List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1558635/publications.pdf Version: 2024-02-01

ALEY WIDMED

#	Article	IF	CITATIONS
1	Genomics and the origin of species. Nature Reviews Genetics, 2014, 15, 176-192.	16.3	850
2	Orchid diversity: an evolutionary consequence of deception?. Trends in Ecology and Evolution, 2005, 20, 487-494.	8.7	437
3	Evolution of reproductive isolation in plants. Heredity, 2009, 102, 31-38.	2.6	245
4	The genetic architecture necessary for transgressive segregation is common in both natural and domesticated populations. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 1141-1147.	4.0	240
5	Estimating genomic diversity and population differentiation – an empirical comparison of microsatellite and SNP variation in Arabidopsis halleri. BMC Genomics, 2017, 18, 69.	2.8	216
6	Silene as a model system in ecology and evolution. Heredity, 2009, 103, 5-14.	2.6	203
7	Sequencing of the genus Arabidopsis identifies a complex history of nonbifurcating speciation and abundant trans-specific polymorphism. Nature Genetics, 2016, 48, 1077-1082.	21.4	198
8	Glacial refugia: sanctuaries for allelic richness, but not for gene diversity. Trends in Ecology and Evolution, 2001, 16, 267-269.	8.7	197
9	PATTERNS OF REPRODUCTIVE ISOLATION IN MEDITERRANEAN DECEPTIVE ORCHIDS. Evolution; International Journal of Organic Evolution, 2007, 61, 2623-2642.	2.3	186
10	Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mobile DNA, 2011, 2, 4.	3.6	186
11	Directional selection is the primary cause of phenotypic diversification. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12242-12245.	7.1	183
12	Rapid De Novo Evolution of X Chromosome Dosage Compensation in Silene latifolia, a Plant with Young Sex Chromosomes. PLoS Biology, 2012, 10, e1001308.	5.6	146
13	Trait differentiation and adaptation of plants along elevation gradients. Journal of Evolutionary Biology, 2018, 31, 784-800.	1.7	137
14	Floral mimicry: a fascinating yet poorly understood phenomenon. Trends in Plant Science, 1999, 4, 325-330.	8.8	136
15	Rescue of Fructose-Induced Metabolic Syndrome by Antibiotics or Faecal Transplantation in a Rat Model of Obesity. PLoS ONE, 2015, 10, e0134893.	2.5	135
16	The genic view of plant speciation: recent progress and emerging questions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 3023-3036.	4.0	126
17	Evidence for Degeneration of the Y Chromosome in the Dioecious Plant Silene latifolia. Current Biology, 2008, 18, 545-549.	3.9	123
18	Phylogeny and Classification of Poison Frogs (Amphibia: Dendrobatidae), Based on Mitochondrial 16S and 12S Ribosomal RNA Gene Sequences. Molecular Phylogenetics and Evolution, 2000, 15, 34-40.	2.7	122

#	Article	IF	CITATIONS
19	Floral odour and reproductive isolation in two species of <i>Silene</i> . Journal of Evolutionary Biology, 2008, 21, 111-121.	1.7	119
20	Cophylogeny of the anther smut fungi and their caryophyllaceous hosts: Prevalence of host shifts and importance of delimiting parasite species for inferring cospeciation. BMC Evolutionary Biology, 2008, 8, 100.	3.2	116
21	Population genomic footprints of selection and associations with climate in natural populations of <i>Arabidopsis halleri</i> from the Alps. Molecular Ecology, 2013, 22, 5594-5607.	3.9	113
22	A population genomic analysis of species boundaries: neutral processes, adaptive divergence and introgression between two hybridizing plant species. Molecular Ecology, 2008, 17, 1552-1563.	3.9	108
23	Genome-wide Comparative Analysis of the GRAS Gene Family in Populus, Arabidopsis and Rice. Plant Molecular Biology Reporter, 2014, 32, 1129-1145.	1.8	107
