Santiago F Elena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1556715/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modelling temperature-dependent dynamics of single and mixed infections in a plant virus. Applied Mathematical Modelling, 2022, 102, 694-705.	4.2	4
2	Innate immune pathways act synergistically to constrain RNA virus evolution in Drosophila melanogaster. Nature Ecology and Evolution, 2022, 6, 565-578.	7.8	10
3	DVGfinder: A Metasearch Tool for Identifying Defective Viral Genomes in RNA-Seq Data. Viruses, 2022, 14, 1114.	3.3	8
4	The long and winding road to understanding organismal construction. Physics of Life Reviews, 2022, 42, 19-24.	2.8	0
5	Defects in plant immunity modulate the rates and patterns of RNA virus evolution. Virus Evolution, 2022, 8, .	4.9	14
6	Transmission of Diverse Variants of Strawberry Viruses Is Governed by a Vector Species. Viruses, 2022, 14, 1362.	3.3	3
7	Plant virus evolution under strong drought conditions results in a transition from parasitism to mutualism. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118,	7.1	58
8	Genetic variability and evolutionary dynamics of tomato black ring virus population. Plant Pathology, 2021, 70, 1521-1531.	2.4	3
9	A genome-wide association study identifies <i>Arabidopsis thaliana</i> genes that contribute to differences in the outcome of infection with two <i>Turnip mosaic potyvirus</i> strains that differ in their evolutionary history and degree of host specialization. Virus Evolution, 2021, 7, veab063.	4.9	15
10	Why are viral genomes so fragile? The bottleneck hypothesis. PLoS Computational Biology, 2021, 17, e1009128.	3.2	8
11	Phase transitions in virology. Reports on Progress in Physics, 2021, 84, 115901.	20.1	4
12	From genotypes to organisms: State-of-the-art and perspectives of a cornerstone in evolutionary dynamics. Physics of Life Reviews, 2021, 38, 55-106.	2.8	49
13	Increasing temperature alters the within-host competition of viral strains and influences virus genetic variability. Virus Evolution, 2021, 7, veab017.	4.9	15
14	Revisiting Orthotospovirus phylogeny using full-genome data and testing the contribution of selection, recombination and segment reassortment in the origin of members of new species. Archives of Virology, 2021, 166, 491-499.	2.1	6
15	The Interplay between the Host Microbiome and Pathogenic Viral Infections. MBio, 2021, 12, e0249621.	4.1	11
16	Heterogeneity in the Response of Different Subtypes of Drosophila melanogaster Midgut Cells to Viral Infections. Viruses, 2021, 13, 2284.	3.3	1
17	An assessment of the transmission rate of Tomato black ring virus through tomato seeds. Plant Protection Science, 2020, 56, 9-12.	1.4	7
18	Identifying Early Warning Signals for the Sudden Transition from Mild to Severe Tobacco Etch Disease by Dynamical Network Biomarkers. Viruses, 2020, 12, 16.	3.3	9

#	Article	IF	CITATIONS
19	RNAs That Behave Like Prions. MSphere, 2020, 5, .	2.9	1
20	Effect of defective interfering RNAs on the vertical transmission of Tomato black ring virus. Plant Protection Science, 2020, 56, 261-267.	1.4	5
21	Natural variation in Arabidopsis thaliana rosette area unveils new genes involved in plant development. Scientific Reports, 2020, 10, 17600.	3.3	10
22	Molecular evolution of tomato black ring virus and de novo generation of a new type of defective RNAs during longâ€ŧerm passaging in different hosts. Plant Pathology, 2020, 69, 1767-1776.	2.4	6
23	Host–virus evolutionary dynamics with specialist and generalist infection strategies: Bifurcations, bistability, and chaos. Chaos, 2020, 30, 053128.	2.5	3
24	Modeling multipartite virus evolution: the genome formula facilitates rapid adaptation to heterogeneous environmentsâ€. Virus Evolution, 2020, 6, veaa022.	4.9	22
25	Adaptation of turnip mosaic potyvirus to a specific niche reduces its genetic and environmental robustness. Virus Evolution, 2020, 6, veaa041.	4.9	14
26	Transmission modes affect the population structure of potato virus Y in potato. PLoS Pathogens, 2020, 16, e1008608.	4.7	31
27	From foes to friends: Viral infections expand the limits of host phenotypic plasticity. Advances in Virus Research, 2020, 106, 85-121.	2.1	24
28	Viral Fitness Determines the Magnitude of Transcriptomic and Epigenomic Reprograming of Defense Responses in Plants. Molecular Biology and Evolution, 2020, 37, 1866-1881.	8.9	27
29	Evolution and ecology of plant viruses. Nature Reviews Microbiology, 2019, 17, 632-644.	28.6	166
30	Parsimonious Scenario for the Emergence of Viroid-Like Replicons De Novo. Viruses, 2019, 11, 425.	3.3	12
31	Mutagenesis Scanning Uncovers Evolutionary Constraints on Tobacco Etch Potyvirus Membrane-Associated 6K2 Protein. Genome Biology and Evolution, 2019, 11, 1207-1222.	2.5	8
32	Theoretical conditions for the coexistence of viral strains with differences in phenotypic traits: a bifurcation analysis. Royal Society Open Science, 2019, 6, 181179.	2.4	8
33	STABILITY OF A STOCHASTICALLY PERTURBED MODEL OF INTRACELLULAR SINGLE-STRANDED RNA VIRUS REPLICATION. Journal of Biological Systems, 2019, 27, 69-82.	1.4	1
34	Complete nucleotide sequence of a novel mycovirus from Trichoderma harzianum in China. Archives of Virology, 2019, 164, 1213-1216.	2.1	17
35	Role of host genetic diversity for susceptibility-to-infection in the evolution of virulence of a plant virusâ€. Virus Evolution, 2019, 5, vez024.	4.9	39
36	Transmission rate of two Polish Tomato torrado virus isolates through tomato seeds. Journal of General Plant Pathology, 2019, 85, 109-115.	1.0	6

