
Pedro H S Brancalion

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1554687/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biomass resilience of Neotropical secondary forests. Nature, 2016, 530, 211-214.	13.7	763
2	Functional Extinction of Birds Drives Rapid Evolutionary Changes in Seed Size. Science, 2013, 340, 1086-1090.	6.0	560
3	Global priority areas for ecosystem restoration. Nature, 2020, 586, 724-729.	13.7	489
4	Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Science Advances, 2016, 2, e1501639.	4.7	423
5	Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature, 2019, 569, 404-408.	13.7	371
6	When is a forest a forest? Forest concepts and definitions in the era of forest and landscape restoration. Ambio, 2016, 45, 538-550.	2.8	341
7	Integrating genetic and silvicultural strategies to minimize abiotic and biotic constraints in Brazilian eucalypt plantations. Forest Ecology and Management, 2013, 301, 6-27.	1.4	314
8	Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. Global Change Biology, 2021, 27, 1328-1348.	4.2	306
9	Biodiversity recovery of Neotropical secondary forests. Science Advances, 2019, 5, eaau3114.	4.7	291
10	Global restoration opportunities in tropical rainforest landscapes. Science Advances, 2019, 5, eaav3223.	4.7	286
11	Large-scale ecological restoration of high-diversity tropical forests in SE Brazil. Forest Ecology and Management, 2011, 261, 1605-1613.	1.4	276
12	A Policyâ€Driven Knowledge Agenda for Global Forest and Landscape Restoration. Conservation Letters, 2017, 10, 125-132.	2.8	265
13	Tree planting is not a simple solution. Science, 2020, 368, 580-581.	6.0	265
14	Strategic approaches to restoring ecosystems can triple conservation gains and halve costs. Nature Ecology and Evolution, 2019, 3, 62-70.	3.4	199
15	Restoring forests as a means to many ends. Science, 2019, 365, 24-25.	6.0	197
16	A critical analysis of the Native Vegetation Protection Law of Brazil (2012): updates and ongoing initiatives. Natureza A Conservacao, 2016, 14, 1-15.	2.5	193
17	The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science, 2022, 376, 839-844.	6.0	188
18	Multidimensional tropical forest recovery. Science, 2021, 374, 1370-1376.	6.0	165

#	Article	IF	CITATIONS
19	Controlling invasive plant species in ecological restoration: A global review. Journal of Applied Ecology, 2020, 57, 1806-1817.	1.9	155
20	Guidance for successful tree planting initiatives. Journal of Applied Ecology, 2020, 57, 2349-2361.	1.9	148
21	Emerging Threats and Opportunities for Largeâ€Scale Ecological Restoration in the Atlantic Forest of Brazil. Restoration Ecology, 2011, 19, 154-158.	1.4	138
22	Creating space for largeâ€scale restoration in tropical agricultural landscapes. Frontiers in Ecology and the Environment, 2015, 13, 211-218.	1.9	121
23	Balancing economic costs and ecological outcomes of passive and active restoration in agricultural landscapes: the case of Brazil. Biotropica, 2016, 48, 856-867.	0.8	121
24	How good are tropical forest patches for ecosystem services provisioning?. Landscape Ecology, 2014, 29, 187-200.	1.9	120
25	Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nature Ecology and Evolution, 2019, 3, 928-934.	3.4	120
26	Priority setting for scaling-up tropical forest restoration projects: Early lessons from the Atlantic Forest Restoration Pact. Environmental Science and Policy, 2013, 33, 395-404.	2.4	118
27	Legume abundance along successional and rainfall gradients in Neotropical forests. Nature Ecology and Evolution, 2018, 2, 1104-1111.	3.4	107
28	Global trends in nature's contributions to people. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32799-32805.	3.3	103
