Enrique MartÃ-nez Force

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/155416/publications.pdf Version: 2024-02-01

131	2,908 citations	159585 30 h-index	²⁴³⁶²⁵ 44 g-index
papers	CITATIONS	II-IIIdex	g-index
133 all docs	133 docs citations	133 times ranked	3300 citing authors

#	Article	IF	CITATIONS
1	High-oleic sunflower seed oil. , 2022, , 109-124.		1
2	Differences in nutrient composition of sea fennel (Crithmum maritimum) grown in different habitats and optimally controlled growing conditions. Journal of Food Composition and Analysis, 2022, 106, 104266.	3.9	12
3	Metabolism and accumulation of hydroxylated fatty acids by castor (Ricinus comunis) seed microsomes. Plant Physiology and Biochemistry, 2022, 170, 266-274.	5.8	1
4	Crithmum maritimum seeds, a potential source for high-quality oil and phenolic compounds in soils with no agronomical relevance. Journal of Food Composition and Analysis, 2022, 108, 104413.	3.9	4
5	The Sunflower WRINKLED1 Transcription Factor Regulates Fatty Acid Biosynthesis Genes through an AW Box Binding Sequence with a Particular Base Bias. Plants, 2022, 11, 972.	3.5	5
6	Characterization and impact of sunflower plastidial octanoyltransferases (Helianthus annuus L.) on oil composition. Journal of Plant Physiology, 2022, 274, 153730.	3.5	0
7	Genome-Wide Mapping of Histone H3 Lysine 4 Trimethylation (H3K4me3) and Its Involvement in Fatty Acid Biosynthesis in Sunflower Developing Seeds. Plants, 2021, 10, 706.	3.5	10
8	Influence of soil salinity on the protein and fatty acid composition of the edible halophyte Halimione portulacoides. Food Chemistry, 2021, 352, 129370.	8.2	15
9	Sunflower (Helianthus annuus) fatty acid synthase complex: β-Ketoacyl-[acyl carrier protein] reductase genes. Plant Physiology and Biochemistry, 2021, 166, 689-699.	5.8	10
10	Lipid profiling and oil properties of Camelina sativa seeds engineered to enhance the production of saturated and omega-7 fatty acids. Industrial Crops and Products, 2021, 170, 113765.	5.2	8
11	High stearic sunflower oil: Latest advances and applications. OCL - Oilseeds and Fats, Crops and Lipids, 2021, 28, 35.	1.4	9
12	Characterization of Helianthus annuus Lipoic Acid Biosynthesis: The Mitochondrial Octanoyltransferase and Lipoyl Synthase Enzyme System. Frontiers in Plant Science, 2021, 12, 781917.	3.6	4
13	Phosphorus Availability Regulates TORC1 Signaling via LST8 in Chlamydomonas. Plant Cell, 2020, 32, 69-80.	6.6	43
14	Characterization and function of a sunflower (Helianthus annuus L.) Class II acyl-CoA-binding protein. Plant Science, 2020, 300, 110630.	3.6	6
15	Characterization of the acyl-ACP thioesterases from Koelreuteria paniculata reveals a new type of FatB thioesterase. Heliyon, 2020, 6, e05237.	3.2	4
16	Functional Characterization of Lysophosphatidylcholine: Acyl-CoA Acyltransferase Genes From Sunflower (Helianthus annuus L.). Frontiers in Plant Science, 2020, 11, 403.	3.6	9
17	Impact of sunflower (Helianthus annuus L.) plastidial lipoyl synthases genes expression in glycerolipids composition of transgenic Arabidopsis plants. Scientific Reports, 2020, 10, 3749.	3.3	7
18	Extra virgin olive oil diet intervention improves insulin resistance and islet performance in diet-induced diabetes in mice. Scientific Reports, 2019, 9, 11311.	3.3	23