#	Article	IF	CITATIONS
37	Viral replication modes in single-peak fitness landscapes: A dynamical systems analysis. Journal of Theoretical Biology, 2019, 460, 170-183.	1.7	7
38	Exploring the role of cellular homologous of the 30K-superfamily of plant virus movement proteins. Virus Research, 2019, 262, 54-61.	2.2	5
39	Evolving by deleting: patterns of molecular evolution of Apple stem pitting virus isolates from Poland. Journal of General Virology, 2019, 100, 1442-1456.	2.9	9
40	Defective RNA particles derived from Tomato black ring virus genome interfere with the replication of parental virus. Virus Research, 2018, 250, 87-94.	2.2	20
41	Viral Fitness Correlates with the Magnitude and Direction of the Perturbation Induced in the Host's Transcriptome: The Tobacco Etch Potyvirus—Tobacco Case Study. Molecular Biology and Evolution, 2018, 35, 1599-1615.	8.9	21
42	The utility of fitness landscapes and big data for predicting evolution. Heredity, 2018, 121, 401-405.	2.6	39
43	Evolving Living Technologies—Insights from the EvoEvo Project. Lecture Notes in Computer Science, 2018, , 46-62.	1.3	1
44	Noise-induced bistability in the quasi-neutral coexistence of viral RNAs under different replication modes. Journal of the Royal Society Interface, 2018, 15, 20180129.	3.4	4
45	Engineered Functional Redundancy Relaxes Selective Constraints upon Endogenous Genes in Viral RNA Genomes. Genome Biology and Evolution, 2018, 10, 1823-1836.	2.5	17
46	Going, going, gone: predicting the fate of genomic insertions in plant RNA viruses. Heredity, 2018, 121, 499-509.	2.6	10
47	Alive or Dead?. , 2018, , 19-54.		0
48	Virus Dynamics and Arms Races. , 2018, , 91-119.		0
49	Computer Viruses and Beyond. , 2018, , 190-202.		0
50	Nonlinear trade-offs allow the cooperation game to evolve from Prisoner's Dilemma to Snowdrift. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170228.	2.6	21
51	Time-Sampled Population Sequencing Reveals the Interplay of Selection and Genetic Drift in Experimental Evolution of <i>Potato Virus Y</i> . Journal of Virology, 2017, 91, .	3.4	24
52	Strain-dependent mutational effects for Pepino mosaic virus in a natural host. BMC Evolutionary Biology, 2017, 17, 67.	3.2	9
53	Virus-host interactome: Putting the accent on how it changes. Journal of Proteomics, 2017, 156, 1-4.	2.4	12
54	Within-host Evolution of Segments Ratio for the Tripartite Genome of Alfalfa Mosaic Virus. Scientific Reports, 2017, 7, 5004.	3.3	35

#	Article	IF	CITATIONS
55	Molecular and biological characterization of an isolate of Tomato mottle mosaic virus (ToMMV) infecting tomato and other experimental hosts in eastern Spain. European Journal of Plant Pathology, 2017, 149, 261-268.	1.7	23
56	High virulence does not necessarily impede viral adaptation to a new host: a case study using a plant RNA virus. BMC Evolutionary Biology, 2017, 17, 25.	3.2	5
57	Local adaptation of plant viruses: lessons from experimental evolution. Molecular Ecology, 2017, 26, 1711-1719.	3.9	33
58	Diminishing returns of inoculum size on the rate of a plant RNA virus evolution. Europhysics Letters, 2017, 120, 38001.	2.0	2
59	Spatially induced nestedness in a neutral model of phage-bacteria networks. Virus Evolution, 2017, 3, vex021.	4.9	10
60	<i>2b</i> or not <i>2b</i> : Experimental evolution of functional exogenous sequences in a plant RNA virus. Genome Biology and Evolution, 2017, 9, evw300.	2.5	12
61	A putative antiviral role of plant cytidine deaminases. F1000Research, 2017, 6, 622.	1.6	4
62	A putative antiviral role of plant cytidine deaminases. F1000Research, 2017, 6, 622.	1.6	4
63	The transcriptomics of an experimentally evolved plant-virus interaction. Scientific Reports, 2016, 6, 24901.	3.3	19
64	Predicting the Stability of Homologous Gene Duplications in a Plant RNA Virus. Genome Biology and Evolution, 2016, 8, 3065-3082.	2.5	20
65	Changes in the composition of the RNA virome mark evolutionary transitions in green plants. BMC Biology, 2016, 14, 68.	3.8	37
66	Effect of Host Species on Topography of the Fitness Landscape for a Plant RNA Virus. Journal of Virology, 2016, 90, 10160-10169.	3.4	20
67	Evolutionary transitions during RNA virus experimental evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150441.	4.0	16
68	Efficient escape from local optima in a highly rugged fitness landscape by evolving RNA virus populations. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160984.	2.6	15
69	Interaction network of tobacco etch potyvirus NIa protein with the host proteome during infection. BMC Genomics, 2016, 17, 87.	2.8	57
70	Genetic variation in fitness within a clonal population of a plant RNA virus. Virus Evolution, 2016, 2, vew006.	4.9	10
71	Assessing parallel gene histories in viral genomes. BMC Evolutionary Biology, 2016, 16, 32.	3.2	10
72	Multiple Barriers to the Evolution of Alternative Gene Orders in a Positive-Strand RNA Virus. Genetics, 2016, 202, 1503-1521.	2.9	31

