
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1555405/publications.pdf Version: 2024-02-01

IMMES I MOON

#	Article	IF	CITATIONS
1	SARS-CoV-2 epitope–specific CD4 ⁺ memory T cell responses across COVID-19 disease severity and antibody durability. Science Immunology, 2022, 7, .	11.9	25
2	Peyer's patch T _H 17 cells are dispensable for gut IgA responses to oral immunization. Science Immunology, 2022, 7, .	11.9	7
3	Lipid-based vaccine nanoparticles for induction of humoral immune responses against HIV-1 and SARS-CoV-2. Journal of Controlled Release, 2021, 330, 529-539.	9.9	31
4	Targeting Neuroinflammation in Brain Cancer: Uncovering Mechanisms, Pharmacological Targets, and Neuropharmaceutical Developments. Frontiers in Pharmacology, 2021, 12, 680021.	3.5	33
5	Genetic Alterations in Gliomas Remodel the Tumor Immune Microenvironment and Impact Immune-Mediated Therapies. Frontiers in Oncology, 2021, 11, 631037.	2.8	10
6	Rejection of benign melanocytic nevi by nevus-resident CD4 ⁺ T cells. Science Advances, 2021, 7, .	10.3	6
7	Identification of antigen-specific TCR sequences based on biological and statistical enrichment in unselected individuals. JCI Insight, 2021, 6, .	5.0	9
8	Personalized combination nano-immunotherapy for robust induction and tumor infiltration of CD8+ T cells. Biomaterials, 2021, 274, 120844.	11.4	19
9	Photothermal Therapy Combined with Neoantigen Cancer Vaccination for Effective Immunotherapy against Large Established Tumors and Distant Metastasis. Advanced Therapeutics, 2021, 4, 2100093.	3.2	20
10	Vaccine nanodiscs plus polyICLC elicit robust CD8+ T cell responses in mice and non-human primates. Journal of Controlled Release, 2021, 337, 168-178.	9.9	16
11	Modularly Programmable Nanoparticle Vaccine Based on Polyethyleneimine for Personalized Cancer Immunotherapy. Advanced Science, 2021, 8, 2002577.	11.2	46
12	Opposing peripheral fates of tissueâ€restricted self antigenâ€specific conventional and regulatory CD4 ⁺ T cells. European Journal of Immunology, 2020, 50, 63-72.	2.9	7
13	DOCK2 Sets the Threshold for Entry into the Virtual Memory CD8+ T Cell Compartment by Negatively Regulating Tonic TCR Triggering. Journal of Immunology, 2020, 204, 49-57.	0.8	9
14	Engineering Antiviral Vaccines. ACS Nano, 2020, 14, 12370-12389.	14.6	50
15	Engineered Nanoparticles for Cancer Vaccination and Immunotherapy. Accounts of Chemical Research, 2020, 53, 2094-2105.	15.6	129
16	Differential expression of tissue-restricted antigens among mTEC is associated with distinct autoreactive T cell fates. Nature Communications, 2020, 11, 3734.	12.8	12
17	Cancer Immunotherapy via Targeting Cancer Stem Cells Using Vaccine Nanodiscs. Nano Letters, 2020, 20, 7783-7792.	9.1	55
18	Efficient Lymph Node-Targeted Delivery of Personalized Cancer Vaccines with Reactive Oxygen Species-Inducing Reduced Graphene Oxide Nanosheets. ACS Nano, 2020, 14, 13268-13278.	14.6	69

#	Article	IF	CITATIONS
19	Immunotherapy for gliomas: shedding light on progress in preclinical and clinical development. Expert Opinion on Investigational Drugs, 2020, 29, 659-684.	4.1	15
20	Robust Antiâ€Tumor T Cell Response with Efficient Intratumoral Infiltration by Nanodisc Cancer Immunotherapy. Advanced Therapeutics, 2020, 3, 2000094.	3.2	11
21	Systemic lupus erythematosus favors the generation of IL-17 producing double negative T cells. Nature Communications, 2020, 11, 2859.	12.8	59