29	Beyond hectares: four principles to guide reforestation in the context of tropical forest and landscape restoration. Restoration Ecology, 2017, 25, 491-496.	1.4	101
30	What Role Should Government Regulation Play in Ecological Restoration? Ongoing Debate in São Paulo State, Brazil. Restoration Ecology, 2011, 19, 690-695.	1.4	99
31	Governing and Delivering a Biome-Wide Restoration Initiative: The Case of Atlantic Forest Restoration Pact in Brazil. Forests, 2014, 5, 2212-2229.	0.9	99
32	Functional traits and ecosystem services in ecological restoration. Restoration Ecology, 2020, 28, 1372-1383.	1.4	94
33	Cultural Ecosystem Services and Popular Perceptions of the Benefits of an Ecological Restoration Project in the Brazilian Atlantic Forest. Restoration Ecology, 2014, 22, 65-71.	1.4	93
34	Indirect effects of habitat loss via habitat fragmentation: A cross-taxa analysis of forest-dependent species. Biological Conservation, 2020, 241, 108368.	1.9	93
35	Hidden destruction of older forests threatens Brazil's Atlantic Forest and challenges restoration programs. Science Advances, 2021, 7, .	4.7	92
36	What makes ecosystem restoration expensive? A systematic cost assessment of projects in Brazil. Biological Conservation, 2019, 240, 108274.	1.9	88

#	Article	IF	CITATIONS
37	The number of tree species on Earth. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	86
38	Governing a pioneer program on payment for watershed services: Stakeholder involvement, legal frameworks and early lessons from the Atlantic forest of Brazil. Ecosystem Services, 2015, 16, 23-32.	2.3	82
39	Establishment of tree seedlings in the understory of restoration plantations: natural regeneration and enrichment plantings. Restoration Ecology, 2016, 24, 100-108.	1.4	82
40	A landscape approach for costâ€effective largeâ€scale forest restoration. Journal of Applied Ecology, 2018, 55, 2767-2778.	1.9	82
41	On the need of legal frameworks for assessing restoration projects success: new perspectives from São Paulo state (Brazil). Restoration Ecology, 2015, 23, 754-759.	1.4	80
42	Fake legal logging in the Brazilian Amazon. Science Advances, 2018, 4, eaat1192.	4.7	75
43	Adding forests to the water–energy–food nexus. Nature Sustainability, 2021, 4, 85-92.	11.5	74
44	The effectiveness of lidar remote sensing for monitoring forest cover attributes and landscape restoration. Forest Ecology and Management, 2019, 438, 34-43.	1.4	70
45	There is hope for achieving ambitious Atlantic Forest restoration commitments. Perspectives in Ecology and Conservation, 2019, 17, 80-83.	1.0	69
46	Optimizing the Remote Detection of Tropical Rainforest Structure with Airborne Lidar: Leaf Area Profile Sensitivity to Pulse Density and Spatial Sampling. Remote Sensing, 2019, 11, 92.	1.8	69
47	Using markets to leverage investment in forest and landscape restoration in the tropics. Forest Policy and Economics, 2017, 85, 103-113.	1.5	68
48	Protocol for Monitoring Tropical Forest Restoration. Tropical Conservation Science, 2017, 10, 194008291769726.	0.6	66
49	Emerging threats linking tropical deforestation and the COVID-19 pandemic. Perspectives in Ecology and Conservation, 2020, 18, 243-246.	1.0	65
50	Instrumentos legais podem contribuir para a restauração de florestas tropicais biodiversas. Revista Arvore, 2010, 34, 455-470.	0.5	64
51	Monitoring restored tropical forest diversity and structure through UAV-borne hyperspectral and lidar fusion. Remote Sensing of Environment, 2021, 264, 112582.	4.6	61
52	Temperatura ótima de germinação de sementes de espécies arbóreas brasileiras. Revista Brasileira De Sementes = Brazilian Seed Journal, 2010, 32, 15-21.	0.5	59
