Hooshang Nayyeri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1553534/publications.pdf

Version: 2024-02-01

	218677	189892
2,581	26	50 g-index
citations	h-index	g-index
57	57	3108
docs citations	times ranked	citing authors
	citations 57	2,581 26 citations h-index 57 57

#	Article	IF	CITATIONS
1	SPECTROSCOPIC CONFIRMATION OF THREE <i>>z</i> >-DROPOUT GALAXIES AT <i>>z</i> = 6.844-7.213: DEMOGRAPHICS OF Lyı̂± EMISSION IN <i>z</i> â¹¼ 7 GALAXIES. Astrophysical Journal, 2012, 744, 83.	4.5	334
2	iPTF16geu: A multiply imaged, gravitationally lensed type Ia supernova. Science, 2017, 356, 291-295.	12.6	168
3	Type Ia Supernova Distances at Redshift >1.5 from the Hubble Space Telescope Multi-cycle Treasury Programs: The Early Expansion Rate. Astrophysical Journal, 2018, 853, 126.	4.5	168
4	The DEIMOS 10K Spectroscopic Survey Catalog of the COSMOS Field ^{â^} . Astrophysical Journal, 2018, 858, 77.	4.5	135
5	CANDELS Multi-wavelength Catalogs: Source Identification and Photometry in the CANDELS Extended Groth Strip. Astrophysical Journal, Supplement Series, 2017, 229, 32.	7.7	127
6	TYPE Ia SUPERNOVA RATE MEASUREMENTS TO REDSHIFT 2.5 FROM CANDELS: SEARCHING FOR PROMPT EXPLOSIONS IN THE EARLY UNIVERSE. Astronomical Journal, 2014, 148, 13.	4.7	121
7	The CANDELS/SHARDS Multiwavelength Catalog in GOODS-N: Photometry, Photometric Redshifts, Stellar Masses, Emission-line Fluxes, and Star Formation Rates. Astrophysical Journal, Supplement Series, 2019, 243, 22.	7.7	111
8	The <i>>Herschel</i> -ATLAS: a sample of 500Âμm-selected lensed galaxies over 600Âdeg ² . Monthly Notices of the Royal Astronomical Society, 2017, 465, 3558-3580.	4.4	96
9	CANDELS MULTI-WAVELENGTH CATALOGS: SOURCE IDENTIFICATION AND PHOTOMETRY IN THE CANDELS COSMOS SURVEY FIELD. Astrophysical Journal, Supplement Series, 2017, 228, 7.	7.7	95
10	Evolution of the H β + [O iii] and [O ii] luminosity functions and the [O ii] star formation histor Universe up to <i>z</i> Ââ°¼Â5 from HiZELS. Monthly Notices of the Royal Astronomical Society, 2015, 452, 3948-3968.	y of the 4.4	89
11	A dusty star-forming galaxy at $z=6$ revealed by strong gravitational lensing. Nature Astronomy, 2018, 2, 56-62.	10.1	74
12	KECK-I MOSFIRE SPECTROSCOPY OF COMPACT STAR-FORMING GALAXIES AT <i>z</i> ali>ali>ali>ali>ali>ali>ali>ali>ali>al	4.5	70
13	CF-HiZELS, an â^¼10Âdeg2 emission-line survey with spectroscopic follow-up: Hα, [O iii]Â+ÂHβ and [O iuminosity functions at zĂ=Â0.8, 1.4 and 2.2. Monthly Notices of the Royal Astronomical Society, 2015, 451, 2303-2323.	oii] 4.4	67
14	CANDIDATE GRAVITATIONALLY LENSED DUSTY STAR-FORMING GALAXIES IN THE HERSCHEL WIDE AREA SURVEYS*. Astrophysical Journal, 2016, 823, 17.	4.5	65
15	Major merging history in CANDELS. I. Evolution of the incidence of massive galaxy–galaxy pairs from zÂ=Â3 to zÂâ^¼Â0. Monthly Notices of the Royal Astronomical Society, 2018, 475, 1549-1573.	4.4	65
16	SPECTROSCOPIC STUDY OF STAR-FORMING GALAXIES IN FILAMENTS AND THE FIELD AT <i>z</i> for environmental dependence of electron density. Astrophysical Journal, 2015, 814, 84.	CE 4.5	47
17	A STUDY OF MASSIVE AND EVOLVED GALAXIES AT HIGH REDSHIFT. Astrophysical Journal, 2014, 794, 68.	4.5	44
18	The nature of Hβ+[O iii] and [O ii] emitters to <i>z</i> Ⲽ 5 with HiZELS: stellar mass functions and the evolution of EWs. Monthly Notices of the Royal Astronomical Society, 2016, 463, 2363-2382.	4.4	44