#	Article	IF	CITATIONS
19	Agrobacterium-Mediated Transient Gene Expression in Developing Ricinus communis Seeds: A First Step in Making the Castor Oil Plant a Chemical Biofactory. Frontiers in Plant Science, 2019, 10, 1410.	3.6	6
20	Lipidomic Analysis of Plastidial Octanoyltransferase Mutants of Arabidopsis thaliana. Metabolites, 2019, 9, 209.	2.9	7
21	Shifting sowing of camelina from spring to autumn enhances the oil quality for bio-based applications in response to temperature and seed carbon stock. Industrial Crops and Products, 2019, 137, 66-73.	5.2	48
22	Functional characterization and structural modelling of Helianthus annuus (sunflower) ketoacyl-CoA synthases and their role in seed oil composition. Planta, 2019, 249, 1823-1836.	3.2	14
23	Inadequate control of thyroid hormones sensitizes to hepatocarcinogenesis and unhealthy aging. Aging, 2019, 11, 7746-7779.	3.1	12
24	Characterization of different ozonized sunflower oils I. Chemical changes during ozonization. Grasas Y Aceites, 2019, 70, 329.	0.9	7
25	Characterization of different ozonized sunflower oils II. Triacylglycerol condensation and physical properties. Grasas Y Aceites, 2019, 70, 330.	0.9	1
26	Molecular and biochemical characterization of the sunflower (Helianthus annuus L.) cytosolic and plastidial enolases in relation to seed development. Plant Science, 2018, 272, 117-130.	3.6	12
27	Autophagic flux is required for the synthesis of triacylglycerols and ribosomal protein turnover in Chlamydomonas. Journal of Experimental Botany, 2018, 69, 1355-1367.	4.8	82
28	New Insights Into Sunflower (Helianthus annuus L.) FatA and FatB Thioesterases, Their Regulation, Structure and Distribution. Frontiers in Plant Science, 2018, 9, 1496.	3.6	18
29	Chloroplast Damage Induced by the Inhibition of Fatty Acid Synthesis Triggers Autophagy in Chlamydomonas. Plant Physiology, 2018, 178, 1112-1129.	4.8	42
30	Characterization of Sunflower Stearinâ€Based Confectionary Fats in Bulk and in Compound Coatings. JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 1139-1150.	1.9	9
31	New insights in the composition of wax and sterol esters in common and mutant sunflower oils revealed by ESI-MS/MS. Food Chemistry, 2018, 269, 70-79.	8.2	19
32	Back cover: An extra virgin olive oil rich diet intervention ameliorates the nonalcoholic steatohepatitis induced by a highâ€fat "Westernâ€ŧype―diet in mice. Molecular Nutrition and Food Research, 2017, 61, 1770034.	3.3	4
33	Characterization of Xanthoceras sorbifolium Bunge seeds: Lipids, proteins and saponins content. Industrial Crops and Products, 2017, 109, 192-198.	5.2	46
34	An extra virgin olive oil rich diet intervention ameliorates the nonalcoholic steatohepatitis induced by a highâ€fat "Westernâ€ŧype―diet in mice. Molecular Nutrition and Food Research, 2017, 61, 1600549.	3.3	37
35	Chemical characterization and thermal properties of kernel oils from Tunisian peach and nectarine varieties of Prunus persica . Grasas Y Aceites, 2017, 68, 211.	0.9	10
36	Temperature effect on triacylglycerol species in seed oil from high stearic sunflower lines with different genetic backgrounds. Journal of the Science of Food and Agriculture, 2016, 96, 4367-4376.	3.5	11