#	Article	IF	CITATIONS
73	Fusion of genomic, proteomic and phenotypic data: the case of potyviruses. Molecular BioSystems, 2016, 12, 253-261.	2.9	2
74	Viral Strain-Specific Differential Alterations in Arabidopsis Developmental Patterns. Molecular Plant-Microbe Interactions, 2015, 28, 1304-1315.	2.6	28
75	Distribution of mutational fitness effects and of epistasis in the 5' untranslated region of a plant RNA virus. BMC Evolutionary Biology, 2015, 15, 274.	3.2	14
76	The impact of highâ€order epistasis in the withinâ€host fitness of a positiveâ€sense plant RNA virus. Journal of Evolutionary Biology, 2015, 28, 2236-2247.	1.7	23
77	Testing the Independent Action Hypothesis of Plant Pathogen Mode of Action: A Simple and Powerful New Approach. Phytopathology, 2015, 105, 18-25.	2.2	3
78	Molecular evolution of <i>Pepino mosaic virus</i> during longâ€ŧerm passaging in different hosts and its impact on virus virulence. Annals of Applied Biology, 2015, 166, 389-401.	2.5	16
79	Temporal Dynamics of Intrahost Molecular Evolution for a Plant RNA Virus. Molecular Biology and Evolution, 2015, 32, 1132-1147.	8.9	33
80	Evolution of plant virus movement proteins from the 30K superfamily and of their homologs integrated in plant genomes. Virology, 2015, 476, 304-315.	2.4	65
81	<scp>B</scp> razilian <i><scp>P</scp>otato virus <scp>Y</scp></i> isolates identified as members of a new clade facilitate the reconstruction of evolutionary traits within this species. Plant Pathology, 2015, 64, 799-807.	2.4	9
82	Global-scale computational analysis of genomic sequences reveals the recombination pattern and coevolution dynamics of cereal-infecting geminiviruses. Scientific Reports, 2015, 5, 8153.	3.3	19
83	Editorial: A home for virology, ecology, epidemiology, and evolutionary biology. Virus Evolution, 2015, 1, 1-3.	4.9	242
84	Evaluating the within-host fitness effects of mutations fixed during virus adaptation to different ecotypes of a new host. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140292.	4.0	17
85	Matters of Size: Genetic Bottlenecks in Virus Infection and Their Potential Impact on Evolution. Annual Review of Virology, 2015, 2, 161-179.	6.7	139
86	Emerging viruses: why they are not jacks of all trades?. Current Opinion in Virology, 2015, 10, 1-6.	5.4	50
87	Virus Satellites Drive Viral Evolution and Ecology. PLoS Genetics, 2015, 11, e1005609.	3.5	49
88	Experimental Virus Evolution Reveals a Role of Plant Microtubule Dynamics and TORTIFOLIA1/SPIRAL2 in RNA Trafficking. PLoS ONE, 2014, 9, e105364.	2.5	15
89	Topology analysis and visualization of Potyvirus protein-protein interaction network. BMC Systems Biology, 2014, 8, 129.	3.0	31
90	Evolution and Emergence of Plant Viruses. Advances in Virus Research, 2014, 88, 161-191.	2.1	167

#	Article	IF	CITATIONS
91	Experimental Evolution of Pseudogenization and Gene Loss in a Plant RNA Virus. Molecular Biology and Evolution, 2014, 31, 121-134.	8.9	39
92	Within-Host Spatiotemporal Dynamics of Plant Virus Infection at the Cellular Level. PLoS Genetics, 2014, 10, e1004186.	3.5	54
93	A Viral Protein Mediates Superinfection Exclusion at the Whole-Organism Level but Is Not Required for Exclusion at the Cellular Level. Journal of Virology, 2014, 88, 11327-11338.	3.4	53
94	Molecular Evolution of Viral Multifunctional Proteins: The Case of Potyvirus HC-Pro. Journal of Molecular Evolution, 2014, 78, 75-86.	1.8	23
95	Estimation of the in vivo recombination rate for a plant RNA virus. Journal of General Virology, 2014, 95, 724-732.	2.9	37
96	Shrinkage of Genome Size in a Plant RNA Virus upon Transfer of an Essential Viral Gene into the Host Genome. Genome Biology and Evolution, 2014, 6, 538-550.	2.5	25
97	The games plant viruses play. Current Opinion in Virology, 2014, 8, 62-67.	5.4	39
98	Relocation of the NIb Gene in the Tobacco Etch Potyvirus Genome. Journal of Virology, 2014, 88, 4586-4590.	3.4	12
99	EXPERIMENTAL EVOLUTION OF AN EMERGING PLANT VIRUS IN HOST GENOTYPES THAT DIFFER IN THEIR SUSCEPTIBILITY TO INFECTION. Evolution; International Journal of Organic Evolution, 2014, 68, 2467-2480.	2.3	43
100	Viroids: Survivors from the RNA World?. Annual Review of Microbiology, 2014, 68, 395-414.	7.3	142
101	Onset of virus systemic infection in plants is determined by speed of cell-to-cell movement and number of primary infection foci. Journal of the Royal Society Interface, 2014, 11, 20140555.	3.4	29
102	Variability in mutational fitness effects prevents full lethal transitions in large quasispecies populations. Scientific Reports, 2014, 4, 4625.	3.3	11
103	Complex dynamics of defective interfering baculoviruses during serial passage in insect cells. Journal of Biological Physics, 2013, 39, 327-342.	1.5	15
104	Genotypic but not phenotypic historical contingency revealed by viral experimental evolution. BMC Evolutionary Biology, 2013, 13, 46.	3.2	30
105	Effects of the Number of Genome Segments on Primary and Systemic Infections with a Multipartite Plant RNA Virus. Journal of Virology, 2013, 87, 10805-10815.	3.4	25
106	Intra-specific variability and biological relevance of P3N-PIPO protein length in potyviruses. BMC Evolutionary Biology, 2013, 13, 249.	3.2	14
107	Fate of Artificial MicroRNA-Mediated Resistance to Plant Viruses in Mixed Infections. Phytopathology, 2013, 103, 870-876.	2.2	25
108	Genetic Diversity and Potential Vectors and Reservoirs of <i>Cucurbit aphid-borne yellows virus</i> in Southeastern Spain. Phytopathology, 2013, 103, 1188-1197.	2.2	38

