List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1555572/publications.pdf Version: 2024-02-01

		6606	2743
364	38,377	79	192
papers	citations	h-index	g-index
077	277	077	22552
3//	3//	3//	32552
all docs	docs citations	times ranked	citing authors

M C FINN

#	Article	IF	CITATIONS
1	Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angewandte Chemie - International Edition, 2001, 40, 2004-2021.	7.2	11,576
2	Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angewandte Chemie - International Edition, 2001, 40, 2004-2021.	7.2	2,174
3	Bioconjugation by Copper(I)-Catalyzed Azide-Alkyne [3 + 2] Cycloaddition. Journal of the American Chemical Society, 2003, 125, 3192-3193.	6.6	1,536
4	"On Water― Unique Reactivity of Organic Compounds in Aqueous Suspension. Angewandte Chemie - International Edition, 2005, 44, 3275-3279.	7.2	1,477
5	Analysis and Optimization of Copperâ€Catalyzed Azide–Alkyne Cycloaddition for Bioconjugation. Angewandte Chemie - International Edition, 2009, 48, 9879-9883.	7.2	856
6	Sulfur(VI) Fluoride Exchange (SuFEx): Another Good Reaction for Click Chemistry. Angewandte Chemie - International Edition, 2014, 53, 9430-9448.	7.2	832
7	Click Chemistry In Situ: Acetylcholinesterase as a Reaction Vessel for the Selective Assembly of a Femtomolar Inhibitor from an Array of Building Blocks. Angewandte Chemie - International Edition, 2002, 41, 1053-1057.	7.2	679
8	Click Chemistry in Complex Mixtures: Bioorthogonal Bioconjugation. Chemistry and Biology, 2014, 21, 1075-1101.	6.2	627
9	Direct Human Cartilage Repair Using Three-Dimensional Bioprinting Technology. Tissue Engineering - Part A, 2012, 18, 1304-1312.	1.6	575
10	In situ click chemistry: probing the binding landscapes of biological molecules. Chemical Society Reviews, 2010, 39, 1252.	18.7	434
11	Click chemistry in materials synthesis. 1. Adhesive polymers from copper-catalyzed azide-alkyne cycloaddition. Journal of Polymer Science Part A, 2004, 42, 4392-4403.	2.5	394
12	Benzimidazole and Related Ligands for Cu-Catalyzed Azideâ^'Alkyne Cycloaddition. Journal of the American Chemical Society, 2007, 129, 12696-12704.	6.6	371
13	Ligand-Accelerated Cu-Catalyzed Azideâ^'Alkyne Cycloaddition:  A Mechanistic Report. Journal of the American Chemical Society, 2007, 129, 12705-12712.	6.6	366
14	Discovery and Characterization of Catalysts for Azideâ^'Alkyne Cycloaddition by Fluorescence Quenching. Journal of the American Chemical Society, 2004, 126, 9152-9153.	6.6	353
15	Labeling Live Cells by Copper-Catalyzed Alkyneâ^Azide Click Chemistry. Bioconjugate Chemistry, 2010, 21, 1912-1916.	1.8	347
16	Porous Silicon as a Versatile Platform for Laser Desorption/Ionization Mass Spectrometry. Analytical Chemistry, 2001, 73, 612-619.	3.2	337
17	Core-Clickable PEG- <i>Branch</i> -Azide Bivalent-Bottle-Brush Polymers by ROMP: Grafting-Through and Clicking-To. Journal of the American Chemical Society, 2011, 133, 559-566.	6.6	320
18	Mechanism of asymmetric epoxidation. 2. Catalyst structure. Journal of the American Chemical Society, 1991, 113, 113-126.	6.6	315

#	Article	IF	CITATIONS
19	Copperâ€Catalyzed Azide–Alkyne Click Chemistry for Bioconjugation. Current Protocols in Chemical Biology, 2011, 3, 153-162.	1.7	303
20	Construction of Linear Polymers, Dendrimers, Networks, and Other Polymeric Architectures by Copperâ€Catalyzed Azideâ€Alkyne Cycloaddition "Click―Chemistry. Macromolecular Rapid Communications, 2008, 29, 1052-1072.	2.0	302
21	Tailored Ligand Acceleration of the Cu-Catalyzed Azideâ	6.6	291
22	Accelerated Bioorthogonal Conjugation:  A Practical Method for the Ligation of Diverse Functional Molecules to a Polyvalent Virus Scaffold. Bioconjugate Chemistry, 2005, 16, 1572-1579.	1.8	287
23	Click chemistry: function follows form. Chemical Society Reviews, 2010, 39, 1231.	18.7	284
24	A mechanistic insight leads to a greatly improved osmium-catalyzed asymmetric dihydroxylation process. Journal of the American Chemical Society, 1989, 111, 1123-1125.	6.6	259
25	Measurement of Enantiomeric Excess by Kinetic Resolution and Mass Spectrometry. Angewandte Chemie - International Edition, 1999, 38, 1755-1758.	7.2	249
26	Natural Supramolecular Building Blocks. Chemistry and Biology, 2002, 9, 805-811.	6.2	245
27	A heteroaryldihydropyrimidine activates and can misdirect hepatitis B virus capsid assembly. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8138-8143.	3.3	235
28	Bio-distribution, toxicity and pathology of cowpea mosaic virus nanoparticles in vivo. Journal of Controlled Release, 2007, 120, 41-50.	4.8	229
29	High Sensitivity and Analyte Capture with Desorption/Ionization Mass Spectrometry on Silylated Porous Silicon. Analytical Chemistry, 2004, 76, 4484-4489.	3.2	223
30	Hybrid Virusâ^'Polymer Materials. 1. Synthesis and Properties of PEG-Decorated Cowpea Mosaic Virus. Biomacromolecules, 2003, 4, 472-476.	2.6	218
31	Synthesis of Degradable Model Networks via ATRP and Click Chemistry. Journal of the American Chemical Society, 2006, 128, 6564-6565.	6.6	214
32	Folic Acid-Mediated Targeting of Cowpea Mosaic Virus Particles to Tumor Cells. Chemistry and Biology, 2007, 14, 1152-1162.	6.2	213
33	Mechanism of asymmetric epoxidation. 1. Kinetics. Journal of the American Chemical Society, 1991, 113, 106-113.	6.6	204
34	Bioorthogonal chemistry. Nature Reviews Methods Primers, 2021, 1, .	11.8	201
35	Desorption/ionization on silicon (DIOS): A diverse mass spectrometry platform for protein characterization. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 4932-4937.	3.3	192
36	Viral MRI contrast agents: coordination of Gd by native virions and attachment of Gd complexes by azide–alkyne cycloaddition. Chemical Communications, 2007, , 1269-1271.	2.2	187