#	Article	IF	CITATIONS
37	Molecular and biochemical characterization of the OLE-1 high-oleic castor seed (Ricinus communis L.) mutant. Planta, 2016, 244, 245-258.	3.2	17
38	Acyl carrier proteins from sunflower (Helianthus annuus L.) seeds and their influence on FatA and FatB acyl-ACP thioesterase activities. Planta, 2016, 244, 479-490.	3.2	21
39	Changes in chloroplast lipid contents and chloroplast ultrastructure in Sulla carnosa and Sulla coronaria leaves under salt stress. Journal of Plant Physiology, 2016, 198, 32-38.	3.5	61
40	Molecular cloning and characterization of the genes encoding a microsomal oleate Δ12 desaturase (CsFAD2) and linoleate Δ15 desaturase (CsFAD3) from Camelina sativa. Industrial Crops and Products, 2016, 89, 405-415.	5.2	27
41	Sunflower HaGPAT9-1 is the predominant GPAT during seed development. Plant Science, 2016, 252, 42-52.	3.6	30
42	Sunflower (Helianthus annuus) fatty acid synthase complex: β-hydroxyacyl-[acyl carrier protein] dehydratase genes. Planta, 2016, 243, 397-410.	3.2	18
43	Characterization of a small acyl-CoA-binding protein (ACBP) from Helianthus annuus L. and its binding affinities. Plant Physiology and Biochemistry, 2016, 102, 141-150.	5.8	24
44	Effect of the distribution of saturated fatty acids in the melting and crystallization profiles of high-oleic high-stearic oils. Grasas Y Aceites, 2016, 67, e149.	0.9	4
45	Sunflower Oil and Lipids Biosynthesis. , 2015, , 259-295.		5
46	Cloning, heterologous expression and biochemical characterization of plastidial sn-glycerol-3-phosphate acyltransferase from Helianthus annuus. Phytochemistry, 2015, 111, 27-36.	2.9	16
47	Sunflower (Helianthus annuus) fatty acid synthase complex: enoyl-[acyl carrier protein]-reductase genes. Planta, 2015, 241, 43-56.	3.2	17
48	Characterization of soluble acyl-ACP desaturases from Camelina sativa, Macadamia tetraphylla and Dolichandra unguis-cati. Journal of Plant Physiology, 2015, 178, 35-42.	3.5	19
49	Content of carotenoids, tocopherols, sterols, triterpenic and aliphatic alcohols, and volatile compounds in six walnuts (Juglans regia L.) varieties. Food Chemistry, 2015, 173, 972-978.	8.2	144
50	Effect of solvents on the fractionation of high oleic–high stearic sunflower oil. Food Chemistry, 2015, 172, 710-717.	8.2	14
51	Sunflower (<i>Helianthus annuus</i>) longâ€chain acylâ€coenzyme A synthetases expressed at high levels in developing seeds. Physiologia Plantarum, 2014, 150, 363-373.	5.2	28
52	Effect of a mutagenized acyl-ACP thioesterase FATA allele from sunflower with improved activity in tobacco leaves and Arabidopsis seeds. Planta, 2014, 239, 667-677.	3.2	16
53	Acyl-ACP thioesterases from Camelina sativa: Cloning, enzymatic characterization and implication in seed oil fatty acid composition. Phytochemistry, 2014, 107, 7-15.	2.9	20
54	Composition of fatty acids, triacylglycerols and polar compounds of different walnut varieties (<i>Juglans regia</i> L.) from Tunisia. Natural Product Research, 2014, 28, 1826-1833.	1.8	40