#	Article	IF	CITATIONS
109	Epistasis between mutations is host-dependent for an RNA virus. Biology Letters, 2013, 9, 20120396.	2.3	54
110	MicroRNA Precursors Are Not Structurally Robust but Plastic. Genome Biology and Evolution, 2013, 5, 181-186.	2.5	2
111	Improving the Effectiveness of Artificial MicroRNA (amiR)-Mediated Resistance against Turnip Mosaic Virus by Combining Two amiRs or by Targeting Highly Conserved Viral Genomic Regions. Journal of Virology, 2013, 87, 8254-8256.	3.4	32
112	Plant <scp>RNA</scp> virus fitness predictability: contribution of genetic and environmental factors. Plant Pathology, 2013, 62, 10-18.	2.4	14
113	Model-Selection-Based Approach for Calculating Cellular Multiplicity of Infection during Virus Colonization of Multi-Cellular Hosts. PLoS ONE, 2013, 8, e64657.	2.5	16
114	Emergence and Phylodynamics of Citrus tristeza virus in Sicily, Italy. PLoS ONE, 2013, 8, e66700.	2.5	32
115	Measuring Selection Coefficients Below 10â^'3: Method, Questions, and Prospects. Genetics, 2012, 190, 175-186.	2.9	75
116	Fine-Tuning Tomato Agronomic Properties by Computational Genome Redesign. PLoS Computational Biology, 2012, 8, e1002528.	3.2	7
117	Dynamics of alternative modes of RNA replication for positive-sense RNA viruses. Journal of the Royal Society Interface, 2012, 9, 768-776.	3.4	21
118	Luria-Delbrück Estimation of Turnip Mosaic Virus Mutation Rate <i>In Vivo</i> . Journal of Virology, 2012, 86, 3386-3388.	3.4	16
119	Effects of Potyvirus Effective Population Size in Inoculated Leaves on Viral Accumulation and the Onset of Symptoms. Journal of Virology, 2012, 86, 9737-9747.	3.4	24
120	Ultradeep Sequencing Analysis of Population Dynamics of Virus Escape Mutants in RNAi-Mediated Resistant Plants. Molecular Biology and Evolution, 2012, 29, 3297-3307.	8.9	37
121	Computational design of host transcription-factors sets whose misregulation mimics the transcriptomic effect of viral infections. Scientific Reports, 2012, 2, 1006.	3.3	4
122	Multihost Experimental Evolution of a Plant RNA Virus Reveals Local Adaptation and Host-Specific Mutations. Molecular Biology and Evolution, 2012, 29, 1481-1492.	8.9	129
123	Dynamics of the Establishment of Systemic Potyvirus Infection: Independent yet Cumulative Action of Primary Infection Sites. Journal of Virology, 2012, 86, 12912-12922.	3.4	23
124	Towards an integrated molecular model of plant–virus interactions. Current Opinion in Virology, 2012, 2, 719-724.	5.4	54
125	RNA virus genetic robustness: possible causes and some consequences. Current Opinion in Virology, 2012, 2, 525-530.	5.4	39
126	Phylodynamics of Pepino mosaic virus in Spain. European Journal of Plant Pathology, 2012, 134, 445-449.	1.7	25

#	Article	IF	CITATIONS
127	Computational design of genomic transcriptional networks with adaptation to varying environments. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15277-15282.	7.1	14
128	Magnitude and sign epistasis among deleterious mutations in a positive-sense plant RNA virus. Heredity, 2012, 109, 71-77.	2.6	66
129	Molecular evolution and phylogeography of potato virus Y based on the CP gene. Journal of General Virology, 2012, 93, 2496-2501.	2.9	25
130	A Meta-Analysis Reveals the Commonalities and Differences in Arabidopsis thaliana Response to Different Viral Pathogens. PLoS ONE, 2012, 7, e40526.	2.5	64
131	Transcript Profiling of Different Arabidopsis thaliana Ecotypes in Response to Tobacco etch potyvirus Infection. Frontiers in Microbiology, 2012, 3, 229.	3.5	24
132	THE CAUSES OF EPISTASIS IN GENETIC NETWORKS. Evolution; International Journal of Organic Evolution, 2012, 66, 586-596.	2.3	20
133	Phylogeography and Molecular Evolution of Potato virus Y. PLoS ONE, 2012, 7, e37853.	2.5	60
134	Advances in Plant Virus Evolution: Translating Evolutionary Insights into Better Disease Management. Phytopathology, 2011, 101, 1136-1148.	2.2	83
135	The Core/E1 domain of hepatitis C virus genotype 4a in Egypt does not contain viral mutations or strains specific for hepatocellular carcinoma. Journal of Clinical Virology, 2011, 52, 333-338.	3.1	4
136	Population differentiation and selective constraints in Pelargonium line pattern virus. Virus Research, 2011, 155, 274-282.	2.2	6
137	The Evolutionary Genetics of Emerging Plant RNA Viruses. Molecular Plant-Microbe Interactions, 2011, 24, 287-293.	2.6	110
138	Quasispecies Spatial Models for RNA Viruses with Different Replication Modes and Infection Strategies. PLoS ONE, 2011, 6, e24884.	2.5	31
139	Structural Discrimination of Robustness in Transcriptional Feedforward Loops for Pattern Formation. PLoS ONE, 2011, 6, e16904.	2.5	26
140	Virus Infection Suppresses Nicotiana benthamiana Adaptive Phenotypic Plasticity. PLoS ONE, 2011, 6, e17275.	2.5	2
141	Differences in Accumulation and Virulence Determine the Outcome of Competition during Tobacco etch virus Coinfection. PLoS ONE, 2011, 6, e17917.	2.5	19
142	A systems biology approach to the evolution of plant–virus interactions. Current Opinion in Plant Biology, 2011, 14, 372-377.	7.1	31
143	Tridimensional model structure and patterns of molecular evolution of Pepino mosaic virus TGBp3 protein. Virology Journal, 2011, 8, 318.	3.4	4
144	The causes of epistasis. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 3617-3624.	2.6	175