53	Maximizing biodiversity conservation and carbon stocking in restored tropical forests. Conservation Letters, 2018, 11, e12454.	2.8	59
54	Rocketing restoration: enabling the upscaling of ecological restoration in the Anthropocene. Restoration Ecology, 2018, 26, 1017-1023.	1.4	57

#	Article	IF	CITATIONS
55	Natural regeneration and biodiversity: a global metaâ€analysis and implications for spatial planning. Biotropica, 2016, 48, 844-855.	0.8	55
56	Reversing defaunation by trophic rewilding in empty forests. Biotropica, 2017, 49, 5-8.	0.8	54
57	On the Need for Innovation in Ecological Restoration. Annals of the Missouri Botanical Garden, 2017, 102, 227-236.	1.3	53
58	Participatory monitoring to connect local and global priorities for forest restoration. Conservation Biology, 2018, 32, 525-534.	2.4	51
59	High diversity mixed plantations of Eucalyptus and native trees: An interface between production and restoration for the tropics. Forest Ecology and Management, 2018, 417, 247-256.	1.4	51
60	Intensive silviculture enhances biomass accumulation and tree diversity recovery in tropical forest restoration. Ecological Applications, 2019, 29, e01847.	1.8	51
61	Exotic eucalypts: From demonized trees to allies of tropical forest restoration?. Journal of Applied Ecology, 2020, 57, 55-66.	1.9	51
62	Environmental gradients and the evolution of successional habitat specialization: a test case with 14 Neotropical forest sites. Journal of Ecology, 2015, 103, 1276-1290.	1.9	50
63	Can current native tree seedling production and infrastructure meet an increasing forest restoration demand in Brazil?. Restoration Ecology, 2017, 25, 509-515.	1.4	50
64	Current Challenges and Perspectives for Governing Forest Restoration. Forests, 2014, 5, 3022-3030.	0.9	49
65	Recent deforestation drove the spike in Amazonian fires. Environmental Research Letters, 2020, 15, 121003.	2.2	46
66	Functional composition trajectory: a resolution to the debate between Suganuma, Durigan, and Reid. Restoration Ecology, 2016, 24, 1-3.	1.4	45
67	Look down—there is a gap—the need to include soil data in Atlantic Forest restoration. Restoration Ecology, 2019, 27, 361-370.	1.4	45
68	Persistent effects of fragmentation on tropical rainforest canopy structure after 20Âyr of isolation. Ecological Applications, 2019, 29, e01952.	1.8	45
69	Can overharvesting of a non-timber-forest-product change the regeneration dynamics of a tropical rainforest? The case study of Euterpe edulis. Forest Ecology and Management, 2014, 324, 117-125.	1.4	44
70	Improving Planting Stocks for the Brazilian Atlantic Forest Restoration through Communityâ€Based Seed Harvesting Strategies. Restoration Ecology, 2012, 20, 704-711.	1.4	43
71	How to Organize a Large-Scale Ecological Restoration Program? The Framework Developed by the Atlantic Forest Restoration Pact in Brazil. Journal of Sustainable Forestry, 2013, 32, 728-744.	0.6	42
72	Four approaches to guide ecological restoration in Latin America. Restoration Ecology, 2017, 25, 156-163.	1.4	41

#	Article	IF	CITATIONS
73	Best practice for the use of scenarios for restoration planning. Current Opinion in Environmental Sustainability, 2017, 29, 14-25.	3.1	40
74	Ecological outcomes and livelihood benefits of communityâ€managed agroforests and second growth forests in Southeast Brazil. Biotropica, 2016, 48, 868-881.	0.8	38
75	<scp>ATLANTIC EPIPHYTES</scp> : a data set of vascular and nonâ€vascular epiphyte plants and lichens from the Atlantic Forest. Ecology, 2019, 100, e02541.	1.5	38
76	Fruit traits of pioneer trees structure seed dispersal across distances on tropical deforested landscapes: Implications for restoration. Journal of Applied Ecology, 2020, 57, 2329-2339.	1.9	38
