Lucy A Mcnamara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1552477/publications.pdf Version: 2024-02-01

8

#	ARTICLE	IF	CITATIONS
1	Surveillance and control of meningococcal disease in the COVID-19 era: A Global Meningococcal Initiative review. Journal of Infection, 2022, 84, 289-296.	3.3	26
2	Risk Factors for Invasive Meningococcal Disease Belonging to a Novel Urethritis Clade of <i>Neisseria meningitidis</i> —United States, 2013–2017. Open Forum Infectious Diseases, 2022, 9, ofac035.	0.9	3
3	Antimicrobial Susceptibility Survey of Invasive <i>Neisseria meningitidis</i> , United States 2012–2016. Journal of Infectious Diseases, 2022, 225, 1871-1875.	4.0	12
4	Genomic Insights on Variation Underlying Capsule Expression in Meningococcal Carriage Isolates From University Students, United States, 2015–2016. Frontiers in Microbiology, 2022, 13, 815044.	3.5	2
5	Invasive Meningococcal Disease Among People Experiencing Homelessness—United States, 2016–2019. Journal of Infectious Diseases, 2022, 226, S322-S326.	4.0	6
6	β-Lactamase–Producing, Ciprofloxacin-Resistant Neisseria meningitidis Isolated From a 5-Month-Old Boy in the United States. Journal of the Pediatric Infectious Diseases Society, 2021, 10, 379-381.	1.3	4
7	Acquisition of Ciprofloxacin Resistance Among an Expanding Clade of β-Lactamase–Positive, Serogroup Y <i>Neisseria meningitidis</i> in the United States. Clinical Infectious Diseases, 2021, 73, 1185-1193.	5.8	17
8	Using Neisseria meningitidis genomic diversity to inform outbreak strain identification. PLoS Pathogens, 2021, 17, e1009586.	4.7	6
9	Genetic Diversity of Meningococcal Serogroup B Vaccine Antigens among Carriage Isolates Collected from Students at Three Universities in the United States, 2015–2016. MBio, 2021, 12, .	4.1	3
10	Modeling Optimal Laboratory Testing Strategies for Bacterial Meningitis Surveillance in Africa. Journal of Infectious Diseases, 2021, 224, S218-S227.	4.0	0
11	Antibiotic prophylaxis in vaccinated eculizumab recipients who developed meningococcal disease. Journal of Infection, 2020, 80, 350-371.	3.3	18
12	Insights on Population Structure and Within-Host Genetic Changes among Meningococcal Carriage Isolates from U.S. Universities. MSphere, 2020, 5, .	2.9	3
13	Characteristics of and meningococcal disease prevention strategies for commercially insured persons receiving eculizumab in the United States. PLoS ONE, 2020, 15, e0241989.	2.5	8
14	Detection of Ciprofloxacin-Resistant, <i>β</i> -Lactamase–Producing <i>Neisseria meningitidis</i> Serogroup Y Isolates — United States, 2019–2020. Morbidity and Mortality Weekly Report, 2020, 69, 735-739.	15.1	36
15	Invasive Meningococcal Disease due to Nongroupable Neisseria meningitidis—Active Bacterial Core Surveillance Sites, 2011–2016. Open Forum Infectious Diseases, 2019, 6, ofz190.	0.9	10
16	University-Based Outbreaks of Meningococcal Disease Caused by Serogroup B, United States, 2013–2018. Emerging Infectious Diseases, 2019, 25, 434-440.	4.3	61
17	Unusual Neisseria species as a cause of infection in patients taking eculizumab. Journal of Infection, 2019, 78, 113-118.	3.3	37

Principles of Epidemiology and Public Health. , 2018, , 1-9.e1.