#	Article	IF	CITATIONS
55	Minor components of olive oil facilitate the triglyceride clearance from postprandial lipoproteins in a polarity-dependent manner in healthy men. Nutrition Research, 2014, 34, 40-47.	2.9	13
56	Biochemistry of high stearic sunflower, a new source of saturated fats. Progress in Lipid Research, 2014, 55, 30-42.	11.6	31
57	Comparing Sunflower Stearins with Cocoa Butter. , 2013, , 149-161.		0
58	Characterization of the morphological changes and fatty acid profile of developing Camelina sativa seeds. Industrial Crops and Products, 2013, 50, 673-679.	5.2	73
59	Effect of growth temperature on the high stearic and high stearic-high oleic sunflower traits. Crop and Pasture Science, 2013, 64, 18.	1.5	14
60	Changes in acyl-coenzyme A pools in sunflower seeds with modified fatty acid composition. Phytochemistry, 2013, 87, 39-50.	2.9	9
61	Studies of isothermal crystallisation kinetics of sunflower hard stearin-based confectionery fats. Food Chemistry, 2013, 139, 184-195.	8.2	32
62	Lipid Metabolism in Olive: Biosynthesis of Triacylglycerols and Aroma Components. , 2013, , 97-127.		8
63	A large decrease of cytosolic triosephosphate isomerase in transgenic potato roots affects the distribution of carbon in primary metabolism. Planta, 2012, 236, 1177-1190.	3.2	32
64	Alternatives to tropical fats based on highâ€stearic sunflower oils. Lipid Technology, 2012, 24, 63-65.	0.3	8
65	Evaluation of high oleic-high stearic sunflower hard stearins for cocoa butter equivalent formulation. Food Chemistry, 2012, 134, 1409-1417.	8.2	75
66	Molecular cloning and biochemical characterization of three phosphoglycerate kinase isoforms from developing sunflower (Helianthus annuus L.) seeds. Phytochemistry, 2012, 79, 27-38.	2.9	16
67	Reduced expression of FatA thioesterases in Arabidopsis affects the oil content and fatty acid composition of the seeds. Planta, 2012, 235, 629-639.	3.2	55
68	Characterization of Sphingolipids from Sunflower Seeds with Altered Fatty Acid Composition. Journal of Agricultural and Food Chemistry, 2011, 59, 12486-12492.	5.2	13
69	Proteome Analysis of Cold Acclimation in Sunflower. Journal of Proteome Research, 2011, 10, 2330-2346.	3.7	55
70	Cloning, biochemical characterization and expression of a sunflower (Helianthus annuus L.) hexokinase associated with seed storage compounds accumulation. Journal of Plant Physiology, 2011, 168, 299-308.	3.5	27
71	Sphingolipid base modifying enzymes in sunflower (Helianthus annuus): Cloning and characterization of a C4-hydroxylase gene and a new paralogous î"8-desaturase gene. Journal of Plant Physiology, 2011, 168, 831-839.	3.5	9
72	Acyl-ACP thioesterases from macadamia (Macadamia tetraphylla) nuts: Cloning, characterization and their impact on oil composition. Plant Physiology and Biochemistry, 2011, 49, 82-87.	5.8	42

#	Article	IF	CITATIONS
73	Dry Fractionation and Crystallization Kinetics of Highâ€Oleic Highâ€Stearic Sunflower Oil. JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 1511.	1.9	33
74	Production of stearate-rich butters by solvent fractionation of high stearic–high oleic sunflower oil. Food Chemistry, 2011, 124, 450-458.	8.2	50
75	Vegetable oil basestocks for lubricants. Grasas Y Aceites, 2011, 62, 21-28.	0.9	61
76	Acyl-ACP thioesterases from castor (Ricinus communis L.): An enzymatic system appropriate for high rates of oil synthesis and accumulation. Phytochemistry, 2010, 71, 860-869.	2.9	53
77	Glycolytic enzymatic activities in developing seeds involved in the differences between standard and low oil content sunflowers (Helianthus annuus L.). Plant Physiology and Biochemistry, 2010, 48, 961-965.	5.8	23
78	The role of β-ketoacyl-acyl carrier protein synthase III in the condensation steps of fatty acid biosynthesis in sunflower. Planta, 2010, 231, 1277-1289.	3.2	27
79	Cloning, biochemical characterisation, tissue localisation and possible post-translational regulatory mechanism of the cytosolic phosphoglucose isomerase from developing sunflower seeds. Planta, 2010, 232, 845-859.	3.2	8
80	The sunflower plastidial ω3-fatty acid desaturase (HaFAD7) contains the signalling determinants required for targeting to, and retention in, the endoplasmic reticulum membrane in yeast but requires co-expressed ferredoxin for activity. Phytochemistry, 2010, 71, 1050-1058.	2.9	9
81	Characterization and partial purification of acyl-CoA:glycerol 3-phosphate acyltransferase from sunflower (Helianthus annuus L.) developing seeds. Plant Physiology and Biochemistry, 2010, 48, 73-80.	5.8	13
82	Phospholipase Dα from sunflower (Helianthus annuus): cloning and functional characterization. Journal of Plant Physiology, 2010, 167, 503-511.	3.5	15
83	Estudio comparativo de la ozonización de aceites de girasol modificados genéticamente y sin modificar. Quimica Nova, 2009, 32, 2467-2472.	0.3	7
84	Current advances in sunflower oil and its applications. Lipid Technology, 2009, 21, 79-82.	0.3	28
85	cDNA cloning, expression levels and gene mapping of photosynthetic and non-photosynthetic ferredoxin genes in sunflower (Helianthus annuus L.). Theoretical and Applied Genetics, 2009, 118, 891-901.	3.6	3
86	Characterization of glycolytic initial metabolites and enzyme activities in developing sunflower (Helianthus annuus L.) seeds. Phytochemistry, 2009, 70, 1117-1122.	2.9	20
87	Effect of the ferredoxin electron donor on sunflower (Helianthus annuus) desaturases. Plant Physiology and Biochemistry, 2009, 47, 657-662.	5.8	6
88	Influence of Specific Fatty Acids on the Asymmetric Distribution of Saturated Fatty Acids in Sunflower (Helianthus annuus L.) Triacylglycerols. Journal of Agricultural and Food Chemistry, 2009, 57, 1595-1599.	5.2	12
89	Tropical vegetable fats and butters: properties and new alternatives. Oleagineux Corps Gras Lipides, 2009, 16, 254-258.	0.2	19
90	Lipid characterization of a wrinkled sunflower mutant. Phytochemistry, 2008, 69, 684-691.	2.9	5

