
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/155530/publications.pdf Version: 2024-02-01

Κεννετή Υ Τολι

#	Article	IF	CITATIONS
1	The Origins of Merkel Cell Carcinoma: Defining Paths to the Neuroendocrine Phenotype. Journal of Investigative Dermatology, 2022, 142, 507-509.	0.7	4
2	spatialGE: quantification and visualization of the tumor microenvironment heterogeneity using spatial transcriptomics. Bioinformatics, 2022, 38, 2645-2647.	4.1	12
3	Skin Microbiome Variation with CancerÂProgression in Human Cutaneous Squamous Cell Carcinoma. Journal of Investigative Dermatology, 2022, 142, 2773-2782.e16.	0.7	16
4	Genomic and Single-Cell Landscape Reveals Novel Drivers and Therapeutic Vulnerabilities of Transformed Cutaneous T-cell Lymphoma. Cancer Discovery, 2022, 12, 1294-1313.	9.4	18
5	miR-181a Promotes Multiple Protumorigenic Functions by Targeting TGFβR3. Journal of Investigative Dermatology, 2022, 142, 1956-1965.e2.	0.7	4
6	Tumor Expression Quantitative Trait Methylation Screening Reveals Distinct CpG Panels for Deconvolving Cancer Immune Signatures. Cancer Research, 2022, 82, 1724-1735.	0.9	6
7	Noninvasive Assessment of Epidermal Genomic Markers of UV Exposure in Skin. Journal of Investigative Dermatology, 2021, 141, 124-131.e2.	0.7	6
8	CERKL is upregulated in cutaneous squamous cell carcinoma and maintains cellular sphingolipids and resistance to oxidative stress*. British Journal of Dermatology, 2021, 185, 147-152.	1.5	5
9	A MAPK/miR-29 Axis Suppresses Melanoma by Targeting MAFG and MYBL2. Cancers, 2021, 13, 1408.	3.7	16
10	Hyaluronic acid conjugates for topical treatment of skin cancer lesions. Science Advances, 2021, 7, .	10.3	15
11	An analysis of the use of targeted therapies in patients with advanced Merkel cell carcinoma and an evaluation of genomic correlates of response. Cancer Medicine, 2021, 10, 5889-5896.	2.8	10
12	Transposon mutagenesis identifies cooperating genetic drivers during keratinocyte transformation and cutaneous squamous cell carcinoma progression. PLoS Genetics, 2021, 17, e1009094.	3.5	2
13	Randomized controlled trial of fractionated laser resurfacing on aged skin as prophylaxis against actinic neoplasia. Journal of Clinical Investigation, 2021, 131, .	8.2	11
14	Pan-cancer analysis reveals TAp63-regulated oncogenic lncRNAs that promote cancer progression through AKT activation. Nature Communications, 2020, 11, 5156.	12.8	12
15	Integrative transcriptomic analysis for linking acute stress responses to squamous cell carcinoma development. Scientific Reports, 2020, 10, 17209.	3.3	4
16	miRNA―and cytokineâ€associated extracellular vesicles mediate squamous cell carcinomas. Journal of Extracellular Vesicles, 2020, 9, 1790159.	12.2	34
17	TAp63-Regulated miRNAs Suppress Cutaneous Squamous Cell Carcinoma through Inhibition of a Network of Cell-Cycle Genes. Cancer Research, 2020, 80, 2484-2497.	0.9	16
18	CERKL is Upregulated in Cutaneous Squamous Cell Carcinoma and Maintains Cellular Sphingolipids and Resistance to Oxidative Stress. British Journal of Dermatology, 2020, , .	1.5	1