#	Article	IF	CITATIONS
19	LensFlow: A Convolutional Neural Network in Search of Strong Gravitational Lenses. Astrophysical Journal, 2018, 856, 68.	4.5	43
20	Beyond spheroids and discs: classifications of CANDELS galaxy structure at 1.4 < <i>z</i> < 2 via principal component analysis. Monthly Notices of the Royal Astronomical Society, 2016, 458, 963-987.	4.4	38
21	High Dense Gas Fraction in Intensely Star-forming Dusty Galaxies. Astrophysical Journal, 2017, 850, 170.	4.5	35
22	Modelling high-resolution ALMA observations of strongly lensed highly star-forming galaxies detected by Herschela~ Monthly Notices of the Royal Astronomical Society, 2018, 476, 4383-4394.	4.4	35
23	CO, H ₂ O, H ₂ O ⁺ line and dust emission in a <i>z</i> = 3.63 strongly lensed starburst merger at sub-kiloparsec scales. Astronomy and Astrophysics, 2019, 624, A138.	5.1	30
24	Investigating the Effect of Galaxy Interactions on the Enhancement of Active Galactic Nuclei at 0.5Â<ÂzÂ<Â3.0. Astrophysical Journal, 2020, 904, 107.	4.5	30
25	KILOPARSEC-SCALE PROPERTIES OF EMISSION-LINE GALAXIES. Astrophysical Journal, 2014, 797, 108.	4.5	28
26	Infrared Contributions of X-Ray Selected Active Galactic Nuclei in Dusty Star-forming Galaxies. Astrophysical Journal, 2019, 871, 87.	4.5	28
27	Emergence of an Ultrared, Ultramassive Galaxy Cluster Core at zÂ=Â4. Astrophysical Journal, 2020, 898, 133.	4.5	27
28	THE INTERSTELLAR MEDIUM AND FEEDBACK IN THE PROGENITORS OF THE COMPACT PASSIVE GALAXIES AT <i>>z</i> i>â ¹ / ₄ 2. Astrophysical Journal, 2015, 800, 21.	4.5	24
29	Spectroscopic Confirmation of a Coma Cluster Progenitor at zÂâ^¼Â2.2. Astrophysical Journal, 2020, 892, 8.	4.5	24
30	CANDELS Sheds Light on the Environmental Quenching of Low-mass Galaxies. Astrophysical Journal Letters, 2017, 841, L22.	8.3	23
31	NEBULAR AND STELLAR DUST EXTINCTION ACROSS THE DISK OF EMISSION-LINE GALAXIES ON KILOPARSEC SCALES. Astrophysical Journal, 2015, 814, 46.	4.5	20
32	SCUBA-2 observations of candidate starbursting protoclusters selected by Planck and Herschel-SPIRE. Monthly Notices of the Royal Astronomical Society, 2019, 490, 3840-3859.	4.4	20
33	Bringing Manifold Learning and Dimensionality Reduction to SED Fitters. Astrophysical Journal Letters, 2019, 881, L14.	8.3	20
34	<i>Spitzer</i> Observations of the North Ecliptic Pole. Astrophysical Journal, Supplement Series, 2018, 234, 38.	7.7	18
35	A CORRELATION BETWEEN Ly <i>î±</i> SPECTRAL LINE PROFILE AND REST-FRAME UV MORPHOLOGY. Astrophysical Journal, 2015, 815, 57.	4.5	16
36	ALMA observations of lensed Herschel sources: testing the dark matter halo paradigm. Monthly Notices of the Royal Astronomical Society, 2018, 475, 4939-4952.	4.4	16