77	A new era in forest restoration monitoring. Restoration Ecology, 2020, 28, 8-11.	1.4	37
78	Early ecological outcomes of natural regeneration and tree plantations for restoring agricultural landscapes. Ecological Applications, 2018, 28, 373-384.	1.8	35
79	Co-Creating Conceptual and Working Frameworks for Implementing Forest and Landscape Restoration Based on Core Principles. Forests, 2020, 11, 706.	0.9	35
80	Small and slow is safe: On the drought tolerance of tropical tree species. Global Change Biology, 2022, 28, 2622-2638.	4.2	35
81	Governance innovations from a multi-stakeholder coalition to implement large-scale Forest Restoration in Brazil. World Development Perspectives, 2016, 3, 15-17.	0.8	34
82	Functional recovery of secondary tropical forests. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	34
83	Combining Eucalyptus wood production with the recovery of native tree diversity in mixed plantings: Implications for water use and availability. Forest Ecology and Management, 2018, 418, 34-40.	1.4	33
84	Drivers of tropical forest cover increase: A systematic review. Land Degradation and Development, 2020, 31, 1366-1379.	1.8	32
85	Evaluating climber cutting as a strategy to restore degraded tropical forests. Biological Conservation, 2016, 201, 309-313.	1.9	31
86	Forest and Landscape Restoration: A Review Emphasizing Principles, Concepts, and Practices. Land, 2021, 10, 28.	1.2	31
87	Overcoming biotic homogenization in ecological restoration. Trends in Ecology and Evolution, 2022, 37, 777-788.	4.2	31
88	Towards an applied metaecology. Perspectives in Ecology and Conservation, 2019, 17, 172-181.	1.0	30
89	Changes in Brazil's Forest Code can erode the potential of riparian buffers to supply watershed services. Land Use Policy, 2020, 94, 104511.	2.5	30
90	Genetic diversity of reintroduced tree populations in restoration plantations of the Brazilian Atlantic Forest. Restoration Ecology, 2018, 26, 694-701.	1.4	29

#	Article	IF	CITATIONS
91	Sementes de ipê-branco (Tabebuia roseo-alba (Ridl.) Sand Bignoniaceae): temperatura e substrato para o teste de germinação. Revista Brasileira De Sementes = Brazilian Seed Journal, 2007, 29, 139-143.	0.5	28
92	Differential seed germination of a keystone palm (<i>Euterpe edulis</i>) dispersed by avian frugivores. Journal of Tropical Ecology, 2012, 28, 615-618.	0.5	27
93	Animal-dispersed pioneer trees enhance the early regeneration in Atlantic Forest restoration plantations. Natureza A Conservacao, 2015, 13, 41-46.	2.5	27
94	Recovery of genetic diversity levels of a Neotropical tree in Atlantic Forest restoration plantations. Biological Conservation, 2017, 211, 110-116.	1.9	26
95	Genetic conservation of a threatened Neotropical palm through community-management of fruits in agroforests and second-growth forests. Forest Ecology and Management, 2018, 407, 200-209.	1.4	26
96	Considering farmer land use decisions in efforts to â€~scale up' Payments for Watershed Services. Ecosystem Services, 2017, 23, 238-247.	2.3	25
97	Aboveground Biomass Estimation in Amazonian Tropical Forests: a Comparison of Aircraft- and GatorEye UAV-borne LiDAR Data in the Chico Mendes Extractive Reserve in Acre, Brazil. Remote Sensing, 2020, 12, 1754.	1.8	25
98	Soil-mediated effects on potential Euterpe edulis (Arecaceae) fruit and palm heart sustainable management in the Brazilian Atlantic Forest. Forest Ecology and Management, 2012, 284, 78-85.	1.4	24
99	A new approach to map landscape variation in forest restoration success in tropical and temperate forest biomes. Journal of Applied Ecology, 2019, 56, 2675-2686.	1.9	24
100	Restoration Reserves as Biodiversity Safeguards in Human-Modified Landscapes. Natureza A Conservacao, 2013, 11, 186-190.	2.5	24