#	Article	IF	CITATIONS
19	CERKL is Upregulated in Cutaneous Squamous Cell Carcinoma and Maintains Cellular Sphingolipids and Resistance to Oxidative Stress. British Journal of Dermatology, 2020, , .	1.5	1
20	Targeting ERK beyond the boundaries of the kinase active site in melanoma. Molecular Carcinogenesis, 2019, 58, 1551-1570.	2.7	26
21	Molecular and immune targets for Merkel cell carcinoma therapy and prevention. Molecular Carcinogenesis, 2019, 58, 1602-1611.	2.7	5
22	JNK2 Is Required for the Tumorigenic Properties of Melanoma Cells. ACS Chemical Biology, 2019, 14, 1426-1435.	3.4	12
23	Differential Hairless Mouse Strain-Specific Susceptibility to Skin Cancer and Sunburn. Journal of Investigative Dermatology, 2019, 139, 1837-1840.e3.	0.7	8
24	Modulating multi-functional ERK complexes by covalent targeting of a recruitment site in vivo. Nature Communications, 2019, 10, 5232.	12.8	17
25	Cover Image, Volume 58, Issue 9. Molecular Carcinogenesis, 2019, 58, i.	2.7	0
26	The Genomic Landscape of Merkel Cell Carcinoma and Clinicogenomic Biomarkers of Response to Immune Checkpoint Inhibitor Therapy. Clinical Cancer Research, 2019, 25, 5961-5971.	7.0	118
27	Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas. Cell Reports, 2018, 23, 194-212.e6.	6.4	245
28	Distinct TP63 Isoform-Driven Transcriptional Signatures Predict Tumor Progression and Clinical Outcomes. Cancer Research, 2018, 78, 451-462.	0.9	22
29	APOBEC mutation drives early-onset squamous cell carcinomas in recessive dystrophic epidermolysis bullosa. Science Translational Medicine, 2018, 10, .	12.4	91
30	Systematic Epigenomic Analysis Reveals Chromatin States Associated with Melanoma Progression. Cell Reports, 2017, 19, 875-889.	6.4	78
31	TCF7L1 promotes skin tumorigenesis independently of β-catenin through induction of LCN2. ELife, 2017, 6, .	6.0	20
32	Comparative profiles of BRAF inhibitors: the paradox index as a predictor of clinical toxicity. Oncotarget, 2016, 7, 30453-30460.	1.8	48
33	Cross-species identification of genomic drivers of squamous cell carcinoma development across preneoplastic intermediates. Nature Communications, 2016, 7, 12601.	12.8	123
34	Distinct downstream targets manifest p53-dependent pathologies in mice. Oncogene, 2016, 35, 5713-5721.	5.9	16
35	Differential Tâ€cell subset representation in cutaneous squamous cell carcinoma arising in immunosuppressed versus immunocompetent individuals. Experimental Dermatology, 2016, 25, 245-247.	2.9	6
36	MEK Is a Therapeutic and Chemopreventative Target in Squamous Cell Carcinoma. Journal of Investigative Dermatology, 2016, 136, 1920-1924.	0.7	12

#	Article	IF	CITATIONS
37	ΔNp63/DGCR8-Dependent MicroRNAs Mediate Therapeutic Efficacy of HDAC Inhibitors in Cancer. Cancer Cell, 2016, 29, 874-888.	16.8	32
38	BRAF inhibitor therapy–associated melanocytic lesions lack the BRAF V600E mutation and show increased levels of cyclin D1 expression. Human Pathology, 2016, 50, 79-89.	2.0	18
39	When "Effective―Prevention Agents Fail to Elicit Anticipated Effects: Challenges in Trial Design. Cancer Prevention Research, 2016, 9, 125-127.	1.5	3
40	Molecular cancer prevention: Current status and future directions. Ca-A Cancer Journal for Clinicians, 2015, 65, 345-383.	329.8	83
41	Genomic Classification of Cutaneous Melanoma. Cell, 2015, 161, 1681-1696.	28.9	2,562
42	Multiple Gastrointestinal Polyps in Patients Treated with BRAF Inhibitors. Clinical Cancer Research, 2015, 21, 5215-5221.	7.0	17
43	Quantification of a Pharmacodynamic ERK End Point in Melanoma Cell Lysates: Toward Personalized Precision Medicine. ACS Medicinal Chemistry Letters, 2015, 6, 47-52.	2.8	14
44	IAPP-driven metabolic reprogramming induces regression of p53-deficient tumours in vivo. Nature, 2015, 517, 626-630.	27.8	117
45	Complement component C3 mediates Th1/Th17 polarization in human T-cell activation and cutaneous GVHD. Bone Marrow Transplantation, 2014, 49, 972-976.	2.4	33
46	The RAC1 P29S Hotspot Mutation in Melanoma Confers Resistance to Pharmacological Inhibition of RAF. Cancer Research, 2014, 74, 4845-4852.	0.9	148
47	Mutational Landscape of Aggressive Cutaneous Squamous Cell Carcinoma. Clinical Cancer Research, 2014, 20, 6582-6592.	7.0	493
48	Sorafenib Suppresses JNK-Dependent Apoptosis through Inhibition of ZAK. Molecular Cancer Therapeutics, 2014, 13, 221-229.	4.1	27
49	Sweet syndrome following vemurafenib therapy for recurrent cholangiocarcinoma. Journal of Cutaneous Pathology, 2014, 41, 326-328.	1.3	28
50	Histological Features Associated With Vemurafenib-Induced Skin Toxicities. American Journal of Dermatopathology, 2014, 36, 557-561.	0.6	17
51	Induced multipotency in adult keratinocytes through down-regulation of <i>ΔNp63</i> or <i>DGCR8</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E572-81.	7.1	61
52	Dermatologic toxicities to targeted cancer therapy: shared clinical and histologic adverse skin reactions. International Journal of Dermatology, 2014, 53, 376-384.	1.0	62
53	Safety and activity of lenalidomide and rituximab in untreated indolent lymphoma: an open-label, phase 2 trial. Lancet Oncology, The, 2014, 15, 1311-1318.	10.7	239
54	Introduction to Precision Medicine. Seminars in Cutaneous Medicine and Surgery, 2014, 33, 59-59.	1.6	0