LUCY A MCNAMARA

#	Article	IF	CITATIONS
19	Hematopoietic Stem and Progenitor Cells Are a Distinct HIV Reservoir that Contributes to Persistent Viremia in Suppressed Patients. Cell Reports, 2018, 25, 3759-3773.e9.	6.4	33
20	Distinct evolutionary patterns of Neisseria meningitidis serogroup B disease outbreaks at two universities in the USA. Microbial Genomics, 2018, 4, .	2.0	4
21	Mass chemoprophylaxis for control of outbreaks of meningococcal disease. Lancet Infectious Diseases, The, 2018, 18, e272-e281.	9.1	23
22	Fatal Nongroupable <i>Neisseria meningitidis</i> Disease in Vaccinated Patient Receiving Eculizumab. Emerging Infectious Diseases, 2018, 24, 1561-1564.	4.3	32
23	Safety of a meningococcal group B vaccine used in response to two university outbreaks. Journal of American College Health, 2017, 65, 380-388.	1.5	9
24	Reduced Severity of Pertussis in Persons With Age-Appropriate Pertussis Vaccination—United States, 2010–2012. Clinical Infectious Diseases, 2017, 65, 811-818.	5.8	23
25	Meningococcal Carriage Evaluation in Response to a Serogroup B Meningococcal Disease Outbreak and Mass Vaccination Campaign at a College—Rhode Island, 2015–2016. Clinical Infectious Diseases, 2017, 64, 1115-1122.	5.8	85
26	Meningococcal Carriage Following a Vaccination Campaign With MenB-4C and MenB-FHbp in Response to a University Serogroup B Meningococcal Disease Outbreak—Oregon, 2015–2016. Journal of Infectious Diseases, 2017, 216, 1130-1140.	4.0	67
27	Serogroup B Meningococcal Disease Vaccine Recommendations at a University, New Jersey, USA, 2016. Emerging Infectious Diseases, 2017, 23, 867-869.	4.3	23
28	High Risk for Invasive Meningococcal Disease Among Patients Receiving Eculizumab (Soliris) Despite Receipt of Meningococcal Vaccine. Morbidity and Mortality Weekly Report, 2017, 66, 734-737.	15.1	227
29	Meningococcal Carriage Evaluation in Response to a Serogroup B Meningococcal Disease Outbreak and Mass Vaccination Campaign at a University—Oregon, 2015. Open Forum Infectious Diseases, 2016, 3, .	0.9	3
30	The Epi Info Viral Hemorrhagic Fever (VHF) Application: A Resource for Outbreak Data Management and Contact Tracing in the 2014–2016 West Africa Ebola Epidemic. Journal of Infectious Diseases, 2016, 214, S122-S136.	4.0	26
31	First Use of a Serogroup B Meningococcal Vaccine in the US in Response to a University Outbreak. Pediatrics, 2015, 135, 798-804.	2.1	109
32	Serogroup B Meningococcal Disease Outbreak and Carriage Evaluation at a College - Rhode Island, 2015. Morbidity and Mortality Weekly Report, 2015, 64, 606-7.	15.1	56
33	Use of MenACWY-CRM vaccine in children aged 2 through 23 months at increased risk for meningococcal disease: recommendations of the Advisory Committee on Immunization Practices, 2013. Morbidity and Mortality Weekly Report, 2014, 63, 527-30.	15.1	33
34	CD133+ Hematopoietic Progenitor Cells Harbor HIV Genomes in a Subset of Optimally Treated People With Long-Term Viral Suppression. Journal of Infectious Diseases, 2013, 207, 1807-1816.	4.0	51
35	Latent HIV-1 Infection Occurs in Multiple Subsets of Hematopoietic Progenitor Cells and Is Reversed by NF-κB Activation. Journal of Virology, 2012, 86, 9337-9350.	3.4	56
36	HIV-1 Utilizes the CXCR4 Chemokine Receptor to Infect Multipotent Hematopoietic Stem and Progenitor Cells. Cell Host and Microbe, 2011, 9, 223-234.	11.0	103

LUCY A MCNAMARA

#	Article	IF	CITATIONS
37	Hematopoietic stem/precursor cells as HIV reservoirs. Current Opinion in HIV and AIDS, 2011, 6, 43-48.	3.8	58
38	HIV-1 infects multipotent progenitor cells causing cell death and establishing latent cellular reservoirs. Nature Medicine, 2010, 16, 446-451.	30.7	279
39	Towards a cure for HIV: the identification and characterization of HIV reservoirs in optimally treated people. Cell Research, 2010, 20, 1185-1187.	12.0	9