#	Article	IF	CITATIONS
37	Natural Supramolecular Building Blocks. Chemistry and Biology, 2002, 9, 813-819.	6.2	183
38	Desorption/ionization on silicon (DIOS) mass spectrometry: background and applications. International Journal of Mass Spectrometry, 2003, 226, 107-116.	0.7	183
39	Emerging methods for the rapid determination of enantiomeric excess. Chirality, 2002, 14, 534-540.	1.3	182
40	RNAâ€Directed Packaging of Enzymes within Virusâ€like Particles. Angewandte Chemie - International Edition, 2010, 49, 9648-9651.	7.2	180
41	Thiol-Selective Fluorogenic Probes for Labeling and Release. Journal of the American Chemical Society, 2009, 131, 9986-9994.	6.6	177
42	Functional Virus-Based Polymer–Protein Nanoparticles by Atom Transfer Radical Polymerization. Journal of the American Chemical Society, 2011, 133, 9242-9245.	6.6	173
43	Unnatural Amino Acid Incorporation into Virus-Like Particles. Bioconjugate Chemistry, 2008, 19, 866-875.	1.8	164
44	Nanopatterning the Chemospecific Immobilization of Cowpea Mosaic Virus Capsid. Nano Letters, 2003, 3, 883-886.	4.5	163
45	Global Structural Changes in Hepatitis B Virus Capsids Induced by the Assembly Effector HAP1. Journal of Virology, 2006, 80, 11055-11061.	1.5	162
46	Bringing Efficiency to Materials Synthesis: The Philosophy of Click Chemistry. Australian Journal of Chemistry, 2007, 60, 381.	0.5	160
47	Synthesis of Photocleavable Linear Macromonomers by ATRP and Star Macromonomers by a Tandem ATRPâ^'Click Reaction:Â Precursors to Photodegradable Model Networks. Macromolecules, 2007, 40, 3589-3598.	2.2	148
48	2H-Chromenes from Salicylaldehydes by a Catalytic Petasis Reaction. Organic Letters, 2000, 2, 4063-4065.	2.4	141
49	<i>N</i> -Aryl–linked spirocyclic polymers for membrane separations of complex hydrocarbon mixtures. Science, 2020, 369, 310-315.	6.0	139
50	Trapping of Hepatitis B Virus Capsid Assembly Intermediates by Phenylpropenamide Assembly Accelerators. ACS Chemical Biology, 2010, 5, 1125-1136.	1.6	138
51	"Click―Chemistry in a Supramolecular Environment: Stabilization of Organogels by Copper(I)-Catalyzed Azideâ^`Alkyne [3 + 2] Cycloaddition. Journal of the American Chemical Society, 2006, 128, 6056-6057.	6.6	137
52	Cu(II)â^Aza(bisoxazoline)-Catalyzed Asymmetric Benzoylations. Organic Letters, 2005, 7, 2325-2328.	2.4	134
53	Natural Nanochemical Building Blocks:  Icosahedral Virus Particles Organized by Attached Oligonucleotides. Nano Letters, 2004, 4, 1385-1389.	4.5	132
54	Treatment of influenza and SARS-CoV-2 infections via mRNA-encoded Cas13a in rodents. Nature Biotechnology, 2021, 39, 717-726.	9.4	130

#	Article	IF	CITATIONS
55	Defining Criteria for Oligomannose Immunogens for HIV Using Icosahedral Virus Capsid Scaffolds. Chemistry and Biology, 2010, 17, 357-370.	6.2	125
56	Kinetic resolution by copper-catalyzed azide–alkyne cycloaddition. Tetrahedron Letters, 2005, 46, 4543-4546.	0.7	122
57	Introduction: Click Chemistry. Chemical Reviews, 2021, 121, 6697-6698.	23.0	122
58	DNA-controlled assembly of a NaTl lattice structure from gold nanoparticles and proteinÂnanoparticles. Nature Materials, 2010, 9, 918-922.	13.3	121
59	Chemical Modification of Viruses and Virus-Like Particles. Current Topics in Microbiology and Immunology, 2009, 327, 1-21.	0.7	120
60	Peptide Cyclization and Cyclodimerization by Cu ^I -Mediated Azideâ^'Alkyne Cycloaddition. Journal of Organic Chemistry, 2009, 74, 2964-2974.	1.7	120
61	Assembly-Directed Antivirals Differentially Bind Quasiequivalent Pockets to Modify Hepatitis B Virus Capsid Tertiary and Quaternary Structure. Structure, 2013, 21, 1406-1416.	1.6	120
62	Buckyballs Meet Viral Nanoparticles: Candidates for Biomedicine. Journal of the American Chemical Society, 2009, 131, 17093-17095.	6.6	119
63	Small-Molecule Effectors of Hepatitis B Virus Capsid Assembly Give Insight into Virus Life Cycle. Journal of Virology, 2008, 82, 10262-10270.	1.5	117
64	Multivalent Display and Receptorâ€Mediated Endocytosis of Transferrin on Virusâ€Like Particles. ChemBioChem, 2010, 11, 1273-1279.	1.3	111
65	Crosslinking of and Coupling to Viral Capsid Proteins by Tyrosine Oxidation. Chemistry and Biology, 2004, 11, 319-326.	6.2	109
66	Plasma Clearance of Bacteriophage Qβ Particles as a Function of Surface Charge. Journal of the American Chemical Society, 2008, 130, 1328-1334.	6.6	105
67	"Clickable―Agarose for Affinity Chromatography. Bioconjugate Chemistry, 2005, 16, 1536-1541.	1.8	95
68	Click chemistry in materials synthesis. III. Metalâ€adhesive polymers from Cu(I) atalyzed azide–alkyne cycloaddition. Journal of Polymer Science Part A, 2007, 45, 5182-5189.	2.5	95
69	A nonself sugar mimic of the HIV glycan shield shows enhanced antigenicity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17107-17112.	3.3	95
70	Organometallic Diradical Cycloaromatization Reaction. Journal of the American Chemical Society, 1995, 117, 8045-8046.	6.6	94
71	Amblyomma sculptum tick saliva: α-Gal identification, antibody response and possible association with red meat allergy in Brazil. International Journal for Parasitology, 2016, 46, 213-220.	1.3	93
72	Anti arbohydrate Antibodies Elicited by Polyvalent Display on a Viral Scaffold. ChemBioChem, 2007, 8, 1455-1462.	1.3	90