22	Synthetic HDL Nanoparticles Delivering Docetaxel and CpG for Chemoimmunotherapy of Colon Adenocarcinoma. International Journal of Molecular Sciences, 2020, 21, 1777.	4.1	26
23	In vivo engineering of lymphocytes after systemic exosome-associated AAV delivery. Scientific Reports, 2020, 10, 4544.	3.3	20
24	Engineered Ovalbumin Nanoparticles for Cancer Immunotherapy. Advanced Therapeutics, 2020, 3, 2000100.	3.2	25
25	Prospects of biological and synthetic pharmacotherapies for glioblastoma. Expert Opinion on Biological Therapy, 2020, 20, 305-317.	3.1	16
26	Interleukin-33 activates regulatory T cells to suppress innate γδT cell responses in the lung. Nature Immunology, 2020, 21, 1371-1383.	14.5	63
27	Synthetic High-density Lipoprotein Nanodiscs for Personalized Immunotherapy Against Gliomas. Clinical Cancer Research, 2020, 26, 4369-4380.	7.0	48
28	Context-Dependent Role for T-bet in T Follicular Helper Differentiation and Germinal Center Function following Viral Infection. Cell Reports, 2019, 28, 1758-1772.e4.	6.4	40
29	Engineering patient-specific cancer immunotherapies. Nature Biomedical Engineering, 2019, 3, 768-782.	22.5	123
30	Multilamellar Vaccine Particle Elicits Potent Immune Activation with Protein Antigens and Protects Mice against Ebola Virus Infection. ACS Nano, 2019, 13, 11087-11096.	14.6	33
31	Positron Emission Tomography-Guided Photodynamic Therapy with Biodegradable Mesoporous Silica Nanoparticles for Personalized Cancer Immunotherapy. ACS Nano, 2019, 13, 12148-12161.	14.6	138
32	<i>Akkermansia muciniphila</i> induces intestinal adaptive immune responses during homeostasis. Science, 2019, 364, 1179-1184.	12.6	347
33	Cancer nanomedicine for combination cancer immunotherapy. Nature Reviews Materials, 2019, 4, 398-414.	48.7	658
34	Vaccine nanoparticles displaying recombinant Ebola virus glycoprotein for induction of potent antibody and polyfunctional T cell responses. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 18, 414-425.	3.3	17
35	Natural Tr1-like cells do not confer long-term tolerogenic memory. ELife, 2019, 8, .	6.0	8
36	Subcutaneous Nanodisc Vaccination with Neoantigens for Combination Cancer Immunotherapy. Bioconjugate Chemistry, 2018, 29, 771-775.	3.6	68

#	Article	IF	CITATIONS
37	Elimination of established tumors with nanodisc-based combination chemoimmunotherapy. Science Advances, 2018, 4, eaao1736.	10.3	269
38	High-density lipoprotein-mimicking nanodiscs carrying peptide for enhanced therapeutic angiogenesis in diabetic hindlimb ischemia. Biomaterials, 2018, 161, 69-80.	11.4	29
39	Synthetic High-Density Lipoprotein-Mediated Targeted Delivery of Liver X Receptors Agonist Promotes Atherosclerosis Regression. EBioMedicine, 2018, 28, 225-233.	6.1	74
40	Dual TLR agonist nanodiscs as a strong adjuvant system for vaccines and immunotherapy. Journal of Controlled Release, 2018, 282, 131-139.	9.9	104
41	Interrogation of Antigen Display on Individual Vaccine Nanoparticles for Achieving Neutralizing Antibody Responses against Hepatitis C Virus. Nano Letters, 2018, 18, 7832-7838.	9.1	27
42	Immunomodulating Nanomedicine for Cancer Therapy. Nano Letters, 2018, 18, 6655-6659.	9.1	121
43	Differential IL-2 expression defines developmental fates of follicular versus nonfollicular helper T cells. Science, 2018, 361, .	12.6	173