#	Article	IF	CITATIONS
145	Optimal viral strategies for bypassing RNA silencing. Journal of the Royal Society Interface, 2011, 8, 257-268.	3.4	21
146	Dynamics of a Plant RNA Virus Intracellular Accumulation: Stamping Machine <i>vs.</i> Geometric Replication. Genetics, 2011, 188, 637-646.	2.9	47
147	Tempo and Mode of Plant RNA Virus Escape from RNA Interference-Mediated Resistance. Journal of Virology, 2011, 85, 9686-9695.	3.4	58
148	Dynamics of Molecular Evolution and Phylogeography of Barley yellow dwarf virus-PAV. PLoS ONE, 2011, 6, e16896.	2.5	36
149	One Is Enough: In Vivo Effective Population Size Is Dose-Dependent for a Plant RNA Virus. PLoS Pathogens, 2011, 7, e1002122.	4.7	85
150	Effect of Host Species on the Distribution of Mutational Fitness Effects for an RNA Virus. PLoS Genetics, 2011, 7, e1002378.	3.5	99
151	Simple genomes, complex interactions: Epistasis in RNA virus. Chaos, 2010, 20, 026106.	2.5	57
152	HC-Pro hypo- and hypersuppressor mutants: differences in viral siRNA accumulation in vivo and siRNA binding activity in vitro. Archives of Virology, 2010, 155, 251-254.	2.1	13
153	Robust dynamical pattern formation from a multifunctional minimal genetic circuit. BMC Systems Biology, 2010, 4, 48.	3.0	8
154	Error threshold in RNA quasispecies models with complementation. Journal of Theoretical Biology, 2010, 265, 278-286.	1.7	31
155	The Rate and Spectrum of Spontaneous Mutations in a Plant RNA Virus. Genetics, 2010, 185, 983-989.	2.9	73
156	New experimental and theoretical approaches towards the understanding of the emergence of viral infections. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 1867-1869.	4.0	7
157	Adaptation of tobacco etch potyvirus to a susceptible ecotype of <i>Arabidopsis thaliana</i> capacitates it for systemic infection of resistant ecotypes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 1997-2007.	4.0	26
158	Compensatory Molecular Evolution of HC-Pro, an RNA-Silencing Suppressor from a Plant RNA Virus. Molecular Biology and Evolution, 2010, 27, 543-551.	8.9	36
159	Network design meets in silico evolutionary biology. Biochimie, 2010, 92, 746-752.	2.6	10
160	The Evolution of Viruses in Multi-Host Fitness Landscapes. The Open Virology Journal, 2009, 3, 1-6.	1.8	99
161	Extremely High Mutation Rate of a Hammerhead Viroid. Science, 2009, 323, 1308-1308.	12.6	215
162	Mixed Infections of <i>Pepino Mosaic Virus</i> Strains Modulate the Evolutionary Dynamics of this Emergent Virus. Journal of Virology, 2009, 83, 12378-12387.	3.4	104

#	Article	IF	CITATIONS
163	Replication Mode and Landscape Topology Differentially Affect RNA Virus Mutational Load and Robustness. Journal of Virology, 2009, 83, 12579-12589.	3.4	44
164	Effect of citrus hosts on the generation, maintenance and evolutionary fate of genetic variability of citrus exocortis viroid. Journal of General Virology, 2009, 90, 2040-2049.	2.9	32
165	Molecular Evolution of a Viral Non-Coding Sequence under the Selective Pressure of amiRNA-Mediated Silencing. PLoS Pathogens, 2009, 5, e1000312.	4.7	82
166	Upper-limit mutation rate estimation for a plant RNA virus. Biology Letters, 2009, 5, 394-396.	2.3	36
167	Application of game theory to the interaction between plant viruses during mixed infections. Journal of General Virology, 2009, 90, 2815-2820.	2.9	57
168	Reverse-engineering the Arabidopsis thaliana transcriptional network under changing environmental conditions. Genome Biology, 2009, 10, R96.	9.6	81
169	Contribution of recombination and selection to molecular evolution of Citrus tristeza virus. Journal of General Virology, 2009, 90, 1527-1538.	2.9	74
170	Evolutionary Constraints to Viroid Evolution. Viruses, 2009, 1, 241-254.	3.3	24
171	Low genetic variability in the coat and movement proteins of American plum line pattern virus isolates from different geographic origins. Archives of Virology, 2008, 153, 367-373.	2.1	21
172	Genetic diversity of the movement and coat protein genes of South American isolates of Prunus necrotic ringspot virus. Archives of Virology, 2008, 153, 909-919.	2.1	26
173	The pleiotropic cost of host-specialization in Tobacco etch potyvirus. Infection, Genetics and Evolution, 2008, 8, 806-814.	2.3	73
174	Simple quasispecies models for the survival-of-the-flattest effect: The role of space. Journal of Theoretical Biology, 2008, 250, 560-568.	1.7	41
175	Experimental evolution of plant RNA viruses. Heredity, 2008, 100, 478-483.	2.6	72
176	The effect of genetic robustness on evolvability in digital organisms. BMC Evolutionary Biology, 2008, 8, 284.	3.2	43
177	Changes in the gene expression profile of Arabidopsis thaliana after infection with Tobacco etch virus. Virology Journal, 2008, 5, 92.	3.4	54
178	Structure and Evolution of Viroids. , 2008, , 43-64.		6
179	The promiscuous evolutionary history of the family Bromoviridae. Journal of General Virology, 2008, 89, 1739-1747.	2.9	48
180	Natural Selection Fails to Optimize Mutation Rates for Long-Term Adaptation on Rugged Fitness Landscapes. PLoS Computational Biology, 2008, 4, e1000187.	3.2	80