101	Biodiversity Persistence in Highly Human-Modified Tropical Landscapes Depends on Ecological Restoration. Tropical Conservation Science, 2013, 6, 705-710.	0.6	23
102	Optimizing seeding density of fastâ€growing native trees for restoring the Brazilian Atlantic Forest. Restoration Ecology, 2018, 26, 212-219.	1.4	23
103	Monitoring Young Tropical Forest Restoration Sites: How Much to Measure?. Tropical Conservation Science, 2018, 11, 194008291878091.	0.6	22
104	Detecting successional changes in tropical forest structure using GatorEye droneâ€borne lidar. Biotropica, 2020, 52, 1155-1167.	0.8	22
105	EpIGâ€ÐB: A database of vascular epiphyte assemblages in the Neotropics. Journal of Vegetation Science, 2020, 31, 518-528.	1.1	22
106	It is not just about time: Agricultural practices and surrounding forest cover affect secondary forest recovery in agricultural landscapes. Biotropica, 2021, 53, 496-508.	0.8	21
107	Teste de germinação de sementes de Parapiptadenia rigida (Benth.) brenan (Fabaceae). Revista Brasileira De Sementes = Brazilian Seed Journal, 2008, 30, 177-183.	0.5	20
108	Phenotypic plasticity and local adaptation favor range expansion of a Neotropical palm. Ecology and Evolution, 2018, 8, 7462-7475.	0.8	20

#	Article	IF	CITATIONS
109	How Legal-Oriented Restoration Programs Enhance Landscape Connectivity? Insights From the Brazilian Atlantic Forest. Tropical Conservation Science, 2018, 11, 194008291878507.	0.6	19
110	Ecological outcomes of agroforests and restoration 15 years after planting. Restoration Ecology, 2020, 28, 1135-1144.	1.4	19
111	Dormancy as exaptation to protect mimetic seeds against deterioration before dispersal. Annals of Botany, 2010, 105, 991-998.	1.4	18
112	Governance challenges for commercial exploitation of a non-timber forest product by marginalized rural communities. Environmental Conservation, 2016, 43, 208-220.	0.7	18
113	Associations between socioâ€environmental factors and landscapeâ€scale biodiversity recovery in naturally regenerating tropical and subtropical forests. Conservation Letters, 2021, 14, e12768.	2.8	18
114	Escarificação quÃmica para a superação da dormência de sementes de saguaraji-vermelho (Colubrina) Tj E	.TQ _A Q 0 0	rgBT /Overloc
115	Multi-Scalar Governance for Restoring the Brazilian Atlantic Forest: A Case Study on Small Landholdings in Protected Areas of Sustainable Development. Forests, 2014, 5, 599-619.	0.9	16
116	Multidimensional training among Latin America's restoration professionals. Restoration Ecology, 2019, 27, 477-484.	1.4	16
117	Balancing land sharing and sparing approaches to promote forest and landscape restoration in agricultural landscapes: Land approaches for forest landscape restoration. Perspectives in Ecology and Conservation, 2019, 17, 201-205.	1.0	16
118	Are We Misinterpreting Seed Predation in Palms?. Biotropica, 2011, 43, 12-14.	0.8	15
119	Cluster-root formation and carboxylate release in Euplassa cantareirae (Proteaceae) from a neotropical biodiversity hotspot. Plant and Soil, 2016, 403, 267-275.	1.8	15
120	Strategic Insights for Capacity Development on Forest Landscape Restoration: Implications for Addressing Global Commitments. Tropical Conservation Science, 2019, 12, 194008291988758.	0.6	15
121	The Native Vegetation Protection Law of Brazil and the challenge for first-order stream conservation. Perspectives in Ecology and Conservation, 2018, 16, 49-53.	1.0	14
122	Diversity, genetic structure, and population genomics of the tropical tree Centrolobium tomentosum in remnant and restored Atlantic forests. Conservation Genetics, 2019, 20, 1073-1085.	0.8	14
