Farida Djouad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1556241/publications.pdf

Version: 2024-02-01

70 papers 6,651 citations

32 h-index 95266 68 g-index

72 all docs 72 docs citations

72 times ranked 8810 citing authors

#	Article	IF	CITATIONS
1	Human MuStem cells repress T-cell proliferation and cytotoxicity through both paracrine and contact-dependent pathways. Stem Cell Research and Therapy, 2022, 13, 7.	5.5	2
2	Exploring Macrophage-Dependent Wound Regeneration During Mycobacterial Infection in Zebrafish. Frontiers in Immunology, 2022, 13, 838425.	4.8	5
3	PPARβ/δ priming enhances the anti-apoptotic and therapeutic properties of mesenchymal stromal cells in myocardial ischemia–reperfusion injury. Stem Cell Research and Therapy, 2022, 13, 167.	5. 5	4
4	Lactate metabolism coordinates macrophage response and regeneration in zebrafish. Theranostics, 2022, 12, 3995-4009.	10.0	4
5	The ATP synthase inhibition induces an AMPK-dependent glycolytic switch of mesenchymal stem cells that enhances their immunotherapeutic potential. Theranostics, 2021, 11, 445-460.	10.0	19
6	MANF Produced by MRL Mouse-Derived Mesenchymal Stem Cells Is Pro-regenerative and Protects From Osteoarthritis. Frontiers in Cell and Developmental Biology, 2021, 9, 579951.	3.7	5
7	Macrophage morphological plasticity and migration is Rac signalling and MMP9 dependant. Scientific Reports, 2021, 11, 10123.	3.3	10
8	The Macrophage Response Is Driven by Mesenchymal Stem Cell-Mediated Metabolic Reprogramming. Frontiers in Immunology, 2021, 12, 624746.	4.8	25
9	Long non-coding RNA exploration for mesenchymal stem cell characterisation. BMC Genomics, 2021, 22, 412.	2.8	3
10	Pyrroline-5-Carboxylate Reductase 1 Directs the Cartilage Protective and Regenerative Potential of Murphy Roths Large Mouse Mesenchymal Stem Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 604756.	3.7	6
11	The Role of Macrophages During Zebrafish Injury and Tissue Regeneration Under Infectious and Non-Infectious Conditions. Frontiers in Immunology, 2021, 12, 707824.	4.8	10
12	The Role of Macrophages During Mammalian Tissue Remodeling and Regeneration Under Infectious and Non-Infectious Conditions. Frontiers in Immunology, 2021, 12, 707856.	4.8	6
13	PPARÎ 2 /Î 2 Is Required for Mesenchymal Stem Cell Cardioprotective Effects Independently of Their Anti-inflammatory Properties in Myocardial Ischemia-Reperfusion Injury. Frontiers in Cardiovascular Medicine, 2021, 8, 681002.	2.4	2
14	Pro-regenerative Dialogue Between Macrophages and Mesenchymal Stem/Stromal Cells in Osteoarthritis. Frontiers in Cell and Developmental Biology, 2021, 9, 718938.	3.7	3
15	Role of microRNA Shuttled in Small Extracellular Vesicles Derived From Mesenchymal Stem/Stromal Cells for Osteoarticular Disease Treatment. Frontiers in Immunology, 2021, 12, 768771.	4.8	20
16	NRG1/ErbB signalling controls the dialogue between macrophages and neural crest-derived cells during zebrafish fin regeneration. Nature Communications, 2021, 12, 6336.	12.8	10
17	POLR1B and neural crest cell anomalies in Treacher Collins syndrome type 4. Genetics in Medicine, 2020, 22, 547-556.	2.4	63
18	Time-dependent LPS exposure commands MSC immunoplasticity through TLR4 activation leading to opposite therapeutic outcome in EAE. Stem Cell Research and Therapy, 2020, 11, 416.	5.5	41