Enrique MartÃnez Force

#	Article	IF	CITATIONS
91	The biochemical characterization of a high-stearic acid sunflower mutant reveals the coordinated regulation of stearoyl-acyl carrier protein desaturases. Plant Physiology and Biochemistry, 2008, 46, 109-116.	5.8	15
92	Day–Night Variation in Fatty Acids and Lipids Biosynthesis in Sunflower Seeds. Crop Science, 2008, 48, 1952-1957.	1.8	11
93	Characterization of the glycerolipid composition of a high-palmitoleic acid sunflower mutant. European Journal of Lipid Science and Technology, 2007, 109, 591-599.	1.5	13
94	Lipid Characterization of a High-Stearic Sunflower Mutant Displaying a Seed Stearic Acid Gradient. Journal of Agricultural and Food Chemistry, 2006, 54, 3612-3616.	5.2	5
95	Increase of the Stearic Acid Content in High-Oleic Sunflower (Helianthus annuus) Seeds. Journal of Agricultural and Food Chemistry, 2006, 54, 9383-9388.	5.2	22
96	Inhibitors of fatty acid biosynthesis in sunflower seeds. Journal of Plant Physiology, 2006, 163, 885-894.	3.5	7
97	Functional characterization ofÂaÂplastidial omega-3 desaturase from sunflower (HelianthusÂannuus) inÂcyanobacteria. Plant Physiology and Biochemistry, 2006, 44, 517-525.	5.8	18
98	Phospholipid molecular profiles in the seed kernel from different sunflower (Helianthus annuus) mutants. Lipids, 2006, 41, 805-811.	1.7	12
99	Accumulation of phospholipids and glycolipids in seed kernels of different sunflower mutants (Helianthus annuus). JAOCS, Journal of the American Oil Chemists' Society, 2006, 83, 539-545.	1.9	19
100	Cloning, characterization and structural model of a FatA-type thioesterase from sunflower seeds (Helianthus annuus L.). Planta, 2005, 221, 868-880.	3.2	61
101	Lipid characterization of seed oils from high-palmitic, low-palmitoleic, and very high-stearic acid sunflower lines. Lipids, 2005, 40, 369-374.	1.7	26
102	Very Long Chain Fatty Acid Synthesis in Sunflower Kernels. Journal of Agricultural and Food Chemistry, 2005, 53, 2710-2716.	5.2	29
103	Oils from Improved High Stearic Acid Sunflower Seeds. Journal of Agricultural and Food Chemistry, 2005, 53, 5326-5330.	5.2	61
104	The sources of carbon and reducing power for fatty acid synthesis in the heterotrophic plastids of developing sunflower (Helianthus annuus L.) embryos. Journal of Experimental Botany, 2005, 56, 1297-1303.	4.8	46
105	Biochemical characterization of a high-palmitoleic acid Helianthus annuus mutant. Plant Physiology and Biochemistry, 2004, 42, 373-381.	5.8	31
106	Genetic analysis of apomictic wine yeasts. Current Genetics, 2004, 45, 187-196.	1.7	9
107	The determination of the asymmetrical stereochemical distribution of fatty acids in triacylglycerols. Analytical Biochemistry, 2004, 334, 175-182.	2.4	34
108	Temperature-related non-homogeneous fatty acid desaturation in sunflower (Helianthus annuus L.) seeds. Planta, 2003, 216, 834-840.	3.2	14