#	Article	IF	Citations
37	Selection of Massive Evolved Galaxies at 3 ≠z ≠4.5 in the CANDELS Fields. Astrophysical Journal, 2020, 897, 44.	4.5	16
38	The clustering of HÂl̂² + [O iii] and [O ii] emitters since zÂ∼Â5: dependencies with line luminosity and mass. Monthly Notices of the Royal Astronomical Society, 2018, 478, 2999-3015.	stellar 4.4	15
39	Stacked Average Far-infrared Spectrum of Dusty Star-forming Galaxies from the Herschel/SPIRE Fourier Transform Spectrometer ^{â^—} . Astrophysical Journal, 2017, 848, 30.	4.5	13
40	Rise of the Titans: Gas Excitation and Feedback in a Binary Hyperluminous Dusty Starburst Galaxy at zÂâ^1/4Â6. Astrophysical Journal, 2021, 907, 62.	4.5	13
41	Herschel and Hubble Study of a Lensed Massive Dusty Starbursting Galaxy at z â^¼ 3 ^{â^—} . Astrophysical Journal, 2017, 844, 82.	4.5	12
42	Magnification, dust and time-delay constraints from the first resolved strongly lensed Type Ia supernova iPTF16geu. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	12
43	The Strong Gravitationally Lensed Herschel Galaxy HLock01: Optical Spectroscopy Reveals a Close Galaxy Merger with Evidence of Inflowing Gas. Astrophysical Journal, 2018, 854, 151.	4.5	11
44	Discovery of a giant and luminous Ly <i>α</i> +Câ€IV+Heâ€II nebula at <i>z</i> = 3.326 with extreme emission line ratios. Astronomy and Astrophysics, 2019, 629, A23.	5.1	11
45	Spitzer Catalog of Herschel-selected Ultrared Dusty Star-forming Galaxies. Astrophysical Journal, Supplement Series, 2019, 244, 30.	7.7	11
46	Photometric Redshift Estimation with Galaxy Morphology Using Self-organizing Maps. Astrophysical Journal, 2020, 888, 83.	4.5	11
47	Low gas-phase metallicities of ultraluminous infrared galaxies are a result of dust obscuration. Nature Astronomy, 2022, 6, 844-849.	10.1	11
48	<i>SPITZER</i> IMAGING OF STRONGLY LENSED <i>HERSCHEL</i> SELECTED DUSTY STAR-FORMING GALAXIES. Astrophysical Journal, 2015, 814, 17.	4.5	9
49	MULTI-WAVELENGTH LENS RECONSTRUCTION OF A PLANCK AND HERSCHEL-DETECTED STAR-BURSTING GALAXY. Astrophysical Journal, 2016, 829, 21.	4.5	9
50	EXTINCTION AND NEBULAR LINE PROPERTIES OF A <i>HERSCHEL</i> SELECTED LENSED DUSTY STARBURST AT <i>z</i> = 1.027. Astrophysical Journal, 2015, 805, 140.	4.5	8
51	The Star Formation Rate–Radius Connection: Data and Implications for Wind Strength and Halo Concentration. Astrophysical Journal, 2020, 899, 93.	4.5	8
52	Evidence for Non-smooth Quenching in Massive Galaxies at z \hat{a}^4 1. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	5
53	SCUBA-2 overdensities associated with candidate protoclusters selected from <i>Planck</i> data. Monthly Notices of the Royal Astronomical Society, 2020, 494, 5985-5991.	4.4	5
54	Massive Molecular Gas Reservoir in a Luminous Submillimeter Galaxy during Cosmic Noon. Astrophysical Journal, 2022, 929, 41.	4.5	3

#	Article	IF	CITATIONS
55	SOFIA/HAWC+ Detection of a Gravitationally Lensed Starburst Galaxy at zÂ=Â1.03. Astrophysical Journal, 2018, 864, 60.	4.5	2
56	Bridging between the Integrated and Resolved Main Sequence of Star Formation. Astrophysical Journal Letters, 2020, 896, L17.	8.3	1
57	Far-infrared and Nebular Star Formation Rates of Dusty Star-forming Galaxies from Herschel and 3D-HST at zÂâ^¼Â1. Research Notes of the AAS, 2018, 2, 11.	0.7	0