123	The cost of restoring carbon stocks in Brazil's Atlantic Forest. Land Degradation and Development, 2021, 32, 830-841.	1.8	14
124	Challenges and Opportunities in Applying a Landscape Ecology Perspective in Ecological Restoration: a Powerful Approach to Shape Neolandscapes. Natureza A Conservacao, 2013, 11, 103-107.	2.5	14
125	Seletividade dos herbicidas setoxidim, isoxaflutol e bentazon a espécies arbóreas nativas. Pesquisa Agropecuaria Brasileira, 2009, 44, 251-257.	0.9	13
126	Synergism Between Payments for Water-Related Ecosystem Services, Ecological Restoration, and Landscape Connectivity Within the Atlantic Forest Hotspot. Tropical Conservation Science, 2018, 11, 194008291879022.	0.6	13

#	Article	IF	CITATIONS
127	Implementing forest landscape restoration in Latin America: Stakeholder perceptions on legal frameworks. Land Use Policy, 2021, 104, 104244.	2.5	12
128	Efeito da luz e de diferentes temperaturas na germinação de sementes de Heliocarpus popayanensis L. Revista Arvore, 2008, 32, 225-232.	0.5	12
129	Rhizobia and other legume nodule bacteria richness in brazilian Araucaria angustifolia forest. Scientia Agricola, 2007, 64, 400-408.	0.6	11
130	Avaliação da viabilidade de sementes de coração-de-negro (Poecilanthe parviflora Benth) Tj ETQqO O O rgI 2008, 30, 208-214.	3T /Overlo 0.5	ck 10 Tf 50 6 11
131	Germinação de sementes aéreas pequenas de trapoeraba (Commelina benghalensis). Planta Daninha, 2009, 27, 931-939.	0.5	11
132	Implicações do cumprimento do Código Florestal vigente na redução de áreas agrÃcolas: um estudo de caso da produção canavieira no Estado de São Paulo. Biota Neotropica, 2010, 10, 63-66.	1.0	11
133	Phylogenetic patterns of Atlantic forest restoration communities are mainly driven by stochastic, dispersal related factors. Forest Ecology and Management, 2015, 354, 300-308.	1.4	11
134	Early Response of Tree Seed Arrival After Liana Cutting in a Disturbed Tropical Forest. Tropical Conservation Science, 2017, 10, 194008291772358.	0.6	11
135	Gender inclusion in ecological restoration. Restoration Ecology, 2021, 29, e13497.	1.4	11
136	Seed size-number trade-off in Euterpe edulis in plant communities of the Atlantic Forest. Scientia Agricola, 2014, 71, 226-231.	0.6	11
137	Which of the plethora of tree-growing projects to support?. One Earth, 2022, 5, 452-455.	3.6	11
138	Does a Native Grass (Imperata Brasiliensis Trin.) Limit Tropical Forest Restoration Like an Alien Grass (Melinis Minutiflora P. Beauv.)?. Tropical Conservation Science, 2014, 7, 639-656.	0.6	10
139	Forests: when natural regeneration is unrealistic. Nature, 2019, 570, 164-164.	13.7	10
140	Recovery of soil phosphorus on former bauxite mines through tropical forest restoration. Restoration Ecology, 2020, 28, 1237-1246.	1.4	10
141	High tree diversity enhances light interception in tropical forests. Journal of Ecology, 2021, 109, 2597-2611.	1.9	10
142	Genomic diversity is similar between Atlantic Forest restorations and natural remnants for the native tree Casearia sylvestris Sw PLoS ONE, 2018, 13, e0192165.	1.1	10
143	Strong floristic distinctiveness across Neotropical successional forests. Science Advances, 2022, 8, .	4.7	10
144	Do Terrestrial Tank Bromeliads in Brazil Create Safe Sites for Palm Establishment or Act as Natural Traps for Its Dispersed Seeds?. Biotropica, 2009, 41, 3-6.	0.8	9

#	Article	IF	CITATIONS
145	On the Need to Differentiate the Temporal Trajectories of Ecosystem Structure and Functions in Restoration Programs. Tropical Conservation Science, 2020, 13, 194008292091031.	0.6	9
146	Priming of pioneer tree Guazuma ulmifolia (Malvaceae) seeds evaluated by an automated computer image analysis. Scientia Agricola, 2010, 67, 274-279.	0.6	9