#	Article	IF	CITATIONS
181	From Hypo- to Hypersuppression: Effect of Amino Acid Substitutions on the RNA-Silencing Suppressor Activity of the <i>Tobacco etch potyvirus</i> HC-Pro. Genetics, 2008, 180, 1039-1049.	2.9	101
182	Virus Adaptation by Manipulation of Host's Gene Expression. PLoS ONE, 2008, 3, e2397.	2.5	79
183	Virus Evolution: Insights from an Experimental Approach. Annual Review of Ecology, Evolution, and Systematics, 2007, 38, 27-52.	8.3	103
184	Distribution of Fitness and Virulence Effects Caused by Single-Nucleotide Substitutions in <i>Tobacco Etch Virus</i> . Journal of Virology, 2007, 81, 12979-12984.	3.4	172
185	Fitness Declines in <i>Tobacco Etch Virus</i> upon Serial Bottleneck Transfers. Journal of Virology, 2007, 81, 4941-4947.	3.4	79
186	Distributions of epistasis in microbes fit predictions from a fitness landscape model. Nature Genetics, 2007, 39, 555-560.	21.4	195
187	The evolution of sex: empirical insights into the roles of epistasis and drift. Nature Reviews Genetics, 2007, 8, 139-149.	16.3	244
188	EFFECTS OF POPULATION SIZE AND MUTATION RATE ON THE EVOLUTION OF MUTATIONAL ROBUSTNESS. Evolution; International Journal of Organic Evolution, 2007, 61, 666-674.	2.3	58
189	Analysis of epistatic interactions and fitness landscapes using a new geometric approach. BMC Evolutionary Biology, 2007, 7, 60.	3.2	54
190	A real-time RT-PCR assay for quantifying the fitness of tobacco etch virus in competition experiments. Journal of Virological Methods, 2007, 139, 181-188.	2.1	82
191	Mechanisms of genetic robustness in RNA viruses. EMBO Reports, 2006, 7, 168-173.	4.5	136
192	Viroids: an Ariadne's thread into the RNA labyrinth. EMBO Reports, 2006, 7, 593-598.	4.5	93
193	Evolutionary relationships among members of the Bromoviridae deduced from whole proteome analysis. Archives of Virology, 2006, 151, 299-307.	2.1	19
194	The Fittest versus the Flattest: Experimental Confirmation of the Quasispecies Effect with Subviral Pathogens. PLoS Pathogens, 2006, 2, e136.	4.7	168
195	Insights into the Selective Pressures Restricting Pelargonium Flower Break Virus Genome Variability: Evidence for Host Adaptation. Journal of Virology, 2006, 80, 8124-8132.	3.4	56
196	In Silico Predicted Robustness of Viroids RNA Secondary Structures. I. The Effect of Single Mutations. Molecular Biology and Evolution, 2006, 23, 1427-1436.	8.9	43
197	Adaptive Covariation between the Coat and Movement Proteins of Prunus Necrotic Ringspot Virus. Journal of Virology, 2006, 80, 5833-5840.	3.4	24
198	In Silico Predicted Robustness of Viroid RNA Secondary Structures. II. Interaction between Mutation Pairs. Molecular Biology and Evolution, 2006, 23, 2123-2130.	8.9	28

#	Article	IF	CITATIONS
199	Epistasis correlates to genomic complexity. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14402-14405.	7.1	146
200	Mode of selection and experimental evolution of antiviral drugs resistance in vesicular stomatitis virus. Infection, Genetics and Evolution, 2005, 5, 55-65.	2.3	3
201	Mode of selection and experimental evolution of antiviral drugs resistance in vesicular stomatitis virus. Infection, Genetics and Evolution, 2005, 5, 55-65.	2.3	3
202	Molecular Evolution of the Plant Virus Family Bromoviridae Based on RNA3-Encoded Proteins. Journal of Molecular Evolution, 2005, 61, 697-705.	1.8	21
203	RNA viruses as complex adaptive systems. BioSystems, 2005, 81, 31-41.	2.0	19
204	Epistasis and the Adaptability of an RNA Virus. Genetics, 2005, 170, 1001-1008.	2.9	86
205	Parasites and mutational load: an experimental test of a pluralistic theory for the evolution of sex. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 311-317.	2.6	43
206	Adaptive Value of High Mutation Rates of RNA Viruses: Separating Causes from Consequences. Journal of Virology, 2005, 79, 11555-11558.	3.4	265
207	Genomic divergence of Escherichia coli strains: evidence for horizontal transfer and variation in mutation rates. International Microbiology, 2005, 8, 271-8.	2.4	25
208	NATURAL SELECTION AND THE ORGAN-SPECIFIC DIFFERENTIATION OF HIV-1 V3 HYPERVARIABLE REGION. Evolution; International Journal of Organic Evolution, 2004, 58, 1185.	2.3	6
209	The contribution of epistasis to the architecture of fitness in an RNA virus. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15376-15379.	7.1	216
210	The distribution of fitness effects caused by single-nucleotide substitutions in an RNA virus. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8396-8401.	7.1	513
211	NATURAL SELECTION AND THE ORGAN-SPECIFIC DIFFERENTIATION OF HIV-1 V3 HYPERVARIABLE REGION. Evolution; International Journal of Organic Evolution, 2004, 58, 1185-1194.	2.3	29
212	Evolution of RNA virus in spatially structured heterogeneous environments. Journal of Evolutionary Biology, 2003, 16, 456-466.	1.7	47
213	Environmental stress and the effects of mutation. Journal of Biology, 2003, 2, 12.	2.7	30
214	Intraclonal variation in RNA viruses: generation, maintenance and consequences. Biological Journal of the Linnean Society, 2003, 79, 17-26.	1.6	5
215	Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nature Reviews Genetics, 2003, 4, 457-469.	16.3	1,179
216	PERSPECTIVE: EVOLUTION AND DETECTION OF GENETIC ROBUSTNESS. Evolution; International Journal of Organic Evolution, 2003, 57, 1959-1972.	2.3	504