#	Article	IF	Citations
19	Mechanisms behind the Immunoregulatory Dialogue between Mesenchymal Stem Cells and Th17 Cells. Cells, 2020, 9, 1660.	4.1	28
20	PPARÎ 2 Î $^-$ dependent MSC metabolism determines their immunoregulatory properties. Scientific Reports, 2020, 10, 11423.	3.3	9
21	Proâ€resolving mediator protectin D1 promotes epimorphic regeneration by controlling immune cell function in vertebrates. British Journal of Pharmacology, 2020, 177, 4055-4073.	5.4	14
22	Whole embryo culture, transcriptomics and RNA interference identify TBX1 and FGF11 as novel regulators of limb development in the mouse. Scientific Reports, 2020, 10, 3597.	3.3	4
23	HIF1αâ€dependent metabolic reprogramming governs mesenchymal stem/stromal cell immunoregulatory functions. FASEB Journal, 2020, 34, 8250-8264.	0.5	42
24	From the Basis of Epimorphic Regeneration to Enhanced Regenerative Therapies. Frontiers in Cell and Developmental Biology, 2020, 8, 605120.	3.7	3
25	PPARÎ-mediated mitochondrial rewiring of osteoblasts determines bone mass. Scientific Reports, 2020, 10, 8428.	3.3	14
26	Mesenchymal stem cell repression of Th 17 cells is triggered by mitochondrial transfer. Stem Cell Research and Therapy, 2019, 10, 232.	5 . 5	77
27	Where to Stand with Stromal Cells and Chronic Synovitis in Rheumatoid Arthritis?. Cells, 2019, 8, 1257.	4.1	10
28	Mesenchymal Stem Cells Improve Rheumatoid Arthritis Progression by Controlling Memory T Cell Response. Frontiers in Immunology, 2019, 10, 798.	4.8	86
29	Studying the Fate of Tumor Extracellular Vesicles at High Spatiotemporal Resolution Using the Zebrafish Embryo. Developmental Cell, 2019, 48, 554-572.e7.	7.0	160
30	IL17/IL17RA as a Novel Signaling Axis Driving Mesenchymal Stem Cell Therapeutic Function in Experimental Autoimmune Encephalomyelitis. Frontiers in Immunology, 2018, 9, 802.	4.8	27
31	Gilz-Activin A as a Novel Signaling Axis Orchestrating Mesenchymal Stem Cell and Th17 Cell Interplay. Theranostics, 2018, 8, 846-859.	10.0	12
32	Secreted \hat{l}_{\pm} -Klotho maintains cartilage tissue homeostasis by repressing NOS2 and ZIP8-MMP13 catabolic axis. Aging, 2018, 10, 1442-1453.	3.1	22
33	Mesenchymal Stem Cells Direct the Immunological Fate of Macrophages. Results and Problems in Cell Differentiation, 2017, 62, 61-72.	0.7	33
34	PPARÎ 2 Î: A master regulator of mesenchymal stem cell functions. Biochimie, 2017, 136, 55-58.	2.6	7
35	TNF signaling and macrophages govern fin regeneration in zebrafish larvae. Cell Death and Disease, 2017, 8, e2979-e2979.	6.3	141
36	The immunosuppressive signature of menstrual blood mesenchymal stem cells entails opposite effects on experimental arthritis and graft versus host diseases. Stem Cells, 2016, 34, 456-469.	3.2	69

