responses in Arabidopsis. Molecular Plant, 2011, 4, 171-179.	8.3	41
17	NCP1/AtMOB1A Plays Key Roles in Auxin-Mediated Arabidopsis Development. PLoS Genetics, 2016, 12, e1005923.	3.5	31
18	Effect of combined arsenic and lead exposure on their uptake and translocation in Indian mustard. Environmental Pollution, 2021, 274, 116549.	7.5	17

YOUFA CHENG

#	Article	IF	CITATIONS
19	Modulation of Auxin Signaling and Development by Polyadenylation Machinery. Plant Physiology, 2019, 179, 686-699.	4.8	15
20	NCP2/RHD4/SAC7, SAC6 and SAC8 phosphoinositide phosphatases are required for PtdIns4P and PtdIns(4,5)P2 homeostasis and Arabidopsis development. New Phytologist, 2021, 231, 713-725.	7.3	14
21	<i>AtMOB1</i> Genes Regulate Jasmonate Accumulation and Plant Development. Plant Physiology, 2020, 182, 1481-1493.	4.8	13
22	Arabidopsis AGC protein kinases IREH1 and IRE3 control root skewing. Journal of Genetics and Genomics, 2019, 46, 259-267.	3.9	9
23	The ESCRTâ€l components VPS28A and VPS28B are essential for auxinâ€mediated plant development. Plant Journal, 2020, 104, 1617-1634.	5.7	9
24	Tip growth defective1 interacts with cellulose synthase A3 to regulate cellulose biosynthesis in Arabidopsis. Plant Molecular Biology, 2022, 110, 1-12.	3.9	2