#	Article	IF	CITATIONS
73	Electrochemically Protected Copper(I)â€Catalyzed Azide–Alkyne Cycloaddition. ChemBioChem, 2008, 9, 1481-1486.	1.3	90
74	Cell Targeting with Hybrid Qβ Virus‣ike Particles Displaying Epidermal Growth Factor. ChemBioChem, 2011, 12, 2441-2447.	1.3	89
75	Glycan-Targeted Virus-like Nanoparticles for Photodynamic Therapy. Biomacromolecules, 2012, 13, 2333-2338.	2.6	89
76	Programmable multistage drug delivery to lymph nodes. Nature Nanotechnology, 2020, 15, 491-499.	15.6	86
77	Glycomimetic Ligands for the Human Asialoglycoprotein Receptor. Journal of the American Chemical Society, 2012, 134, 1978-1981.	6.6	85
78	On-Virus Construction of Polyvalent Glycan Ligands for Cell-Surface Receptors. Journal of the American Chemical Society, 2008, 130, 4578-4579.	6.6	82
79	Boosting Immunity to Small Tumor-Associated Carbohydrates with Bacteriophage QÎ ² Capsids. ACS Chemical Biology, 2013, 8, 1253-1262.	1.6	81
80	Icosahedral Virus Particles as Polyvalent Carbohydrate Display Platforms. ChemBioChem, 2003, 4, 1348-1351.	1.3	80
81	Label-free quantification of membrane-ligand interactions using backscattering interferometry. Nature Biotechnology, 2011, 29, 357-360.	9.4	80
82	Encapsidated Atom-Transfer Radical Polymerization in Qβ Virus-like Nanoparticles. ACS Nano, 2014, 8, 8003-8014.	7.3	80
83	Thia-, Aza-, and Selena[3.3.1]bicyclononane Dichlorides: Rates vs Internal Nucleophile in Anchimeric Assistance. Journal of Organic Chemistry, 2011, 76, 4392-4395.	1.7	78
84	Two new asymmetric epoxidation catalysts. Unusual stoichiometry and inverse enantiofacial selection. Journal of Organic Chemistry, 1984, 49, 728-731.	1.7	76
85	Effect of Nonsolvent Treatments on the Microstructure of PIM-1. Macromolecules, 2015, 48, 5780-5790.	2.2	74
86	Colorful Virus-like Particles: Fluorescent Protein Packaging by the QÎ ² Capsid. Biomacromolecules, 2011, 12, 3977-3981.	2.6	73
87	Assembly of Hybrid Bacteriophage $Q\hat{l}^2$ Virus-like Particles. Biochemistry, 2009, 48, 11155-11157.	1.2	72
88	Engineered Mutations Change the Structure and Stability of a Virus-Like Particle. Biomacromolecules, 2012, 13, 2339-2348.	2.6	72
89	Efficient Liver Targeting by Polyvalent Display of a Compact Ligand for the Asialoglycoprotein Receptor. Journal of the American Chemical Society, 2017, 139, 3528-3536.	6.6	71
90	Relative Performance of Alkynes in Copper-Catalyzed Azide–Alkyne Cycloaddition. Bioconjugate Chemistry, 2013, 24, 684-689.	1.8	70

#	Article	IF	CITATIONS
91	An Unexpected Example of Proteinâ€Templated Click Chemistry. Angewandte Chemie - International Edition, 2010, 49, 6817-6820.	7.2	68
92	Protective Epitope Discovery and Design of MUC1-based Vaccine for Effective Tumor Protections in Immunotolerant Mice. Journal of the American Chemical Society, 2018, 140, 16596-16609.	6.6	68
93	Virus-like Particle Display of the α-Gal Carbohydrate for Vaccination against <i>Leishmania</i> Infection. ACS Central Science, 2017, 3, 1026-1031.	5.3	67
94	Blue Fluorescent Antibodies as Reporters of Steric Accessibility in Virus Conjugates. Bioconjugate Chemistry, 2003, 14, 38-43.	1.8	66
95	Hepatitis B Virus Capsids Have Diverse Structural Responses to Small-Molecule Ligands Bound to the Heteroaryldihydropyrimidine Pocket. Journal of Virology, 2016, 90, 3994-4004.	1.5	65
96	T cells control the generation of nanomolar-affinity anti-glycan antibodies. Journal of Clinical Investigation, 2017, 127, 1491-1504.	3.9	63
97	Mechanistic Studies of the Zirconiumâ^Triisopropanolamine-Catalyzed Enantioselective Addition of Azide to Cyclohexene Oxideâ€. Journal of Organic Chemistry, 1998, 63, 6656-6666.	1.7	62
98	A Mass Spectrometry Plate Reader: Monitoring Enzyme Activity and Inhibition with a Desorption/Ionization on Silicon (DIOS) Platform. ChemBioChem, 2004, 5, 921-927.	1.3	62
99	New Catalysts for the Asymmetric Hydrosilylation of Ketones Discovered by Mass Spectrometry Screening. Journal of Organic Chemistry, 2003, 68, 2540-2546.	1.7	61
100	Click chemistry in materials synthesis. II. Acid-swellable crosslinked polymers made by copper-catalyzed azide-alkyne cycloaddition. Journal of Polymer Science Part A, 2006, 44, 5513-5518.	2.5	58
101	Learning from nature – Novel synthetic biology approaches for biomaterial design. Acta Biomaterialia, 2014, 10, 1761-1769.	4.1	57
102	Glycosylation Using Unprotected Alkynyl Donors. Journal of Organic Chemistry, 2009, 74, 8417-8420.	1.7	55
103	Novel Inhibitors for PRMT1 Discovered by High-Throughput Screening Using Activity-Based Fluorescence Polarization. ACS Chemical Biology, 2012, 7, 1198-1204.	1.6	55
104	Synthesis of Biologically Active <i>N</i> - and <i>O</i> -Linked Clycans with Multisialylated Poly- <i>N</i> -acetyllactosamine Extensions Using <i>P. damsela</i> α2-6 Sialyltransferase. Journal of the American Chemical Society, 2013, 135, 18280-18283.	6.6	55
105	Palladium-Catalyzed Head-to-Head Telomerization of Isoprene with Amines. Organometallics, 2000, 19, 2684-2689.	1.1	54
106	Effects of a novel arginine methyltransferase inhibitor on Tâ€helper cell cytokine production. FEBS Journal, 2010, 277, 2096-2108.	2.2	54
107	A Hierarchy of Aryloxide Deprotection by Boron Tribromide. Organic Letters, 2004, 6, 2777-2779.	2.4	53
108	A Nonaggregating Heptamethine Cyanine for Building Brighter Labeled Biomolecules. ACS Chemical Biology, 2019, 14, 934-940.	1.6	53