#	Article	IF	CITATIONS
37	Mesenchymal Stem Cell-Derived Interleukin 1 Receptor Antagonist Promotes Macrophage Polarization and Inhibits B Cell Differentiation. Stem Cells, 2016, 34, 483-492.	3.2	209
38	Identification of polarized macrophage subsets in zebrafish. ELife, 2015, 4, e07288.	6.0	246
39	Involvement of Angiopoietin-like 4 in Matrix Remodeling during Chondrogenic Differentiation of Mesenchymal Stem Cells. Journal of Biological Chemistry, 2014, 289, 8402-8412.	3.4	28
40	Promyelocytic leukemia zinc-finger induction signs mesenchymal stem cell commitment: identification of a key marker for stemness maintenance?. Stem Cell Research and Therapy, 2014, 5, 27.	5 . 5	7
41	Mesenchymal stem cells generate a CD4+CD25+Foxp3+ regulatory T cell population during the differentiation process of Th1 and Th17 cells. Stem Cell Research and Therapy, 2013, 4, 65.	5 . 5	366
42	PPARÎ 2 Î $^\prime$ governs Wnt signaling and bone turnover. Nature Medicine, 2013, 19, 608-613.	30.7	98
43	Mesenchymal Stem Cells Repress Th17 Molecular Program through the PD-1 Pathway. PLoS ONE, 2012, 7, e45272.	2.5	161
44	Mesenchymal Stem Cells: New Insights into Bone Regenerative Applications. Journal of Biomaterials and Tissue Engineering, 2012, 2, 14-28.	0.1	11
45	Therapeutic Applications of Mesenchymal Stem Cells for Cartilage Repair. Journal of Biomaterials and Tissue Engineering, 2012, 2, 29-39.	0.1	2
46	Differentiation and regeneration potential of mesenchymal progenitor cells derived from traumatized muscle tissue. Journal of Cellular and Molecular Medicine, 2011, 15, 2377-2388.	3.6	41
47	Stem/Progenitor Cell–Mediated <i>De Novo</i> Regeneration of Dental Pulp with Newly Deposited Continuous Layer of Dentin in an <i>In Vivo</i> Model. Tissue Engineering - Part A, 2010, 16, 605-615.	3.1	535
48	Activin A expression regulates multipotency of mesenchymal progenitor cells. Stem Cell Research and Therapy, 2010, 1, 11.	5 . 5	47
49	Immunosuppression by mesenchymal stem cells: mechanisms and clinical applications. Stem Cell Research and Therapy, 2010, 1, 2.	5. 5	419
50	Cellular Senescence is a Common Characteristic Shared by Preneoplasic and Osteo-Arthritic Tissue~!2009-12-06~!2010-01-18~!2010-02-11~!. Open Rheumatology Journal, 2010, 4, 10-14.	0.2	10
51	Multipotent mesenchymal stromal cells and rheumatoid arthritis: risk or benefit?. Rheumatology, 2009, 48, 1185-1189.	1.9	66
52	ERK1/2 Activation Induced by Inflammatory Cytokines Compromises Effective Host Tissue Integration of Engineered Cartilage. Tissue Engineering - Part A, 2009, 15, 2825-2835.	3.1	33
53	Transcriptomic Analysis Identifies Foxo3A as a Novel Transcription Factor Regulating Mesenchymal Stem Cell Chrondrogenic Differentiation. Cloning and Stem Cells, 2009, 11, 407-416.	2.6	21
54	Concerted stimuli regulating osteo-chondral differentiation from stem cells: phenotype acquisition regulated by microRNAs. Acta Pharmacologica Sinica, 2009, 30, 1369-1384.	6.1	35

#	Article	IF	CITATIONS
55	Mesenchymal stem cells: innovative therapeutic tools for rheumatic diseases. Nature Reviews Rheumatology, 2009, 5, 392-399.	8.0	278
56	Mesenchymal Stem Cells: New Insights Into Tissue Engineering and Regenerative Medicine. , 2009, , $177-195$.		1
57	Multipotent mesenchymal stromal cells in articular diseases. Best Practice and Research in Clinical Rheumatology, 2008, 22, 269-284.	3.3	28
58	Human palatine tonsil: a new potential tissue source of multipotent mesenchymal progenitor cells. Arthritis Research and Therapy, 2008, 10, R83.	3.5	97
59	Multipotent mesenchymal stromal cells and immune tolerance. Leukemia and Lymphoma, 2007, 48, 1283-1289.	1.3	129
60	Microenvironmental changes during differentiation of mesenchymal stem cells towards chondrocytes. Arthritis Research and Therapy, 2007, 9, R33.	3.5	149
61	Mesenchymal Stem Cells Inhibit the Differentiation of Dendritic Cells Through an Interleukin-6-Dependent Mechanism. Stem Cells, 2007, 25, 2025-2032.	3.2	562
62	Engineered mesenchymal stem cells for cartilage repair. Regenerative Medicine, 2006, 1, 529-537.	1.7	53
63	Earlier Onset of Syngeneic Tumors in the Presence of Mesenchymal Stem Cells. Transplantation, 2006, 82, 1060-1066.	1.0	122
64	Reversal of the immunosuppressive properties of mesenchymal stem cells by tumor necrosis factor α in collagenâ€induced arthritis. Arthritis and Rheumatism, 2005, 52, 1595-1603.	6.7	344
65	Transcriptional profiles discriminate bone marrow-derived and synovium-derived mesenchymal stem cells. Arthritis Research and Therapy, 2005, 7, R1304.	3.5	178
66	Mesenchymal stem cells and rheumatoid arthritis. Joint Bone Spine, 2003, 70, 483-485.	1.6	24
67	Engineering mesenchymal stem cells for immunotherapy. Gene Therapy, 2003, 10, 928-931.	4.5	93
68	Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood, 2003, 102, 3837-3844.	1.4	1,079
69	Statins, 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Inhibitors, Are Able to Reduce Superoxide Anion Production by NADPH Oxidase in THP-1-Derived Monocytes. Journal of Cardiovascular Pharmacology, 2002, 40, 611-617.	1.9	99
70	Regenerative medicine through mesenchymal stem cells for bone and cartilage repair. Current Opinion in Investigational Drugs, 2002, 3, 1000-4.	2.3	79