24	Genetic structure of hybrid zones between Silene latifolia and Silene dioica (Caryophyllaceae): evidence for introgressive hybridization. Molecular Ecology, 2007, 16, 2504-2516.	3.9	100
25	Evolution of Postzygotic Reproductive Isolation in a Guild of Deceptive Orchids. American Naturalist, 2008, 171, 315-326.	2.1	100
26	A road map for molecular ecology. Molecular Ecology, 2013, 22, 2605-2626.	3.9	100
27	Survey of repetitive sequences in Silene latifolia with respect to their distribution on sex chromosomes. Chromosome Research, 2008, 16, 961-976.	2.2	99
28	Environmental Heat and Salt Stress Induce Transgenerational Phenotypic Changes in Arabidopsis thaliana. PLoS ONE, 2013, 8, e60364.	2.5	98
29	PATTERNS OF HOST-PLANT CHOICE IN BEES OF THE GENUS <i>CHELOSTOMA</i> : THE CONSTRAINT HYPOTHESIS OF HOST-RANGE EVOLUTION IN BEES. Evolution; International Journal of Organic Evolution, 2008, 62, 2487-2507.	2.3	92
30	Molecular Phylogenetics of the Sexually Deceptive Orchid Genus Ophrys (Orchidaceae) Based on Nuclear and Chloroplast DNA Sequences. Molecular Phylogenetics and Evolution, 2001, 20, 78-88.	2.7	90
31	Evidence for pollinator sharing in Mediterranean nectar-mimic orchids: absence of premating barriers?. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 1271-1278.	2.6	88
32	Permanent Genetic Resources added to Molecular Ecology Resources Database 1 October 2009–30 November 2009. Molecular Ecology Resources, 2010, 10, 404-408.	4.8	84
33	GENE FLOW ACROSS SPECIES BOUNDARIES IN SYMPATRIC, SEXUALLY DECEPTIVE OPHRYS (ORCHIDACEAE) SPECIES. Evolution; International Journal of Organic Evolution, 2003, 57, 2252-2261.	2.3	81
34	Molecular evidence for allopolyploid speciation and a single origin of the narrow endemicDraba ladina(Brassicaceae). American Journal of Botany, 1999, 86, 1282-1289.	1.7	80
35	Conservation genetics: Linking science with practice. Molecular Ecology, 2019, 28, 3848-3856.	3.9	76
36	Genomic Imprinting in the Endosperm Is Systematically Perturbed in Abortive Hybrid Tomato Seeds. Molecular Biology and Evolution, 2016, 33, 2935-2946.	8.9	74

#	Article	IF	CITATIONS
37	Fineâ€scale phylogeographical analysis of Mediterranean Anacamptis palustris (Orchidaceae) populations based on chloroplast minisatellite and microsatellite variation. Molecular Ecology, 2003, 12, 2783-2792.	3.9	73
38	Hybridization and conservation of Mediterranean orchids: Should we protect the orchid hybrids or the orchid hybrid zones?. Biological Conservation, 2006, 129, 14-23.	4.1	73
39	Genetic and Floral Divergence among Sympatric Populations of Gymnadenia conopsea s.l. (Orchideaceae) with Different Flowering Phenology. International Journal of Plant Sciences, 1999, 160, 897-905.	1.3	72
40	The strength of reproductive isolation in two hybridizing food-deceptive orchid species. Molecular Ecology, 2007, 16, 2855-2866.	3.9	72
41	Evidence for reproductive isolate selection in Mediterranean orchids: karyotype differences compensate for the lack of pollinator specificity. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, S259-62.	2.6	71
42	Phylogeny and biogeography of bees of the tribe Osmiini (Hymenoptera: Megachilidae). Molecular Phylogenetics and Evolution, 2008, 49, 185-197.	2.7	70
43	Low genetic variation is associated with low mutation rate in the giant duckweed. Nature Communications, 2019, 10, 1243.	12.8	65
44	Isolation and characterization of microsatellite loci in the dice snake (Natrix tessellata). Molecular Ecology, 2000, 9, 2192-2193.	3.9	62
45	Natural enemies and sex: how seed predators and pathogens contribute to sex-differential reproductive success in a gynodioecious plant. Oecologia, 2002, 131, 94-102.	2.0	60
