Maria Fernanda G V Peñaflor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1552539/publications.pdf

Version: 2024-02-01

471509 39 909 17 citations h-index papers

28 g-index 40 40 40 1211 docs citations times ranked citing authors all docs

501196

#	Article	IF	Citations
1	Tomato Infection by Whitefly-Transmitted Circulative and Non-Circulative Viruses Induce Contrasting Changes in Plant Volatiles and Vector Behaviour. Viruses, 2016, 8, 225.	3.3	95
2	Weather Forecasting by Insects: Modified Sexual Behaviour in Response to Atmospheric Pressure Changes. PLoS ONE, 2013, 8, e75004.	2.5	74
3	Herbivore-Induced Plant Volatiles Can Serve as Host Location Cues for a Generalist and a Specialist Egg Parasitoid. Journal of Chemical Ecology, 2011, 37, 1304-1313.	1.8	70
4	Oviposition by a moth suppresses constitutive and herbivore-induced plant volatiles in maize. Planta, 2011, 234, 207-215.	3.2	59
5	Herbivore-Induced Plant Volatiles to Enhance Biological Control in Agriculture. Neotropical Entomology, 2013, 42, 331-343.	1.2	53
6	Effects of single and mixed infections of <i>Bean pod mottle virus</i> and <i>Soybean mosaic virus</i> on hostâ€plant chemistry and hostâ€"vector interactions. Functional Ecology, 2016, 30, 1648-1659.	3.6	50
7	Fall Armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), Female Moths Respond to Herbivore-Induced Corn Volatiles. Neotropical Entomology, 2012, 41, 22-26.	1.2	41
8	The dilemma of being a fragrant flower: the major floral volatile attracts pollinators and florivores in the euglossine-pollinated orchid Dichaea pendula. Oecologia, 2016, 182, 933-946.	2.0	37
9	Attraction of Three Mirid Predators to Tomato Infested by Both the Tomato Leaf Mining Moth Tuta absoluta and the Whitefly Bemisia tabaci. Journal of Chemical Ecology, 2018, 44, 29-39.	1.8	37
10	Stem inoculation with bacterial strains Bacillus amyloliquefaciens (GB03) and Microbacterium imperiale (MAIIF2a) mitigates Fusarium root rot in cassava. Phytoparasitica, 2019, 47, 135-142.	1.2	32
11	A Novel Interaction between Plant-Beneficial Rhizobacteria and Roots: Colonization Induces Corn Resistance against the Root Herbivore Diabrotica speciosa. PLoS ONE, 2014, 9, e113280.	2.5	32
12	Resistance of cotton genotypes with different leaf colour and trichome density to <i>Bemisia tabaci</i> biotype B. Journal of Applied Entomology, 2016, 140, 405-413.	1.8	25
13	Nocturnal herbivore-induced plant volatiles attract the generalist predatory earwig Doru luteipes Scudder. Die Naturwissenschaften, 2017, 104, 77.	1.6	24
14	Silicon-induced changes in plant volatiles reduceÂattractiveness of wheat to the bird cherry-oat aphid Rhopalosiphum padiAand attractAthe parasitoid Lysiphlebus testaceipes. PLoS ONE, 2020, 15, e0231005.	2.5	24
15	Fungal phytopathogen modulates plant and insect responses to promote its dissemination. ISME Journal, 2021, 15, 3522-3533.	9.8	24
16	Red-rot infection in sugarcane attenuates the attractiveness of sugarcane borer-induced plant volatiles to parasitoid. Arthropod-Plant Interactions, 2019, 13, 117-125.	1.1	21
17	The Effects of Biostimulants on Induced Plant Defense. Frontiers in Agronomy, 2021, 3, .	3.3	21
18	Diurnal and nocturnal herbivore induction on maize elicit different innate response of the fall armyworm parasitoid, Campoletis flavicincta. Journal of Pest Science, 2012, 85, 101-107.	3.7	18