44	Generation of Allergen-Specific Tetramers for a Murine Model of Airway Inflammation. Methods in Molecular Biology, 2018, 1799, 165-181.	0.9	4
45	Distinct Graft-Specific TCR Avidity Profiles during Acute Rejection and Tolerance. Cell Reports, 2018, 24, 2112-2126.	6.4	17
46	PEGylated tumor cell membrane vesicles as a new vaccine platform for cancer immunotherapy. Biomaterials, 2018, 182, 157-166.	11.4	79
47	Particulate delivery systems for vaccination against bioterrorism agents and emerging infectious pathogens. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1403.	6.1	34
48	Effect of size and pegylation of liposomes and peptide-based synthetic lipoproteins on tumor targeting. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1869-1878.	3.3	45
49	Epitope mapping and kinetics of CD4 T cell immunity to pneumonia virus of mice in the C57BL/6 strain. Scientific Reports, 2017, 7, 3472.	3.3	2
50	Selective Induction of Homeostatic Th17 Cells in the Murine Intestine by Cholera Toxin Interacting with the Microbiota. Journal of Immunology, 2017, 199, 312-322.	0.8	18
51	Designer vaccine nanodiscs for personalized cancer immunotherapy. Nature Materials, 2017, 16, 489-496.	27.5	817
52	Immunogenic Cell Death Amplified by Co-localized Adjuvant Delivery for Cancer Immunotherapy. Nano Letters, 2017, 17, 7387-7393.	9.1	184
53	Synthetic high-density lipoprotein nanodisks for targeted withalongolide delivery to adrenocortical carcinoma. International Journal of Nanomedicine, 2017, Volume 12, 6581-6594.	6.7	29
54	Cationic liposomes promote antigen cross-presentation in dendritic cells by alkalizing the lysosomal pH and limiting the degradation of antigens. International Journal of Nanomedicine, 2017, Volume 12, 1251-1264.	6.7	67

#	Article	IF	CITATIONS
55	Allergic asthma is distinguished by sensitivity of allergen-specific CD4 ⁺ T cells and airway structural cells to type 2 inflammation. Science Translational Medicine, 2016, 8, 359ra132.	12.4	43
56	High-Density Lipoproteins: Nature's Multifunctional Nanoparticles. ACS Nano, 2016, 10, 3015-3041.	14.6	255
57	Interleukin-2-Dependent Allergen-Specific Tissue-Resident Memory Cells Drive Asthma. Immunity, 2016, 44, 155-166.	14.3	223
58	LYN- and AIRE-mediated tolerance checkpoint defects synergize to trigger organ-specific autoimmunity. Journal of Clinical Investigation, 2016, 126, 3758-3771.	8.2	19
59	Whole-animal Imaging and Flow Cytometric Techniques for Analysis of Antigen-specific CD8+ T Cell Responses after Nanoparticle Vaccination. Journal of Visualized Experiments, 2015, , e52771.	0.3	11
60	Nanoparticle Drug Delivery Systems Designed to Improve Cancer Vaccines and Immunotherapy. Vaccines, 2015, 3, 662-685.	4.4	225
61	Characterization of a New Epitope of IRBP That Induces Moderate to Severe Uveoretinitis in Mice With H-2 ^b Haplotype. , 2015, 56, 5439.		35
62	T Cell Receptor Cross-Reactivity between Similar Foreign and Self Peptides Influences Naive Cell Population Size and Autoimmunity. Immunity, 2015, 42, 95-107.	14.3	144
63	Cationic liposome–hyaluronic acid hybrid nanoparticles for intranasal vaccination with subunit antigens. Journal of Controlled Release, 2015, 208, 121-129.	9.9	133
64	The human Tâ€cell repertoire grows up. Immunology and Cell Biology, 2015, 93, 601-602.	2.3	4