147	Mating System and Effective Population Size of the Overexploited Neotropical Tree (Myroxylon) Tj ETQq1 1 0.7	84314 rgE 1.0	BT /gverlock]
148	High gene flow through pollen partially compensates spatial limited gene flow by seeds for a Neotropical tree in forest conservation and restoration areas. Conservation Genetics, 2021, 22, 383-396.	0.8	8
149	Natural forest regrowth under different land use intensities and landscape configurations in the Brazilian Atlantic Forest. Forest Ecology and Management, 2022, 508, 120012.	1.4	8
150	Ecosystem restoration job creation potential in Brazil. People and Nature, 2022, 4, 1426-1434.	1.7	8
151	Microsatellite markers for the Cabreúva tree, Myroxylon peruiferum (Fabaceae), an endangered medicinal species from the Brazilian Atlantic Forest. Genetics and Molecular Research, 2014, 13, 6920-6925.	0.3	7
152	Contrasting regulatory frameworks to govern riparian forest restoration in Mexico and Brazil: Current status and needs for advances. World Development Perspectives, 2017, 5, 60-62.	0.8	7
153	Shelter from the storm: Restored populations of the neotropical tree Myroxylon peruiferum are as genetically diverse as those from conserved remnants. Forest Ecology and Management, 2018, 410, 95-103.	1.4	7
154	Genomic Diversity of Three Brazilian Native Food Crops Based on Double-Digest Restriction Site-Associated DNA Sequencing. Tropical Plant Biology, 2019, 12, 268-281.	1.0	7
155	Does crotalaria (Crotalaria breviflora) or pumpkin (Cucurbita moschata) inter-row cultivation in restoration plantings control invasive grasses?. Scientia Agricola, 2013, 70, 268-273.	0.6	7
156	Enriquecimento de floresta em restauração por meio de semeadura direta de lianas. Hoehnea (revista), 2013, 40, 465-472.	0.2	7
157	Multifunctional soil recovery during the restoration of Brazil's Atlantic Forest after bauxite mining. Journal of Applied Ecology, 2022, 59, 2262-2273.	1.9	7
158	Estratégias para auxiliar na conservação de florestas tropicais secundárias inseridas em paisagens alteradas. Boletim Do Museu Paraense EmÃłio Goeldi Ciências Naturais (Impresso), 2012, 7, 219-234.	0.1	7
159	Integrating farmers' decisions on the assessment of forest regeneration drivers in a rural landscape of Southeastern Brazil. Perspectives in Ecology and Conservation, 2021, 19, 338-344.	1.0	6
160	What tree rings can tell us about the competition between trees and lianas? A case study based on growth, anatomy, density, and carbon accumulation. Dendrochronologia, 2017, 42, 1-11.	1.0	5
161	No Effect of Variations in Overstory Diversity and Phylogenetic Distance on Early Performance of Enrichment Planted Seedlings in Restoration Plantations. Tropical Conservation Science, 2018, 11, 194008291880717.	0.6	5
162	Frugivore diversity increases evenness in the seed rain on deforested tropical landscapes. Oikos, 2022, 2022, .	1.2	5

#	Article	IF	CITATIONS
163	Transformative governance for linking forest and landscape restoration to human well-being in Latin America. Ecosystems and People, 2021, 17, 523-538.	1.3	5
164	Genetic diversity of Casearia sylvestris populations in remnants of the Atlantic Forest. Genetics and Molecular Research, 2017, 16, .	0.3	5
165	Reply to: Restoration prioritization must be informed by marginalized people. Nature, 2022, 607, E7-E9.	13.7	5
166	Corte foliar e tempo de transplantio para o uso de plântulas do sub-bosque na restauração florestal. Revista Arvore, 2012, 36, 331-339.	0.5	4
167	Landscape Ecology and Restoration Processes. , 2016, , 90-120.		4
168	Ecological outcomes and popular perceptions of urban restored forests in Rio de Janeiro, Brazil. Environmental Conservation, 2018, 45, 155-162.	0.7	4