#	Article	IF	CITATIONS
109	Guiding plant virus particles to integrin-displaying cells. Nanoscale, 2012, 4, 3698.	2.8	50
110	Significant Impact of Immunogen Design on the Diversity of Antibodies Generated by Carbohydrate-Based Anticancer Vaccine. ACS Chemical Biology, 2015, 10, 2364-2372.	1.6	50
111	Microscale NMR Screening of New Detergents for Membrane Protein Structural Biology. Journal of the American Chemical Society, 2008, 130, 7357-7363.	6.6	49
112	Degradable Conjugates from Oxanorbornadiene Reagents. Journal of the American Chemical Society, 2012, 134, 6491-6497.	6.6	48
113	Organotransition-Metal Metallacarboranes. 36. A Remarkably Stable Transition-Metal-Benzyne Complex: Synthesis and Structure of Cp(PMe3)(.eta.2-C6H4)Ta(Et2C2B4H4). Journal of the American Chemical Society, 1995, 117, 1163-1164.	6.6	46
114	Repeated administration of the GABAB receptor positive modulator BHF177 decreased nicotine self-administration, and acute administration decreased cue-induced reinstatement of nicotine seeking in rats. Psychopharmacology, 2011, 215, 117-128.	1.5	46
115	Comparison of the effects of the GABAB receptor positive modulator BHF177 and the GABAB receptor agonist baclofen on anxiety-like behavior, learning, and memory in mice. Neuropharmacology, 2013, 70, 156-167.	2.0	46
116	Synthesis and Immunological Evaluation of Disaccharide Bearing MUC-1 Glycopeptide Conjugates with Virus-like Particles. ACS Chemical Biology, 2019, 14, 2176-2184.	1.6	46
117	Taming Chlorine Azide: Access to 1,2-Azidochlorides from Alkenes. Journal of Organic Chemistry, 2015, 80, 2740-2755.	1.7	45
118	2,6-Dichloro-9-thiabicyclo[3.3.1]nonane:Â A Privileged, Bivalent Scaffold for the Display of Nucleophilic Components. Journal of Organic Chemistry, 2001, 66, 4386-4392.	1.7	44
119	Palladium-catalyzed coupling of functionalized bromoarenes to a polystyrene-bound aryl tributylstannane. Tetrahedron Letters, 1999, 40, 415-418.	0.7	42
120	Measurement of Monovalent and Polyvalent Carbohydrateâ^'Lectin Binding by Back-Scattering Interferometry. Analytical Chemistry, 2009, 81, 4889-4897.	3.2	42
121	Insertion Reactions of Tantalum(V) Carborane Alkyl and Aryl Complexes with Nitriles and Isonitriles. Thermal and Photochemical Isomerization of η2-Iminoacyl Isomers1. Organometallics, 1997, 16, 3993-4000.	1.1	41
122	Intramolecular Benzannulation Reactions of Chromium Siloxycarbene Complexes: Regiochemical Control and the "Xenochemical Effect" of Alkyne Additives. Journal of the American Chemical Society, 1994, 116, 10921-10933.	6.6	40
123	Organotransition-Metal Metallacarboranes. 38. C2B3 and C2B4 Carborane Ligands as Cyclopentadienyl Analogs: Early Transition Metal Complexes. Organometallics, 1995, 14, 3014-3029.	1.1	40
124	Engineering the PP7 Virus Capsid as a Peptide Display Platform. ACS Nano, 2019, 13, 4443-4454.	7.3	40
125	Glycan-Modified Virus-like Particles Evoke T Helper Type 1-like Immune Responses. ACS Nano, 2021, 15, 309-321.	7.3	40
126	Multifunctional Enzyme Packaging and Catalysis in the QÎ ² Protein Nanoparticle. Biomacromolecules, 2018, 19, 3945-3957.	2.6	38

#	Article	IF	CITATIONS
127	Study of high glass transition temperature thermosets made from the copper(I)-catalyzed azide–alkyne cycloaddition reaction. Polymer, 2007, 48, 239-244.	1.8	37
128	Protective Coatings for Aluminum Alloy Based on Hyperbranched 1,4-Polytriazoles. ACS Applied Materials & Interfaces, 2017, 9, 4231-4243.	4.0	37
129	The first benzannulation chemistry of manganese carbene complexes: activation by d0 metalation. Organometallics, 1992, 11, 1759-1761.	1.1	36
130	Titanium and Zirconium Et2C2B4H4â^'Metalâ^'Phosphine Complexes:Â Synthesis, Characterization, and Ethylene Polymerization Activity1. Journal of the American Chemical Society, 2000, 122, 10573-10580.	6.6	36
131	Heparin Antagonism by Polyvalent Display of Cationic Motifs on Virusâ€Like Particles. ChemBioChem, 2009, 10, 503-510.	1.3	36
132	Alkene and Alkyne Insertion Reactions with Tantalum Metallacarborane Complexes:Â the Et2C2B4H42-Carborane Ligand as a Spectator and Participant1. Organometallics, 1998, 17, 3865-3874.	1.1	35
133	Chemical Synthesis of GM2 Glycans, Bioconjugation with Bacteriophage $Q^{\hat{l}2}$, and the Induction of Anticancer Antibodies. ChemBioChem, 2016, 17, 174-180.	1.3	35
134	Antitumor Humoral and T Cell Responses by Mucin-1 Conjugates of Bacteriophage Qβ in Wild-type Mice. ACS Chemical Biology, 2018, 13, 1668-1676.	1.6	35
135	Augmented lipid-nanoparticle-mediated in vivo genome editing in the lungs and spleen by disrupting Cas9 activity in the liver. Nature Biomedical Engineering, 2022, 6, 157-167.	11.6	35
136	2,6-Dihalo-9-selenabicyclo[3.3.1]nonanes and their complexes with selenium dihalides: synthesis and structural characterisation. New Journal of Chemistry, 2015, 39, 8055-8059.	1.4	34
137	Intramolecular benzannulation reactions of manganese carbene complexes. Journal of the American Chemical Society, 1992, 114, 8735-8736.	6.6	33
138	A new condensation synthesis of allenes and dienes. Journal of Organic Chemistry, 1993, 58, 1298-1299.	1.7	33
139	Vinylphosphonium Salts and Allenes from Carbonyl Compounds Using Titanium-Substituted Ylides. Journal of Organic Chemistry, 1997, 62, 2564-2573.	1.7	32
140	Homogeneous catalysis as a tool for organic synthesis. Pure and Applied Chemistry, 1998, 70, 1041-1046.	0.9	32
141	Evolution and Protein Packaging of Small-Molecule RNA Aptamers. ACS Nano, 2011, 5, 7722-7729.	7.3	32
142	Click chemistry connections for functional discovery. , 2022, 1, 8-10.		32
143	Highly Efficient Ring Closure of Aromatic Dialdehydes to Macrocyclic Allenes. Journal of the American Chemical Society, 1997, 119, 3429-3433.	6.6	31
144	Small Carborane Ligands as Tailorable Cp Surrogates. Halogenation, Alkylation, and Arylation at Metal and Cage Positions on CpX2M(Et2C2B4H4) Complexes (M = Ta, Nb)1. Organometallics, 2000, 19, 2200-2207.	1.1	31