#	Article	IF	CITATIONS
217	Coinfection and superinfection in RNA virus populations: a selection–mutation model. Mathematical Biosciences, 2003, 183, 135-160.	1.9	28
218	EVOLUTION: Climb Every Mountain?. Science, 2003, 302, 2074-2075.	12.6	46
219	PERSPECTIVE:EVOLUTION AND DETECTION OF GENETIC ROBUSTNESS. Evolution; International Journal of Organic Evolution, 2003, 57, 1959.	2.3	467
220	A Sliding Window-Based Method to Detect Selective Constraints in Protein-Coding Genes and Its Application to RNA Viruses. Journal of Molecular Evolution, 2002, 55, 509-521.	1.8	71
221	Differential effects of vertical and horizontal transmission in the fitness of an RNA virus: A reanalysis. Infection, Genetics and Evolution, 2002, 1, 307-309.	2.3	1
222	r- and K-selection in experimental populations of vesicular stomatitis virus. Infection, Genetics and Evolution, 2002, 2, 137-143.	2.3	9
223	GroEL buffers against deleterious mutations. Nature, 2002, 417, 398-398.	27.8	241
224	Restrictions to RNA virus adaptation: an experimental approach. Antonie Van Leeuwenhoek, 2002, 81, 135-142.	1.7	23
225	Molecular Basis of Adaptive Convergence in Experimental Populations of RNA Viruses. Genetics, 2002, 162, 533-542.	2.9	86
226	Phylogenetic Analysis of Viroid and Viroid-Like Satellite RNAs from Plants: A Reassessment. Journal of Molecular Evolution, 2001, 53, 155-159.	1.8	45
227	Multiple infection dynamics has pronounced effects on the fitness of RNA viruses. Journal of Evolutionary Biology, 2001, 14, 654-662.	1.7	26
228	Transmission bottlenecks and the evolution of fitness in rapidly evolving RNA viruses. Infection, Genetics and Evolution, 2001, 1, 41-48.	2.3	45
229	Evolutionary history conditions the timing of transmission in vesicular stomatitis virus. Infection, Genetics and Evolution, 2001, 1, 151-159.	2.3	18
230	EPISTASIS BETWEEN NEW MUTATIONS AND GENETIC BACKGROUND AND A TEST OF GENETIC CANALIZATION. Evolution; International Journal of Organic Evolution, 2001, 55, 1746-1752.	2.3	59
231	EPISTASIS BETWEEN NEW MUTATIONS AND GENETIC BACKGROUND AND A TEST OF GENETIC CANALIZATION. Evolution; International Journal of Organic Evolution, 2001, 55, 1746.	2.3	12
232	EFFECT OF DELETERIOUS MUTATION-ACCUMULATION ON THE FITNESS OF RNA BACTERIOPHAGE MS2. Evolution; International Journal of Organic Evolution, 2000, 54, 686-691.	2.3	47
233	The Two Faces of Mutation: Extinction and Adaptation in RNA Viruses. IUBMB Life, 2000, 49, 5-9.	3.4	30
234	Diminishing Returns of Population Size in the Rate of RNA Virus Adaptation. Journal of Virology, 2000, 74, 3566-3571.	3.4	84