46	The population genetic structure of a large temperate pollinator species,Bombus pascuorum(Scopoli) (Hymenoptera: Apidae). Molecular Ecology, 1999, 8, 387-398.	3.9	59
47	How to be an attractive male: floral dimorphism and attractiveness to pollinators in a dioecious plant. BMC Evolutionary Biology, 2009, 9, 190.	3.2	58
48	Evolution of sex-biased gene expression in a dioecious plant. Nature Plants, 2016, 2, 16168.	9.3	57
49	Postpollination Changes in Floral Odor in Silene latifolia: Adaptive Mechanisms for Seed-Predator Avoidance?. Journal of Chemical Ecology, 2006, 32, 1855-1860.	1.8	56
50	Phenotypic Effects of Salt and Heat Stress over Three Generations in Arabidopsis thaliana. PLoS ONE, 2013, 8, e80819.	2.5	55
51	Polymorphism of postmating reproductive isolation within plant species. Taxon, 2010, 59, 1367-1374.	0.7	53
52	Genetic architecture of traits associated with serpentine adaptation of Silene vulgaris. Journal of Evolutionary Biology, 2006, 19, 1149-1156.	1.7	51
53	The role of chromosomal rearrangements in the evolution of Silene latifolia sex chromosomes. Molecular Genetics and Genomics, 2007, 278, 633-638.	2.1	51
54	Transgene Expression and Bt Protein Content in Transgenic Bt Maize (MON810) under Optimal and Stressful Environmental Conditions. PLoS ONE, 2015, 10, e0123011.	2.5	51

#	Article	IF	CITATIONS
55	Independent Origin of Sex Chromosomes in Two Species of the Genus Silene. Genetics, 2008, 179, 1129-1133.	2.9	50
56	The roles of genetic drift and natural selection in quantitative trait divergence along an altitudinal gradient in Arabidopsis thaliana. Heredity, 2015, 114, 220-228.	2.6	50
57	Teosinte in Europe – Searching for the Origin of a Novel Weed. Scientific Reports, 2017, 7, 1560.	3.3	47
58	Molecular analysis of orchid pollinaria and pollinaria-remains found on insects. Molecular Ecology, 2000, 9, 1911-1914.	3.9	45
59	Speciation processes in Eastern Mediterranean Orchis s.l. species: Molecular evidence and the role of pollination biology. Israel Journal of Plant Sciences, 2001, 49, 91-103.	0.5	45
60	A White Campion (Silene latifolia) floral expressed sequence tag (EST) library: annotation, EST-SSR characterization, transferability, and utility for comparative mapping. BMC Genomics, 2009, 10, 243.	2.8	45
61	Pollen competition as an asymmetric reproductive barrier between two closely related <i>Silene</i> species. Journal of Evolutionary Biology, 2009, 22, 1937-1943.	1.7	44
62	EVOLUTION OF SEX DETERMINATION SYSTEMS WITH HETEROGAMETIC MALES AND FEMALES IN <i>SILENE</i> . Evolution; International Journal of Organic Evolution, 2013, 67, 3669-3677.	2.3	44
63	DNA Barcoding of Malagasy Rosewoods: Towards a Molecular Identification of CITES-Listed Dalbergia Species. PLoS ONE, 2016, 11, e0157881.	2.5	44
64	Chloroplast DNA Inheritance in the Orchid Anacamptis palustris Using Single-Seed Polymerase Chain Reaction. Journal of Heredity, 2005, 96, 66-70.	2.4	43
65	Local adaptation (mostly) remains local: reassessing environmental associations of climate-related candidate SNPs in Arabidopsis halleri. Heredity, 2017, 118, 193-201.	2.6	43
66	Title is missing!. Conservation Genetics, 2002, 3, 235-245.	1.5	41
67	Host range evolution in a selected group of osmiine bees (Hymenoptera: Megachilidae): the Boraginaceae-Fabaceae paradox. Biological Journal of the Linnean Society, 2013, 108, 35-54.	1.6	38
68	Capacity of soil bacteria to reach the phyllosphere and convergence of floral communities despite soil microbiota variation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	38