65	Peanut oral immunotherapy transiently expands circulating Ara h 2–specific B cells with a homologous repertoire in unrelated subjects. Journal of Allergy and Clinical Immunology, 2015, 136, 125-134.e12.	2.9	103
66	A Wave of Regulatory T Cells into Neonatal Skin Mediates Tolerance to Commensal Microbes. Immunity, 2015, 43, 1011-1021.	14.3	424
67	CD4 + T Cell Tolerance to Tissue-Restricted Self Antigens Is Mediated by Antigen-Specific Regulatory T Cells Rather Than Deletion. Immunity, 2015, 43, 896-908.	14.3	205
68	A Dual TLR Agonist Adjuvant Enhances the Immunogenicity and Protective Efficacy of the Tuberculosis Vaccine Antigen ID93. PLoS ONE, 2014, 9, e83884.	2.5	60
69	Adjuvant formulation structure and composition are critical for the development of an effective vaccine against tuberculosis. Journal of Controlled Release, 2013, 172, 190-200.	9.9	101
70	Generation of Effector Memory T Cell–Based Mucosal and Systemic Immunity with Pulmonary Nanoparticle Vaccination. Science Translational Medicine, 2013, 5, 204ra130.	12.4	157
71	Cutting Edge: Type 1 Diabetes Occurs despite Robust Anergy among Endogenous Insulin-Specific CD4 T Cells in NOD Mice. Journal of Immunology, 2013, 191, 4913-4917.	0.8	39
72	Response to Comment on "The Role of Naive T Cell Precursor Frequency and Recruitment in Dictating Immune Response Magnitude― Journal of Immunology, 2013, 190, 1896-1896.	0.8	2

#	Article	IF	CITATIONS
73	Enhancing humoral responses to a malaria antigen with nanoparticle vaccines that expand T _{fh} cells and promote germinal center induction. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1080-1085.	7.1	291
74	The Role of Naive T Cell Precursor Frequency and Recruitment in Dictating Immune Response Magnitude. Journal of Immunology, 2012, 188, 4135-4140.	0.8	280
75	Detection of an autoreactive T-cell population within the polyclonal repertoire that undergoes distinct autoimmune regulator (Aire)-mediated selection. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7847-7852.	7.1	93
76	Peptide:MHC Tetramer-based Enrichment of Epitope-specific T cells. Journal of Visualized Experiments, 2012, , .	0.3	20
77	CXCR3 Chemokine Receptor-Ligand Interactions in the Lymph Node Optimize CD4+ T Helper 1 Cell Differentiation. Immunity, 2012, 37, 1091-1103.	14.3	376
78	Releasable Layer-by-Layer Assembly of Stabilized Lipid Nanocapsules on Microneedles for Enhanced Transcutaneous Vaccine Delivery. ACS Nano, 2012, 6, 8041-8051.	14.6	170
79	Quantitative impact of thymic selection on Foxp3 ⁺ and Foxp3 ^{â^`} subsets of self-peptide/MHC class II-specific CD4 ⁺ T cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14602-14607.	7.1	104
80	Immunization route dictates cross-priming efficiency and impacts the optimal timing of adjuvant delivery. Frontiers in Immunology, 2011, 2, 71.	4.8	11
81	Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses. Nature Materials, 2011, 10, 243-251.	27.5	498
82	CARMA1 Is Necessary for Optimal T Cell Responses in a Murine Model of Allergic Asthma. Journal of Immunology, 2011, 187, 6197-6207.	0.8	16
83	Robust Antigen Specific Th17 T Cell Response to Group A Streptococcus Is Dependent on IL-6 and Intranasal Route of Infection. PLoS Pathogens, 2011, 7, e1002252.	4.7	87
84	Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nature Medicine, 2010, 16, 1035-1041.	30.7	599