#	Article	IF	CITATIONS
145	Structure and bonding of heterobimetallic Fischer carbene complexes. Organometallics, 1992, 11, 745-751.	1.1	30
146	Small Molecule Regulation of Protein Conformation by Binding in the Flap of HIV Protease. ACS Chemical Biology, 2013, 8, 1223-1231.	1.6	30
147	Phase Diagrams Map the Properties of Antiviral Agents Directed against Hepatitis B Virus Core Assembly. Antimicrobial Agents and Chemotherapy, 2013, 57, 1505-1508.	1.4	30
148	Thiabicyclononane-Based Antimicrobial Polycations. Journal of the American Chemical Society, 2017, 139, 15401-15406.	6.6	30
149	Nucleophilic Substitution by Grignard Reagents on Sulfur Mustards. Journal of Organic Chemistry, 2004, 69, 7336-7339.	1.7	29
150	Modular Degradable Hydrogels Based on Thiol-Reactive Oxanorbornadiene Linkers. Journal of the American Chemical Society, 2015, 137, 4984-4987.	6.6	29
151	A hydridotantalum(V)-carborane analogue of Schwartz's reagent: synthesis and reactivity1Organotransition-Metal Metallacarboranes. 49. For part 48, see Ref. [1].12Dedicated to Professor Kenneth Wade on the occasion of his 65th birthday.2. Journal of Organometallic Chemistry, 1998. 550. 469-472.	0.8	28
152	Enzyme Stabilization by Virus-Like Particles. Biochemistry, 2020, 59, 2870-2881.	1.2	28
153	Organotransition-metal metallacarboranes. 26. Carborane ligands in organometallic chemistry: a new class of Fischer carbene complexes. Journal of the American Chemical Society, 1992, 114, 8733-8735.	6.6	27
154	Synthesis and cycloaromatization kinetics of aromatic allene enynes. Tetrahedron, 1999, 55, 29-62.	1.0	27
155	Cytotoxicity of tantalum(V) and niobium(V) small carborane complexes and mode of action in P388 lymphocytic leukemia cells. Applied Organometallic Chemistry, 2000, 14, 108-118.	1.7	27
156	Measurement of enantiomeric excess of amines by mass spectrometry following kinetic resolution with solid-phase chiral acylating agents. Tetrahedron Letters, 2001, 42, 2617-2619.	0.7	27
157	Membrane Association Dictates Ligand Specificity for the Innate Immune Receptor NOD2. ACS Chemical Biology, 2017, 12, 2216-2224.	1.6	26
158	Use of a racemic derivatizing agent for measurement of enantiomeric excess by circular dichroism spectroscopy. Tetrahedron Letters, 2001, 42, 8015-8018.	0.7	25
159	A thermally-cleavable linker for solid-phase synthesis. Tetrahedron Letters, 2005, 46, 1181-1184.	0.7	25
160	Microscale memory characteristics of virus-quantum dot hybrids. Applied Physics Letters, 2007, 90, 214104.	1.5	25
161	Immobilization of bacteriophage Qβ on metal-derivatized surfaces via polyvalent display of hexahistidine tags. Journal of Inorganic Biochemistry, 2008, 102, 2142-2146.	1.5	25
162	Incorporation of 2,6-Di(4,4â€~-dipyridyl)-9-thiabicyclo[3.3.1]nonane into Discrete 2D Supramolecules via Coordination-Driven Self-Assembly. Journal of Organic Chemistry, 2006, 71, 6644-6647.	1.7	24

#	Article	IF	CITATIONS
163	Polyvalent Display of Heme on Hepatitis B Virus Capsid Protein through Coordination to Hexahistidine Tags. Chemistry and Biology, 2008, 15, 513-519.	6.2	24
164	TiIV Complexes with Bridging Ylide Ligands: Double Oxophiles in Reactions with Aldehydes. Angewandte Chemie International Edition in English, 1993, 32, 554-555.	4.4	23
165	Cofactor-Induced Refinement of Catalytic Antibody Activity:Â A Metal-Specific Allosteric Effect. Journal of the American Chemical Society, 1998, 120, 2963-2964.	6.6	23
166	Detection of 30 Fentanyl Analogs by Commercial Immunoassay Kits. Journal of Analytical Toxicology, 2021, 45, 111-116.	1.7	23
167	Tyrosine Cross-Linking Reveals Interfacial Dynamics in Adeno-Associated Viral Capsids during Infection. ACS Chemical Biology, 2012, 7, 1059-1066.	1.6	22
168	Formamidine Ureas as Tunable Electrophiles. Chemistry - A European Journal, 2004, 10, 303-309.	1.7	21
169	Expanded Chemistry of Formamidine Ureas. Organic Letters, 2004, 6, 43-46.	2.4	21
170	Framework for predicting the fractionation of complex liquid feeds via polymer membranes. Journal of Membrane Science, 2021, 640, 119767.	4.1	21
171	Isolation and structure determination of 2-amino-2-deoxyisochorismate: an intermediate in the biosynthesis of anthranilate. Journal of the American Chemical Society, 1993, 115, 816-817.	6.6	20
172	An Exo-Selective Diels-Alder Reaction of a Bimetallic Carbene Complex: A Case of Steric Control?. Organometallics, 1994, 13, 2084-2087.	1.1	20
173	Resin-Supported Catalysts for CuAAC Click Reactions in Aqueous or Organic Solvents. ACS Combinatorial Science, 2012, 14, 527-530.	3.8	20
174	The GABAB receptor positive modulator BHF177 attenuated anxiety, but not conditioned fear, in rats. Neuropharmacology, 2015, 97, 357-364.	2.0	20
175	Trimerization of the HIV Transmembrane Domain in Lipid Bilayers Modulates Broadly Neutralizing Antibody Binding. Angewandte Chemie - International Edition, 2016, 55, 2688-2692.	7.2	20
176	Albumin-Oxanorbornadiene Conjugates Formed <i>ex Vivo</i> for the Extended Circulation of Hydrophilic Cargo. ACS Chemical Biology, 2016, 11, 2320-2327.	1.6	19
177	Covalent Functionalization of Flexible Polyvinyl Chloride Tubing. Langmuir, 2018, 34, 10407-10412.	1.6	19
178	Structural basis for cooperative interactions of substituted 2-aminopyrimidines with the acetylcholine binding protein. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10749-10754.	3.3	18
179	Azide-Substituted Polylactide: A Biodegradable Substrate for Antimicrobial Materials via Click Chemistry Attachment of Quaternary Ammonium Groups. Biomacromolecules, 2019, 20, 3366-3374.	2.6	18
180	Rapid development of neutralizing and diagnostic SARS-COV-2 mouse monoclonal antibodies. Scientific Reports, 2021, 11, 9682.	1.6	18