69	Phylogeography and host race differentiation in the European mistletoe (<i>Viscum album</i> L.). Molecular Ecology, 2009, 18, 1946-1962.	3.9	37
70	Structure and evolution of Apetala3, a sex-linked gene in Silene latifolia. BMC Plant Biology, 2010, 10, 180.	3.6	37
71	Extensive intraspecific chloroplast DNA (cpDNA) variation in the alpine Draba aizoides L. (Brassicaceae): haplotype relationships and population structure. Molecular Ecology, 1999, 8, 1405-1415.	3.9	36
72	Genetic evidence for host specificity in the hemi-parasiticViscum albumL. (Viscaceae). Molecular Ecology, 2000, 9, 1069-1073.	3.9	36

#	Article	IF	CITATIONS
73	Variation in growth and defence traits among plant populations at different elevations: Implications for adaptation to climate change. Journal of Ecology, 2019, 107, 2478-2492.	4.0	36
74	Herkogamy and Its Effects on Mating Patterns in Arabidopsis thaliana. PLoS ONE, 2013, 8, e57902.	2.5	36
75	Parasites and carotenoid-based signal intensity: How general should the relationship be?. Die Naturwissenschaften, 1996, 83, 113-121.	1.6	35
76	Variation at a chloroplast minisatellite locus reveals the signature of habitat fragmentation and genetic bottlenecks in the rare orchid <i>Anacamptis palustris</i> (Orchidaceae). American Journal of Botany, 2003, 90, 1681-1687.	1.7	34
77	Genomic imprinting mediates dosage compensation in a young plant XY system. Nature Plants, 2018, 4, 677-680.	9.3	34
78	Population genomic evidence for plant glacial survival in Scandinavia. Molecular Ecology, 2019, 28, 818-832.	3.9	34
79	High intrachromosomal similarity of retrotransposon long terminal repeats: Evidence for homogenization by gene conversion on plant sex chromosomes?. Gene, 2007, 390, 92-97.	2.2	33
80	The evolutionary basis of reproductive isolation in Mediterranean orchids. Taxon, 2005, 54, 977-985.	0.7	32
81	Ecologically relevant genetic variation from a non-Arabidopsis perspective. Current Opinion in Plant Biology, 2008, 11, 156-162.	7.1	32
82	Transmembrane transport and stress response genes play an important role in adaptation of Arabidopsis halleri to metalliferous soils. Scientific Reports, 2018, 8, 16085.	3.3	32
83	Ecological divergence plays an important role in strong but complex reproductive isolation in campions (<i>Silene</i>)*. Evolution; International Journal of Organic Evolution, 2019, 73, 245-261.	2.3	32
84	Dioecy Is Associated with High Genetic Diversity and Adaptation Rates in the Plant Genus <i>Silene</i> . Molecular Biology and Evolution, 2021, 38, 805-818.	8.9	31
85	Molecular Evolution of a Plastid Tandem Repeat Locus in an Orchid Lineage. Journal of Molecular Evolution, 2003, 57, S41-S49.	1.8	30
86	QTL Analysis of Intraspecific Differences between Two Silene vulgaris Ecotypes. Annals of Botany, 2006, 98, 411-419.	2.9	30
87	Genetic variation in time and space: the use of herbarium specimens to reconstruct patterns of genetic variation in the endangered orchid Anacamptis palustris. Conservation Genetics, 2007, 8, 629-639.	1.5	30
88	Gene Regulatory Variation Mediates Flowering Responses to Vernalization along an Altitudinal Gradient in Arabidopsis. Plant Physiology, 2014, 166, 1928-1942.	4.8	30
89	Genetic analysis of post-mating reproductive barriers in hybridizing European Populus species. Heredity, 2011, 107, 478-486.	2.6	29
90	A genetic linkage map of Silene vulgaris based on AFLP markers. Genome, 2006, 49, 320-327.	2.0	28

#	Article	IF	CITATIONS
91	Adaptation to local climate in multi-trait space: evidence from silver fir (Abies alba Mill.) populations across a heterogeneous environment. Heredity, 2020, 124, 77-92.	2.6	28