#	Article	IF	CITATIONS
55	Optimized lysis buffer reagents for solubilization and preservation of proteins from cells and tissues. Drug Delivery and Translational Research, 2013, 3, 428-436.	5.8	5
56	Drug safety evaluation of vemurafenib in the treatment of melanoma. Expert Opinion on Drug Safety, 2013, 12, 767-775.	2.4	4
57	Diagnostic opportunities based on skin biomarkers. European Journal of Pharmaceutical Sciences, 2013, 50, 546-556.	4.0	64
58	BRAF inhibitors suppress apoptosis through off-target inhibition of JNK signaling. ELife, 2013, 2, e00969.	6.0	67
59	TAp63 Is a Master Transcriptional Regulator of Lipid and Glucose Metabolism. Cell Metabolism, 2012, 16, 511-525.	16.2	96
60	A reagent to facilitate protein recovery from cells and tissues. Drug Delivery and Translational Research, 2012, 2, 297-304.	5.8	5
61	Kaposi sarcoma presenting as a cutaneous horn. Journal of the American Academy of Dermatology, 2011, 64, 447-448.	1.2	8
62	Roles of the immune system in skin cancer. British Journal of Dermatology, 2011, 165, 953-965.	1.5	151
63	Assessing the Treatment of Nonmelanoma Skin Cancers. Archives of Dermatology, 2011, 147, 605.	1.4	1
64	Remote Assessment of Acne: The Use of Acne Grading Tools to Evaluate Digital Skin Images. Telemedicine Journal and E-Health, 2009, 15, 426-430.	2.8	25
65	Dynamic Gene Expression Analysis Links Melanocyte Growth Arrest with Nevogenesis. Cancer Research, 2009, 69, 9029-9037.	0.9	1
66	TAp63 Prevents Premature Aging by Promoting Adult Stem Cell Maintenance. Cell Stem Cell, 2009, 5, 64-75.	11.1	228
67	Lues Maligna in Early HIV Infection Case Report and Review of the Literature. Sexually Transmitted Diseases, 2009, 36, 512-514.	1.7	58
68	Collagenous vasculopathy: a report of three cases. Journal of Cutaneous Pathology, 2008, 35, 967-970.	1.3	51
69	Primer on the human genome. Journal of the American Academy of Dermatology, 2007, 56, 719-735.	1.2	10
70	Nodular presentation of secondary syphilis. Journal of the American Academy of Dermatology, 2007, 57, S57-S58.	1.2	19
71	Systemic Adjuvant Therapy for Patients With High-Risk Melanoma. Archives of Dermatology, 2007, 143, 779-82.	1.4	12
72	MELPREDICT: a logistic regression model to estimate CDKN2A carrier probability. Journal of Medical Genetics, 2006, 43, 501-506.	3.2	29

#	Article	IF	CITATIONS
73	Evidence-Based Medicine. Archives of Dermatology, 2005, 141, 773-4.	1.4	5
74	The genetics of skin cancer. American Journal of Medical Genetics Part A, 2004, 131C, 82-92.	2.4	68
75	ARF mutation accelerates pituitary tumor development in Rb+/- mice. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16865-16870.	7.1	42
76	ARF Is Not Required for Apoptosis in Rb Mutant Mouse Embryos. Current Biology, 2002, 12, 159-163.	3.9	70
77	p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature, 2002, 416, 560-564.	27.8	775
78	Expression of cyclins E1 and E2 during mouse development and in neoplasia. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 13138-13143.	7.1	69
79	An intact HDM2 RING-finger domain is required for nuclear exclusion of p53. Nature Cell Biology, 2000, 2, 563-568.	10.3	312
80	Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature, 2000, 407, 645-648.	27.8	656
81	Analysis of Cell Mechanics in Single Vinculin-Deficient Cells Using a Magnetic Tweezer. Biochemical and Biophysical Research Communications, 2000, 277, 93-99.	2.1	194
82	Mutation of E2f-1 Suppresses Apoptosis and Inappropriate S Phase Entry and Extends Survival of Rb-Deficient Mouse Embryos. Molecular Cell, 1998, 2, 293-304.	9.7	361
83	Comparative Electrotonic Analysis of Three Classes of Rat Hippocampal Neurons. Journal of Neurophysiology, 1997, 78, 703-720.	1.8	127
84	Efficient mapping from neuroanatomical to electrotonic space. Network: Computation in Neural Systems, 1994, 5, 21-46.	3.6	23
85	Hebbian learning is jointly controlled by electrotonic and input structure. Network: Computation in Neural Systems, 1994, 5, 1-19.	3.6	10
86	Hebbian learning is jointly controlled by electrotonic and input structure. Network: Computation in Neural Systems, 1994, 5, 1-19.	3.6	6
87	Efficient mapping from neuroanatomical to electrotonic space. Network: Computation in Neural Systems, 1994, 5, 21-46.	3.6	7