#	Article	IF	CITATIONS
181	Universal Sensing by Transduction of Antibody Binding with Backscattering Interferometry. ChemBioChem, 2011, 12, 367-370.	1.3	17
182	Virus-like Particle Display of the α-Gal Epitope for the Diagnostic Assessment of Chagas Disease. ACS Infectious Diseases, 2016, 2, 917-922.	1.8	17
183	Development of Autologous C5 Vaccine Nanoparticles to Reduce Intravascular Hemolysis <i>in Vivo</i> . ACS Chemical Biology, 2017, 12, 539-547.	1.6	17
184	Lung Tissue Delivery of Virus-Like Particles Mediated by Macrolide Antibiotics. Molecular Pharmaceutics, 2019, 16, 2947-2955.	2.3	17
185	The Mechanism of Double Olefination Using Titanium-Substituted Ylides. Journal of Organic Chemistry, 1997, 62, 2574-2593.	1.7	16
186	First Practical Synthesis of Formamidine Ureas and Derivatives. Organic Letters, 2003, 5, 1531-1533.	2.4	16
187	Engineered virus-like nanoparticles reverse heparin anticoagulation more consistently than protamine in plasma from heparin-treated patients. Thrombosis Research, 2011, 128, e9-e13.	0.8	16
188	Organic solvent reverse osmosis using CuAAC-crosslinked molecularly-mixed composite membranes. Journal of Membrane Science, 2021, 638, 119700.	4.1	16
189	Aqueous-Phase Deactivation and Intramolecular [2 + 2 + 2] Cycloaddition of Oxanorbornadiene Esters. Organic Letters, 2011, 13, 1832-1835.	2.4	15
190	Improved Metalâ€Adhesive Polymers from Copper(I) atalyzed Azide–Alkyne Cycloaddition. Chemistry - A European Journal, 2014, 20, 10710-10719.	1.7	15
191	Substituted 2-Aminopyrimidines Selective for α7-Nicotinic Acetylcholine Receptor Activation and Association with Acetylcholine Binding Proteins. Journal of the American Chemical Society, 2017, 139, 3676-3684.	6.6	15
192	KK-92A, a novel GABAB receptor positive allosteric modulator, attenuates nicotine self-administration and cue-induced nicotine seeking in rats. Psychopharmacology, 2017, 234, 1633-1644.	1.5	15
193	Targeted Elimination of Tumorigenic Human Pluripotent Stem Cells Using Suicide-Inducing Virus-like Particles. ACS Chemical Biology, 2018, 13, 2329-2338.	1.6	15
194	Polyvalent Catalysts Operating on Polyvalent Substrates: A Model for Surface ontrolled Reactivity. Angewandte Chemie - International Edition, 2016, 55, 12643-12649.	7.2	14
195	Single-Point Mutations in QÎ ² Virus-like Particles Change Binding to Cells. Biomacromolecules, 2021, 22, 3332-3341.	2.6	14
196	Zeolite-like performance for xylene isomer purification using polymer-derived carbon membranes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14
197	N-glycosylation profiles of the SARS-CoV-2 spike D614G mutant and its ancestral protein characterized by advanced mass spectrometry. Scientific Reports, 2021, 11, 23561.	1.6	14
198	Scalable Formation of Diamine-Appended Metal–Organic Framework Hollow Fiber Sorbents for Postcombustion CO ₂ Capture. Jacs Au, 2022, 2, 1350-1358.	3.6	14

#	Article	IF	CITATIONS
199	DIOS-MSEED: A chip-based method for measurement of enantiomeric excess by kinetic resolution/mass spectrometry. Israel Journal of Chemistry, 2001, 41, 313-316.	1.0	13
200	2,6-Dichloro-9-thiabicyclo[3.3.1]nonane: Multigram Display of Azide and Cyanide Components on a Versatile Scaffold. Molecules, 2006, 11, 212-218.	1.7	13
201	Theoretical Analysis of the Retro-Diels–Alder Reactivity of Oxanorbornadiene Thiol and Amine Adducts. Organic Letters, 2017, 19, 4504-4507.	2.4	13
202	Confronting Racism in Chemistry Journals. ACS Applied Materials & amp; Interfaces, 2020, 12, 28925-28927.	4.0	13
203	High Specificity in Response of the Sodium-Dependent Multivitamin Transporter to Derivatives of Pantothenic Acid. Current Topics in Medicinal Chemistry, 2013, 13, 837-842.	1.0	13
204	Fragmentable Polycationic Materials Based on Anchimeric Assistance. Chemistry of Materials, 2016, 28, 146-152.	3.2	12
205	Immunological Properties of Protein–Polymer Nanoparticles. ACS Applied Bio Materials, 2019, 2, 93-103.	2.3	12
206	Degradable Hydrogels for the Delivery of Immune-Modulatory Proteins in the Wound Environment. ACS Applied Bio Materials, 2020, 3, 4779-4788.	2.3	12
207	High-throughput quantitation of SARS-CoV-2 antibodies in a single-dilution homogeneous assay. Scientific Reports, 2021, 11, 12330.	1.6	12
208	Stability of pentaammineosmium(II) in aqueous solution. Inorganic Chemistry, 1993, 32, 2123-2127.	1.9	11
209	GABABreceptor allosteric modulators exhibit pathway-dependent and species-selective activity. Pharmacology Research and Perspectives, 2017, 5, e00288.	1.1	11
210	High-affinity anti-glycan antibodies: challenges and strategies. Current Opinion in Immunology, 2019, 59, 65-71.	2.4	11
211	Stabilization of Near-Infrared Fluorescent Proteins by Packaging in Virus-like Particles. Biomacromolecules, 2020, 21, 2432-2439.	2.6	10
212	Substituent Effects on the Gas-Phase Basicity of Formamidine Ureas. European Journal of Organic Chemistry, 2006, 2006, 235-240.	1.2	9
213	Synthesis and Reactivity of 5-Substituted Furfuryl Carbamates via Oxanorbornadienes. Organic Letters, 2017, 19, 2833-2836.	2.4	9
214	Heparin Binding to an Engineered Virus-like Nanoparticle Antagonist. Biomacromolecules, 2017, 18, 4113-4120.	2.6	9
215	Electrode reaction pathways for the reduction of chromium(III)-ammine complexes at mercury electrodes. Inorganic Chemistry, 1977, 16, 2124-2127.	1.9	8
216	Traceless Release of Alcohols Using Thiol-Sensitive Oxanorbornadiene Linkers. Organic Letters, 2018, 20, 3233-3236.	2.4	8