92	Phylogeography of native ploidy levels and invasive tetraploids of <i>Solidago gigantea</i> . Molecular Ecology, 2008, 17, 5245-5256.	3.9	25
93	Comparative high-throughput transcriptome sequencing and development of SiESTa, the Silene EST annotation database. BMC Genomics, 2011, 12, 376.	2.8	25
94	Differential adaptation drives ecological speciation in campions (Silene): evidence from a multi-site transplant experiment. New Phytologist, 2017, 213, 1487-1499.	7.3	25
95	Unravelling genetics at the top: mountain islands or isolated belts?. Annals of Botany, 2012, 110, 1221-1232.	2.9	24
96	Fungal Infection Induces Sex-Specific Transcriptional Changes and Alters Sexual Dimorphism in the Dioecious Plant Silene latifolia. PLoS Genetics, 2015, 11, e1005536.	3.5	24
97	A Single Nucleotide Deletion in <i>Gibberellin20-oxidase1</i> Causes Alpine Dwarfism in Arabidopsis. Plant Physiology, 2015, 168, 930-937.	4.8	22
98	Identifying new sex-linked genes through BAC sequencing in the dioecious plant Silene latifolia. BMC Genomics, 2015, 16, 546.	2.8	22
99	Characterization of a minisatellite repeat locus in the chloroplast genome of Orchis palustris (Orchidaceae). Current Genetics, 2001, 39, 394-398.	1.7	21
100	Comparative analysis of a plant pseudoautosomal region (PAR) in Silene latifolia with the corresponding S. vulgaris autosome. BMC Genomics, 2012, 13, 226.	2.8	20
101	Identification of white campion (Silene latifolia) guaiacol O-methyltransferase involved in the biosynthesis of veratrole, a key volatile for pollinator attraction. BMC Plant Biology, 2012, 12, 158.	3.6	20
102	The genomic basis of adaptation to calcareous and siliceous soils in <i>Arabidopsis lyrata</i> . Molecular Ecology, 2018, 27, 5088-5103.	3.9	20
103	Reproductive Versus Floral Isolation Among Morphologically Similar Serapias L. Species (Orchidaceae). Journal of Heredity, 2005, 96, 15-23.	2.4	19
104	Is floral divergence sufficient to maintain species boundaries upon secondary contact in Mediterranean food-deceptive orchids?. Heredity, 2012, 108, 219-228.	2.6	19
105	Genomic signatures of convergent adaptation to Alpine environments in three Brassicaceae species. Molecular Ecology, 2020, 29, 4350-4365.	3.9	17
106	A unique A. palustris lineage across the Otranto strait: botanical evidence for a past land-bridge?. Plant Systematics and Evolution, 2006, 262, 103-111.	0.9	16
107	Patterns of molecular evolution in dioecious and nonâ€dioecious <i>Silene</i> . Journal of Evolutionary Biology, 2013, 26, 335-346	1.7	16
108	Developing a monitoring program of genetic diversity: what do stakeholders say?. Conservation Genetics, 2021, 22, 673-684.	1.5	16

#	Article	IF	CITATIONS
109	Identification of Internal Reference Genes for Gene Expression Normalization between the Two Sexes in Dioecious White Campion. PLoS ONE, 2014, 9, e92893.	2.5	15
110	Chromosome numbers of plant species from the Canary Islands. Botanica Helvetica, 2006, 116, 9-30.	1.1	14
111	Sex is determined by XY chromosomes across the radiation of dioecious Nepenthes pitcher plants. Evolution Letters, 2019, 3, 586-597.	3.3	13
112	Chromosome numbers and karyotypes within the Ranunculus alpestris-group (Ranunculaceae). Organisms Diversity and Evolution, 2009, 9, 232-243.	1.6	12
113	Has adaptation occurred in males and females since separate sexes evolved in the plant <i>Silene latifolia</i> ?. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172824.	2.6	11
114	Divergence in Glucosinolate Profiles between High- and Low-Elevation Populations of Arabidopsis halleri Correspond to Variation in Field Herbivory and Herbivore Behavioral Preferences. International Journal of Molecular Sciences, 2019, 20, 174.	4.1	11