169	Exploiting fruits of a threatened palm to trigger restoration of Brazil's Atlantic Forest. Restoration Ecology, 2021, 29, .	1.4	4
170	Predicting flooding tolerance of native tree species to restore flooded forests. Applied Vegetation Science, 2021, 24, .	0.9	4
171	Genetic diversity of reintroduced tree populations of Casearia sylvestris in Atlantic forest restoration sites. Forest Ecology and Management, 2021, 502, 119703.	1.4	4
172	Predicting landscapeâ€scale biodiversity recovery by natural tropical forest regrowth. Conservation Biology, 2021, , .	2.4	4
173	Conservação de sementes de Magnolia ovata St. Hil. Revista Brasileira De Sementes = Brazilian Seed Journal, 2009, 31, 96-105.	0.5	3
174	When and how could common gardens be useful in the ecological restoration of long-lived tropical plants as an aid to the selection of seed sources?. Plant Ecology and Diversity, 2015, 8, 81-90.	1.0	3
175	Shift in Abundance From Seedling to Juvenile Gives Lianas Advantage Over Trees: A Case Study in the Atlantic Forest Hotspot. Tropical Conservation Science, 2018, 11, 194008291880806.	0.6	3
176	Riparian-forest buffers: Bridging the gap between top-down and bottom-up restoration approaches in Latin America. Land Use Policy, 2019, 87, 104085.	2.5	3
177	A genetic approach for simulating persistence of reintroduced tree species populations in restored forests. Ecological Modelling, 2019, 403, 35-43.	1.2	3
178	Fenologia da frutificação de espécies vegetais nativas e a restauração florestal no arquipélago de Fernando de Noronha, PE, Brasil. Hoehnea (revista), 2013, 40, 473-483.	0.2	3
179	Caracterização das condições de microssÃŧio de áreas em restauração com diferentes idades. Revista Arvore, 2012, 36, 895-906.	0.5	2
180	Guidance Needed on Setting Dynamic Conservation Targets: A Response to Hiers et al Trends in Ecology and Evolution, 2017, 32, 238-239.	4.2	2

#	Article	IF	CITATIONS
181	Effects of bamboo dominance and palm-heart harvesting on the phylogenetic structure of the seed and seedling communities in an old-growth Atlantic Forest. Journal of Tropical Ecology, 2017, 33, 309-316.	0.5	2
182	Growth Stress in Peltophorum dubium and its Correlation with the Growth Variables. Floresta E Ambiente, 2018, 25, .	0.1	2
183	Rescue tree monocultures! A phylogenetic ecology approach to guide the choice of seedlings for enrichment planting in tropical monoculture plantations. Restoration Ecology, 2020, 28, 166-172.	1.4	2
184	Light- and nutrient-related relationships in mixed plantations of Eucalyptus and a high diversity of native tree species. New Forests, 2021, 52, 807-828.	0.7	2
185	Development and Characterization of Microsatellite Markers forPiptadenia gonoacantha(Fabaceae). Applications in Plant Sciences, 2015, 3, 1400107.	0.8	1
186	Estimativa da densidade da madeira em árvores vivas de Cedrela fissilis Vell. através de resistografia. Scientia Forestalis/Forest Sciences, 2017, 45, .	0.2	1
187	Fusion of Lidar and Hyperspectral Data from Drones for Ecological Questions: The Gatoreye Atlantic Forest Restoration Case Study. , 2021, , .		1
188	A comprehensive experimental assessment of glyphosate ecological impacts in riparian forest restoration. Ecological Applications, 2021, , e02472.	1.8	1
189	Parâmetros genéticos de crescimento inicial e frutificação de Dipteryx alata Vogel em teste de progênie e espaçamento. Scientia Forestalis/Forest Sciences, 2020, 48, .	0.2	1
190	Influência da composição de espécies florestais no microclima de sub-bosque de plantios jovens de restauração. Scientia Forestalis/Forest Sciences, 2016, 44, .	0.2	0
191	Preliminary results of using green manure species as a cost-effective option for forest restoration. Scientia Forestalis/Forest Sciences, 2020, 48, .	0.2	0