#	Article	IF	CITATIONS
235	EFFECT OF DELETERIOUS MUTATION-ACCUMULATION ON THE FITNESS OF RNA BACTERIOPHAGE MS2. Evolution; International Journal of Organic Evolution, 2000, 54, 686.	2.3	49
236	The Two Faces of Mutation: Extinction and Adaptation in RNA Viruses. IUBMB Life, 2000, 49, 5-9.	3.4	25
237	The evolution of RNA viruses: A population genetics view. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 6967-6973.	7.1	146
238	Cost of Host Radiation in an RNA Virus. Genetics, 2000, 156, 1465-1470.	2.9	201
239	Rate of deleterious mutation and the distribution of its effects on fitness in vesicular stomatitis virus. Journal of Evolutionary Biology, 1999, 12, 1078-1088.	1.7	80
240	Little Evidence for Synergism Among Deleterious Mutations in a Nonsegmented RNA Virus. Journal of Molecular Evolution, 1999, 49, 703-707.	1.8	59
241	Clonal Interference and the Evolution of RNA Viruses. Science, 1999, 285, 1745-1747.	12.6	257
242	Effect of population patchiness and migration rates on the adaptation and divergence of vesicular stomatitis virus quasispecies populations. Journal of General Virology, 1999, 80, 2051-2059.	2.9	29
243	Distribution of fitness effects caused by random insertion mutations in Escherichia coli. Genetica, 1998, 102/103, 349-358.	1.1	126
244	Evolutionary Dynamics of Fitness Recovery from the Debilitating Effects of Muller's Ratchet. Evolution; International Journal of Organic Evolution, 1998, 52, 309.	2.3	24
245	EVOLUTIONARY DYNAMICS OF FITNESS RECOVERY FROM THE DEBILITATING EFFECTS OF MULLER'S RATCHET. Evolution; International Journal of Organic Evolution, 1998, 52, 309-314.	2.3	37
246	Distribution of fitness effects caused by random insertion mutations in Escherichia coli. Contemporary Issues in Genetics and Evolution, 1998, , 349-358.	0.9	50
247	Distribution of fitness effects caused by random insertion mutations in Escherichia coli. Genetica, 1998, 102-103, 349-58.	1.1	68
248	Frequency-Dependent Selection in a Mammalian RNA Virus. Evolution; International Journal of Organic Evolution, 1997, 51, 984.	2.3	17
249	Is group selection a factor modulating the virulence of RNA viruses?. Genetical Research, 1997, 69, 165-172.	0.9	22
250	FREQUENCY-DEPENDENT SELECTION IN A MAMMALIAN RNA VIRUS. Evolution; International Journal of Organic Evolution, 1997, 51, 984-987.	2.3	29
251	LONGâ€TERM EXPERIMENTAL EVOLUTION IN <i>ESCHERICHIA COLI.</i> VII. MECHANISMS MAINTAINING GENETIC VARIABILITY WITHIN POPULATIONS. Evolution; International Journal of Organic Evolution, 1997, 51, 1058-1067.	2.3	68
252	Long-Term Experimental Evolution in Escherichia coli. VII. Mechanisms Maintaining Genetic Variability Within Populations. Evolution; International Journal of Organic Evolution, 1997, 51, 1058.	2.3	28

#	Article	IF	CITATIONS
253	Test of synergistic interactions among deleterious mutations in bacteria. Nature, 1997, 390, 395-398.	27.8	399
254	Punctuated Evolution Caused by Selection of Rare Beneficial Mutations. Science, 1996, 272, 1802-1804.	12.6	325
255	Mechanisms of Punctuated Evolution. Science, 1996, 274, 1748-1750.	12.6	14
256	Basic concepts in RNA virus evolution. FASEB Journal, 1996, 10, 859-864.	0.5	416
257	Repeated transfer of small RNA virus populations leading to balanced fitness with infrequent stochastic drift. Molecular Genetics and Genomics, 1996, 252, 733-738.	2.4	18
258	Response: Mechanisms of Punctuated Evolution. Science, 1996, 274, 1749-1750.	12.6	2
259	Repeated transfer of small RNA virus populations leading to balanced fitness with infrequent stochastic drift. Molecular Genetics and Genomics, 1996, 252, 733.	2.4	1
260	Evolution of Fitness in Experimental Populations of Vesicular Stomatitis Virus. Genetics, 1996, 142, 673-679.	2.9	53
261	Large-population passages of vesicular stomatitis virus in interferon-treated cells select variants of only limited resistance. Journal of Virology, 1996, 70, 6414-6417.	3.4	29
262	Exponential increases of RNA virus fitness during large population transmissions Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 5841-5844.	7.1	273
263	Extreme fitness differences in mammalian and insect hosts after continuous replication of vesicular stomatitis virus in sandfly cells. Journal of Virology, 1995, 69, 6805-6809.	3.4	112
264	Size of genetic bottlenecks leading to virus fitness loss is determined by mean initial population fitness. Journal of Virology, 1995, 69, 2869-2872.	3.4	148
265	Approximate variance of nucleotide divergence between two sequences estimated from restriction fragment data Genetics, 1995, 140, 1443-1446.	2.9	2
266	The red queen reigns in the kingdom of RNA viruses Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 4821-4824.	7.1	160
267	Subclonal components of consensus fitness in an RNA virus clone. Journal of Virology, 1994, 68, 4295-4301.	3.4	136
268	RNA virus quasispecies: significance for viral disease and epidemiology. Infectious Agents and Disease, 1994, 3, 201-14.	1.2	121
269	Genetic bottlenecks and population passages cause profound fitness differences in RNA viruses. Journal of Virology, 1993, 67, 222-228.	3.4	181
270	Many-trillionfold amplification of single RNA virus particles fails to overcome the Muller's ratchet effect. Journal of Virology, 1993, 67, 3620-3623.	3.4	75

#	Article	IF	CITATIONS
271	Pear Blister Canker Viroid is a Member of the Apple Scar Skin Subgroup (apscaviroids) and also has Sequence Homology with Viroids from other Subgroups. Journal of General Virology, 1992, 73, 2503-2507.	2.9	39
272	The strands of both polarities of a small circular RNA from carnation self-cleavein vitrothrough alternative double- and single-hammerhead structures. Nucleic Acids Research, 1992, 20, 6323-6329.	14.5	52
273	Does the VP1 gene of foot-and-mouth disease virus behave as a molecular clock?. Journal of Molecular Evolution, 1992, 35, 223-9.	1.8	16
274	Exon/intron structure of the human alpha 3(IV) gene encompassing the Goodpasture antigen (alpha) Tj ETQq0 0 (Journal of Biological Chemistry, 1992, 267, 19780-4.	0 rgBT /Ov 3.4	erlock 10 Tf 36

275	High genetic stability in natural populations of the plant RNA virus tobacco mild green mosaic virus. Journal of Molecular Evolution, 1991, 32, 328-332.	1.8	64
276	Phylogeny of viroids, viroidlike satellite RNAs, and the viroidlike domain of hepatitis delta virus RNA Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 5631-5634.	7.1	116