115	Karyological data of some angiosperms from Romania. Willdenowia, 2009, 39, 353-363.	0.8	11
116	Eggs first. Trends in Ecology and Evolution, 1998, 13, 158.	8.7	10
117	Efficient molecular sexing in dioecious <i>Silene latifolia</i> and <i>S. dioica</i> and paternity analysis in F ₁ hybrids. Molecular Ecology Resources, 2008, 8, 1274-1276.	4.8	10
118	Response to Otero and Flanagan: Orchid diversity – beyond deception. Trends in Ecology and Evolution, 2006, 21, 65-66.	8.7	8
119	Identifying loci under selection via explicit demographic models. Molecular Ecology Resources, 2021, 21, 2719-2737.	4.8	8
120	Introgression is widespread in the radiation of carnivorous Nepenthes pitcher plants. Molecular Phylogenetics and Evolution, 2021, 163, 107214.	2.7	8
121	Parasites and Carotenoid-based Signal Intensity: How General Should the Relationship Be?. Die Naturwissenschaften, 1996, 83, 113-121.	1.6	7
122	GENE FLOW ACROSS SPECIES BOUNDARIES IN SYMPATRIC, SEXUALLY DECEPTIVE OPHRYS (ORCHIDACEAE) SPECIES. Evolution; International Journal of Organic Evolution, 2003, 57, 2252.	2.3	6
123	Hypervariable plastid locus variation and intron evolution in the Anacamptis palustris lineage. Genome, 2004, 47, 999-1003.	2.0	6
124	ConservePlants: An integrated approach to conservation of threatened plants for the 21st Century. Research Ideas and Outcomes, 0, 7, .	1.0	6
125	CONTRASTING THOUGHTS ABOUT DECEPTIVE ORCHIDS: A RESPONSE TO SOBEL AND RANDLE. Evolution; International Journal of Organic Evolution, 2009, 63, 2205-2209.	2.3	5
126	Searching for gene flow from cultivated to wild strawberries in Central Europe. Annals of Botany, 2011, 107, 699-707.	2.9	5

#	Article	IF	CITATIONS
127	Chromosome numbers and karyotypes within the genus <i>Achillea</i> (<i>Asteraceae</i> : <i>Anthemideae</i>). Willdenowia, 2016, 46, 121-135.	0.8	5
128	Identification of sex-linked markers in the sexually cryptic coco de mer: are males and females produced in equal proportions?. AoB PLANTS, 2020, 12, plz079.	2.3	5
129	Efficient Detection of Novel Nuclear Markers for Brassicaceae by Transcriptome Sequencing. PLoS ONE, 2015, 10, e0128181.	2.5	5
130	A target capture approach for phylogenomic analyses at multiple evolutionary timescales in rosewoods (<i>Dalbergia</i> spp.) and the legume family (Fabaceae). Molecular Ecology Resources, 2022, 22, 3087-3105.	4.8	5
131	Cytological data of some plant species from Israel. Israel Journal of Plant Sciences, 2004, 52, 171-176.	0.5	4
132	Inheritance and reproductive consequences of floral anthocyanin deficiency in Silene dioica (Caryophyllaceae). American Journal of Botany, 2014, 101, 1388-1392.	1.7	4
133	Insights into the genetic architecture of sexual dimorphism from an interspecific cross between two divergingSilene(Caryophyllaceae) species. Molecular Ecology, 2019, 28, 5052-5067.	3.9	4
134	Characterization of microsatellites in the mountain plant Armeria caespitosa (Plumbaginaceae) and transferability to congeners. American Journal of Botany, 2012, 99, e292-e294.	1.7	2
135	Taxonomic Studies on Malagasy <i>Dalbergia</i> (Fabaceae). III. Two New Species from Southeastern Madagascar and an Emended Description of the Rosewood Species <i>Dalbergia maritima</i> . Systematic Botany, 2022, 47, 397-416.	0.5	2
136	A new force in the evolution of floral form. Trends in Ecology and Evolution, 2002, 17, 62.	8.7	1
137	Neither connectivity nor genetic diversity matter in the conservation of a rare fern and a moss on insular erratic boulders. Conservation Genetics, 2022, 23, 193-209.	1.5	1