#	Article	IF	CITATIONS
217	Surface-initiated atom-transfer radical polymerization (SI-ATRP) of bactericidal polymer brushes on poly(lactic acid) surfaces. Colloids and Surfaces B: Biointerfaces, 2022, 211, 112242.	2.5	8
218	Polyvalent Catalysts Operating on Polyvalent Substrates: A Model for Surfaceâ€Controlled Reactivity. Angewandte Chemie, 2016, 128, 12833-12839.	1.6	7
219	Direct Measurement of Trafficking of the Cystic Fibrosis Transmembrane Conductance Regulator to the Cell Surface and Binding to a Chemical Chaperone. Biochemistry, 2017, 56, 240-249.	1.2	7
220	C57BL/6 α-1,3-Galactosyltransferase Knockout Mouse as an Animal Model for Experimental Chagas Disease. ACS Infectious Diseases, 2020, 6, 1807-1815.	1.8	7
221	α-Gal immunization positively impacts Trypanosoma cruzi colonization of heart tissue in a mouse model. PLoS Neglected Tropical Diseases, 2021, 15, e0009613.	1.3	7
222	CO ₂ Capture Using PIM-1 Hollow Fiber Sorbents with Enhanced Performance by PEI Infusion. Industrial & Engineering Chemistry Research, 2021, 60, 12709-12718.	1.8	7
223	Palladium-Catalyzed Homocoupling of Arylboronic Acids and Esters Using Fluoride in Aqueous Solvents. Synlett, 2004, 2004, 2351-2354.	1.0	6
224	Selection of Natural Peptide Ligands for Copper-Catalyzed Azide–Alkyne Cycloaddition Catalysis. Bioconjugate Chemistry, 2017, 28, 1693-1701.	1.8	6
225	Class–Metal Adhesive Polymers from Copper(I) atalyzed Azide–Alkyne Cycloaddition. Macromolecular Chemistry and Physics, 2017, 218, 1600579.	1.1	6
226	The Influence of Substitution on Thiol-Induced Oxanorbornadiene Fragmentation. Organic Letters, 2021, 23, 3751-3754.	2.4	6
227	Transport of Molecular Cargo by Interaction with Virus‣ike Particle RNA. Angewandte Chemie - International Edition, 2022, 61, .	7.2	6
228	A Convenient Colorimetric Test for Aliphatic Azides. Synlett, 2004, 2004, 99-100.	1.0	5
229	Bis(formamidine–urea) Complexes of Nill and Cull:Synthesis, Characterization, and Reactivity. European Journal of Inorganic Chemistry, 2006, 2006, 4489-4493.	1.0	5
230	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Materials & Interfaces, 2020, 12, 20147-20148.	4.0	5
231	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	4.5	5
232	An experimental check of backscattering interferometry. Sensors and Actuators B: Chemical, 2017, 243, 977-981.	4.0	4
233	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	2.4	4
234	Activation of Urea as a Leaving Group in Substitution Reactions of Formamidine Ureas. Chemistry Letters, 2005, 34, 78-79.	0.7	3

#	Article	IF	CITATIONS
235	Thiabicyclononane-Based Hyperbranched Polycations for Low-Dose Oligonucleotide Delivery. Chemistry of Materials, 2018, 30, 8164-8169.	3.2	3
236	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Chemical Society, 2020, 142, 8059-8060.	6.6	3
237	Biopolymers as sustainable metal <scp>bioâ€adhesives</scp> . Journal of Applied Polymer Science, 2021, 138, 49783.	1.3	3
238	Acid-Mediated Amine Exchange ofN,N-Dimethylformamidines: Preparation of Electron-Rich Formamidines. Synlett, 2005, 2005, 2214-2218.	1.0	2
239	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Nano, 2020, 14, 5151-5152.	7.3	2
240	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	7.3	2
241	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	23.0	2
242	Undesired versus designed enzymatic cleavage of linkers for liver targeting. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 1144-1147.	1.0	1
243	Tsutomu Katsuki (1946–2014). Angewandte Chemie - International Edition, 2015, 54, 4708-4708.	7.2	1
244	Label-Free Molecular Observations of Membrane-Associated Species using Backscattering Interferometry. Biophysical Journal, 2015, 108, 617a.	0.2	1
245	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Energy Letters, 2020, 5, 1610-1611.	8.8	1
246	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science and Technology Letters, 2020, 7, 280-281.	3.9	1
247	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Education, 2020, 97, 1217-1218.	1.1	1
248	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	2.1	1
249	Azanorbornadienes as Thiol-Reactive Cleavable Linkers. Organic Letters, 2020, 22, 6248-6251.	2.4	1
250	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	5.3	1
251	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	1.2	1
252	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	1.4	1