85	Distinct functions of antigen-specific CD4 T cells during murine <i>Mycobacterium tuberculosis</i> infection. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19408-19413.	7.1	163
86	Negative Selection and Peptide Chemistry Determine the Size of Naive Foreign Peptide–MHC Class II-Specific CD4+ T Cell Populations. Journal of Immunology, 2010, 185, 4705-4713.	0.8	39
87	CD4+CD25+Foxp3+ Regulatory T Cells Optimize Diversity of the Conventional T Cell Repertoire during Reconstitution from Lymphopenia. Journal of Immunology, 2010, 184, 4749-4760.	0.8	34
88	On the Composition of the Preimmune Repertoire of T Cells Specific for Peptide–Major Histocompatibility Complex Ligands. Annual Review of Immunology, 2010, 28, 275-294.	21.8	212
89	Positive selection optimizes the number and function of MHCII-restricted CD4 ⁺ T cell clones in the naive polyclonal repertoire. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11241-11245.	7.1	39
90	Tracking epitope-specific T cells. Nature Protocols, 2009, 4, 565-581.	12.0	263

#	Article	IF	CITATIONS
91	Dendritic Cell Antigen Presentation Drives Simultaneous Cytokine Production by Effector and Regulatory T Cells in Inflamed Skin. Immunity, 2009, 30, 277-288.	14.3	140
92	Tracking the Dynamics of Salmonella Specific T Cell Responses. Current Topics in Microbiology and Immunology, 2009, 334, 179-198.	1.1	29
93	Linked T Cell Receptor and Cytokine Signaling GovernÂthe Development of the Regulatory T Cell Repertoire. Immunity, 2008, 28, 112-121.	14.3	356
94	Antigen Persistence Is Required for Dendritic Cell Licensing and CD8+ T Cell Cross-Priming. Journal of Immunology, 2008, 181, 3067-3076.	0.8	44
95	Naive CD4+ T Cell Frequency Varies for Different Epitopes and Predicts Repertoire Diversity and Response Magnitude. Immunity, 2007, 27, 203-213.	14.3	857
96	Naive and Memory CD4+ T Cell Survival Controlled by Clonal Abundance. Science, 2006, 312, 114-116.	12.6	316
97	Transcription-induced Chromatin Remodeling at the c-myc Gene Involves the Local Exchange of Histone H2A.Z. Journal of Biological Chemistry, 2005, 280, 25298-25303.	3.4	78
98	A Permissive Role for Phosphatidylinositol 3-Kinase in the Stat5- mediated Expression of Cyclin D2 by the Interleukin-2 Receptor. Journal of Biological Chemistry, 2004, 279, 5520-5527.	3.4	51
99	Uncoupling of Promitogenic and Antiapoptotic Functions of IL-2 by Smad-Dependent TGF-Î ² Signaling. Journal of Immunology, 2003, 170, 5563-5570.	0.8	33
100	Phosphatidylinositol 3-Kinase Potentiates, but Does Not Trigger, T Cell Proliferation Mediated by the IL-2 Receptor. Journal of Immunology, 2001, 167, 2714-2723.	0.8	51
101	Stat5 and Sp1 Regulate Transcription of the Cyclin D2 Gene in Response to IL-2. Journal of Immunology, 2001, 166, 1723-1729.	0.8	93
102	New Role for Shc in Activation of the Phosphatidylinositol 3-Kinase/Akt Pathway. Molecular and Cellular Biology, 2000, 20, 7109-7120.	2.3	241
103	Inhibition of Human Immunodeficiency Virus Type 1 Replication in Myelomonocytic Cells Derived from Retroviral Vector-Transduced Peripheral Blood Progenitor Cells. Human Gene Therapy, 1998, 9, 333-340.	2.7	9
104	Hematopoietic Potential and Retroviral Transduction of CD34+Thy-1+ Peripheral Blood Stem Cells From Asymptomatic Human Immunodeficiency Virus Type-1–Infected Individuals Mobilized With Granulocyte Colony-Stimulating Factor. Blood, 1997, 89, 4299-4306.	1.4	28