Enrique MartÃnez Force

#	Article	IF	CITATIONS
109	Sequential one-step extraction and analysis of triacylglycerols and fatty acids in plant tissues. Analytical Biochemistry, 2003, 317, 247-254.	2.4	32
110	Cloning and expression of fatty acids biosynthesis key enzymes from sunflower (Helianthus annuus L.) in Escherichia coli. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2003, 786, 221-228.	2.3	23
111	Study of the Asymmetric Distribution of Saturated Fatty Acids in Sunflower Oil Triacylglycerols. , 2003, , 31-34.		Ο
112	Dynamic channelling during de novo fatty acid biosynthesis in Helianthus annuus seeds. Plant Physiology and Biochemistry, 2002, 40, 383-391.	5.8	10
113	Temperature effect on a high stearic acid sunflower mutant. Phytochemistry, 2002, 59, 33-37.	2.9	51
114	Metabolic control analysis of de novo sunflower fatty acid biosynthesis. Biochemical Society Transactions, 2000, 28, 669-671.	3.4	2
115	Enzymatic studies of high stearic acid sunflower seed mutants. Plant Physiology and Biochemistry, 2000, 38, 377-382.	5.8	32
116	Acyl-acyl carrier protein thioesterase activity from sunflower (Helianthus annuus L.) seeds. Planta, 2000, 211, 673-678.	3.2	27
117	Metabolism of Triacylglycerol Species during Seed Germination in Fatty Acid Sunflower (Helianthusannuus) Mutants. Journal of Agricultural and Food Chemistry, 2000, 48, 770-774.	5.2	16
118	Identification of Triacylglycerol Species from High-Saturated Sunflower (Helianthus annuus) Mutants. Journal of Agricultural and Food Chemistry, 2000, 48, 764-769.	5.2	56
119	Metabolic control analysis of de novo sunflower fatty acid biosynthesis. Biochemical Society Transactions, 2000, 28, 669-71.	3.4	0
120	Systematic mutagenesis of the fission yeast Srp54 protein. Current Genetics, 1999, 35, 88-102.	1.7	3
121	Enzymatic characterisation of high-palmitic acid sunflower (Helianthus annuus L.) mutants. Planta, 1999, 207, 533-538.	3.2	30
122	Lipid Characterization in Vegetative Tissues of High Saturated Fatty Acid Sunflower Mutants. Journal of Agricultural and Food Chemistry, 1999, 47, 78-82.	5.2	19
123	Fatty Acid Composition in Developing High Saturated Sunflower (Helianthus annuus) Seeds:Â Maturation Changes and Temperature Effect. Journal of Agricultural and Food Chemistry, 1998, 46, 3577-3582.	5.2	45
124	Characterization of polar and nonpolar seed lipid classes from highly saturated fatty acid sunflower mutants. Lipids, 1997, 32, 833-837.	1.7	59
125	Fatty Acid Composition of Different Tissues During High Stearic or High Palmitic Sunflower Mutants Germination. , 1997, , 322-324.		1
126	Effects of varying media, temperature, and growth rates on the intracellular concentrations of yeast amino acids. Biotechnology Progress, 1995, 11, 386-392.	2.6	29

#	Article	IF	CITATIONS
127	TheSAM2 gene product catalyzes the formation of S-adenosyl-ethionine from ethionine in Saccharomyces cerevisiae. Current Microbiology, 1994, 28, 339-343.	2.2	2
128	Amino Acid Overproduction and Catabolic Pathway Regulation in Saccharomyces cerevisiae. Biotechnology Progress, 1994, 10, 372-376.	2.6	6
129	Regulation of aspartate-derived amino acid biosynthesis in the yeastSaccharomyces cerevisiae. Current Microbiology, 1993, 26, 313-322.	2.2	10
130	Selection of amino-acid overproducer yeast mutants. Current Genetics, 1992, 21, 191-196.	1.7	25
131	Separation of o-phthalaldehyde derivatives of amino acids of the internal pool of yeast by reverse-phase liquid chromatography. Biotechnology Letters, 1991, 5, 209-214.	0.5	15