#	Article	IF	CITATIONS
253	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	5.5	1
254	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	6.6	1
255	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	1.2	1
256	Update to Our Reader, Reviewer, and Author Communities—April 2020. Crystal Growth and Design, 2020, 20, 2817-2818.	1.4	1
257	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	2.6	1
258	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	1.6	1
259	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	2.3	1
260	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	1.7	1
261	Titelbild: Schwefel(VI)-fluorid-Austausch (SuFEx): Eine weitere gute Anwendung für die Click-Chemie (Angew. Chem. 36/2014). Angewandte Chemie, 2014, 126, 9545-9545.	1.6	0
262	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	2.5	0
263	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	1.2	0
264	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.	2.6	0
265	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Central Science, 2020, 6, 589-590.	5.3	0
266	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Biology, 2020, 15, 1282-1283.	1.6	0
267	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Neuroscience, 2020, 11, 1196-1197.	1.7	0
268	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Earth and Space Chemistry, 2020, 4, 672-673.	1.2	0
269	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Macro Letters, 2020, 9, 666-667.	2.3	0
270	Update to Our Reader, Reviewer, and Author Communities—April 2020. , 2020, 2, 563-564.		0

#	Article	IF	CITATIONS
271	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Photonics, 2020, 7, 1080-1081.	3.2	0
272	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Pharmacology and Translational Science, 2020, 3, 455-456.	2.5	0
273	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.	3.2	Ο
274	Update to Our Reader, Reviewer, and Author Communities—April 2020. Analytical Chemistry, 2020, 92, 6187-6188.	3.2	0
275	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemistry of Materials, 2020, 32, 3678-3679.	3.2	0
276	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Proteome Research, 2020, 19, 1883-1884.	1.8	0
277	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	1.6	0
278	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Polymer Materials, 2020, 2, 1739-1740.	2.0	0
279	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Combinatorial Science, 2020, 22, 223-224.	3.8	0
280	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Medicinal Chemistry Letters, 2020, 11, 1060-1061.	1.3	0
281	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		0
282	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	2.5	0
283	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	1.8	0
284	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	1.5	0
285	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	1.3	0
286	Confronting Racism in Chemistry Journals. Energy & amp; Fuels, 2020, 34, 7771-7773.	2.5	0
287	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	4.0	0
288	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biochemistry, 2020, 59, 1641-1642.	1.2	0

#	Article	IF	CITATIONS
289	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical & Engineering Data, 2020, 65, 2253-2254.	1.0	0
290	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Process Research and Development, 2020, 24, 872-873.	1.3	0
291	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.	1.6	0
292	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Electronic Materials, 2020, 2, 1184-1185.	2.0	0
293	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry C, 2020, 124, 9629-9630.	1.5	0
294	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry Letters, 2020, 11, 3571-3572.	2.1	0
295	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9, 979-980.	1.9	0
296	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Energy Materials, 2020, 3, 4091-4092.	2.5	0
297	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	2.3	0
298	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	1.7	0
299	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	3.2	0
300	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	1.1	0
301	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	1.3	0
302	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	3.2	0
303	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	3.2	0
304	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	1.7	0
305	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	1.9	0
306	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	2.4	0

#	Article	IF	CITATIONS
307	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	2.0	0
308	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	1.6	0
309	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882.	2.3	0
310	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	2.6	0
311	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	2.9	0
312	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	2.2	0
313	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	1.1	0
314	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	7.6	0
315	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	1.1	0
316	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	8.8	0
317	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	2.5	0
318	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	1.8	0
319	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Agricultural and Food Chemistry, 2020, 68, 5019-5020.	2.4	0
320	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry B, 2020, 124, 3603-3604.	1.2	0
321	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	1.8	0
322	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Nano Materials, 2020, 3, 3960-3961.	2.4	0
323	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Natural Products, 2020, 83, 1357-1358.	1.5	0
324	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	1.9	0

#	Article	IF	CITATIONS
325	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.0	0
326	Update to Our Reader, Reviewer, and Author Communities—April 2020. Bioconjugate Chemistry, 2020, 31, 1211-1212.	1.8	0
327	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.	1.1	0
328	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Research in Toxicology, 2020, 33, 1509-1510.	1.7	0
329	Update to Our Reader, Reviewer, and Author Communities—April 2020. Energy & Fuels, 2020, 34, 5107-5108.	2.5	0
330	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Bio Materials, 2020, 3, 2873-2874.	2.3	0
331	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.	1.7	0
332	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Society for Mass Spectrometry, 2020, 31, 1006-1007.	1.2	0
333	Update to Our Reader, Reviewer, and Author Communities—April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.	7.6	0
334	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biomacromolecules, 2020, 21, 1966-1967.	2.6	0
335	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Reviews, 2020, 120, 3939-3940.	23.0	0
336	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science & Technology, 2020, 54, 5307-5308.	4.6	0
337	Update to Our Reader, Reviewer, and Author Communities—April 2020. Langmuir, 2020, 36, 4565-4566.	1.6	0
338	Update to Our Reader, Reviewer, and Author Communities—April 2020. Molecular Pharmaceutics, 2020, 17, 1445-1446.	2.3	0
339	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Infectious Diseases, 2020, 6, 891-892.	1.8	0
340	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.	2.9	0
341	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry A, 2020, 124, 3501-3502.	1.1	0
342	Update to Our Reader, Reviewer, and Author Communities—April 2020. Nano Letters, 2020, 20, 2935-2936.	4.5	0

#	Article	IF	CITATIONS
343	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.	4.0	0
344	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Information and Modeling, 2020, 60, 2651-2652.	2.5	0
345	Update to Our Reader, Reviewer, and Author Communities—April 2020. Industrial & Engineering Chemistry Research, 2020, 59, 8509-8510.	1.8	0
346	Update to Our Reader, Reviewer, and Author Communities—April 2020. Inorganic Chemistry, 2020, 59, 5796-5797.	1.9	0
347	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organometallics, 2020, 39, 1665-1666.	1.1	0
348	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Letters, 2020, 22, 3307-3308.	2.4	0
349	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	3.7	0
350	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	2.3	0
351	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	2.0	0
352	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	2.4	0
353	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	1.2	0
354	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	3.9	0
355	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	0
356	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	1.8	0
357	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	2.3	0
358	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	1.5	0
359	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	2.3	0
360	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	3.2	0

#	Article	IF	CITATIONS
361	Confronting Racism in Chemistry Journals. Environmental Science & Technology, 2020, 54, 7735-7737.	4.6	0
362	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	1.1	0
363	Transport of Molecular Cargo by Interaction with Virusâ€ l ike Particle RNA. Angewandte Chemie, 0, , .	1.6	0
364	<i>ACS Combinatorial Science:</i> January, 1999–December, 2020. ACS Combinatorial Science, 2020, 22, 667-668.	3.8	0