#	Article	IF	CITATIONS
19	Attraction of entomopathogenic nematodes to sugarcane root volatiles under herbivory by a sap-sucking insect. Chemoecology, 2016, 26, 59-66.	1.1	18
20	Effects of single and multiple herbivory by host and nonâ€host caterpillars on the attractiveness of herbivoreâ€induced volatiles of sugarcane to the generalist parasitoid ⟨i⟩⟨scp⟩C⟨/scp⟩otesia flavipes⟨/i⟩. Entomologia Experimentalis Et Applicata, 2017, 165, 83-93.	1.4	17
21	Leaf-cutting ants toxicity of limonexic acid and degraded limonoids from Raulinoa echinata.: X-ray structure of epoxy-fraxinellone. Journal of the Brazilian Chemical Society, 2005, 16, 1443-1447.	0.6	16
22	Role of Methyl Salicylate on Oviposition Deterrence in Arabidopsis thaliana. Journal of Chemical Ecology, 2014, 40, 754-759.	1.8	16
23	The effects of Gibberella zeae, Barley Yellow Dwarf Virus, and co-infection on Rhopalosiphum padi olfactory preference and performance. Phytoparasitica, 2016, 44, 47-54.	1.2	15
24	Effect of host egg age on preference, development and arrestment of Telenomus remus (Hymenoptera:) Tj ETQq	0 9,9 rgB1	- Qyerlock 10
25	Direct and indirect resistance of sugarcane to <i>Diatraea saccharalis</i> induced by jasmonic acid. Bulletin of Entomological Research, 2017, 107, 828-838.	1.0	12
26	Silicon Supplementation of Maize Impacts Fall Armyworm Colonization and Increases Predator Attraction. Neotropical Entomology, 2021, 50, 654-661.	1.2	10
27	The Impact of Coffee and Pasture Agriculture on Predatory and Omnivorous Leaf-Litter Ants. Journal of Insect Science, 2013, 13, 1-11.	0.9	8
28	Does host determine shortâ€range flight capacity of trichogrammatids?. Journal of Applied Entomology, 2014, 138, 677-682.	1.8	7
29	A comparison of the direct and indirect defence abilities of cultivated maize versus perennial and annual teosintes. Chemoecology, 2021, 31, 63-74.	1.1	6
30	Interactions between white mealybugs and red spider mites sequentially colonizing coffee plants. Journal of Applied Entomology, 2019, 143, 957-963.	1.8	5
31	Infection by the semi-persistently transmitted Tomato chlorosis virus alters the biology and behaviour of Bemisia tabaci on two potato clones. Bulletin of Entomological Research, 2019, 109, 604-611.	1.0	5
32	Toxicidade de Substâncias Isoladas de Simarouba versicolor St. Hil. (Simaroubaceae) para Formigas Cortadeiras Atta sexdens L. (Hymenoptera: Formicidae) e para o seu Fungo Simbionte Leucoagaricus gongylophorus (Singer) Möller. BioAssay, 2009, 4, .	0.2	5
33	<i>Colletotrichum falcatum</i> modulates the olfactory behavior of the sugarcane borer, favoring pathogen infection. FEMS Microbiology Ecology, 2022, , .	2.7	5
34	Behavioral response of the generalist predator Orius insidiosus to single and multiple herbivory by two cell content-feeding herbivores on rose plants. Arthropod-Plant Interactions, 2020, 14, 227-236.	1.1	4
35	Use of Semiochemical-Based Strategies to Enhance Biological Control. , 2019, , 509-522.		4
36	Sight unseen: Belowground feeding influences the distribution of an aboveground herbivore. Ecosphere, 2020, 11, e03163.	2.2	2

#	Article	IF	CITATIONS
37	A parasitoid's dilemma between food and host resources: the role of volatiles from nectar-providing marigolds and host-infested plants attracting Aphidius platensis. Die Naturwissenschaften, 2022, 109, 9.	1.6	2
38	Proximate factors and potential benefits influencing selection of <i>Psychotria suterella</i> for shelter by the harvestman <i>Jussara</i> spec Entomologia Experimentalis Et Applicata, 2017, 163, 241-250.	1.4	0
39	Leaf beetle herbivory shapes the subsequent flower-visiting insect community and impacts plant reproduction. Ecoscience, 0, , 1-10.	1.4	O