Hiroyuki Sasaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1552030/publications.pdf

Version: 2024-02-01

60 6,438 32 papers citations h-index

61 61 61 7754 all docs docs citations times ranked citing authors

138484

58

g-index

#	Article	IF	CITATIONS
1	TFB2M and POLRMT are essential for mammalian mitochondrial DNA replication. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119167.	4.1	10
2	A histone H3.3K36M mutation in mice causes an imbalance of histone modifications and defects in chondrocyte differentiation. Epigenetics, 2021, 16, 1123-1134.	2.7	8
3	Reprogramming of the histone H3.3 landscape in the early mouse embryo. Nature Structural and Molecular Biology, 2021, 28, 38-49.	8.2	45
4	Ddhd1 knockout mouse as a model of locomotive and physiological abnormality in familial spastic paraplegia. Bioscience Reports, 2021, 41, .	2.4	2
5	The DNMT3A PWWP domain is essential for the normal DNA methylation landscape in mouse somatic cells and oocytes. PLoS Genetics, 2021, 17, e1009570.	3.5	17
6	A convolutional neural network-based regression model to infer the epigenetic crosstalk responsible for CG methylation patterns. BMC Bioinformatics, 2021, 22, 341.	2.6	0
7	Identification of SLC38A7 as a Prognostic Marker and Potential Therapeutic Target of Lung Squamous Cell Carcinoma. Annals of Surgery, 2021, 274, 500-507.	4.2	8
8	Production of functional oocytes requires maternally expressed PIWI genes and piRNAs in golden hamsters. Nature Cell Biology, 2021, 23, 1002-1012.	10.3	30
9	Non-transmissible MV Vector with Segmented RNA Genome Establishes Different Types of iPSCs from Hematopoietic Cells. Molecular Therapy, 2020, 28, 129-141.	8.2	6
10	Characterization of geneticâ€originâ€dependent monoallelic expression in mouse embryonic stem cells. Genes To Cells, 2020, 25, 54-64.	1.2	1
11	Polycomb Group Proteins Regulate Chromatin Architecture in Mouse Oocytes and Early Embryos. Molecular Cell, 2020, 77, 825-839.e7.	9.7	105
12	Maternal DNMT3A-dependent de novo methylation of the paternal genome inhibits gene expression in the early embryo. Nature Communications, 2020, 11, 5417.	12.8	12
13	CDCA7 and HELLS suppress DNA:RNA hybrid-associated DNA damage at pericentromeric repeats. Scientific Reports, 2020, 10, 17865.	3.3	21
14	Aging of spermatogonial stem cells by Jnk-mediated glycolysis activation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16404-16409.	7.1	39
15	Identification of ZBTB24 protein domains and motifs for heterochromatin localization and transcriptional activation. Genes To Cells, 2019, 24, 746-755.	1.2	3
16	Broad Heterochromatic Domains Open in Gonocyte Development Prior to De Novo DNA Methylation. Developmental Cell, 2019, 51, 21-34.e5.	7.0	26
17	Zfp281 Shapes the Transcriptome of Trophoblast Stem Cells and Is Essential for Placental Development. Cell Reports, 2019, 27, 1742-1754.e6.	6.4	34
18	Histone H3K9 Methyltransferase G9a in Oocytes Is Essential for Preimplantation Development but Dispensable for CG Methylation Protection. Cell Reports, 2019, 27, 282-293.e4.	6.4	62

#	Article	IF	Citations
19	Identification of Genomic Alterations Acquired During Treatment With EGFR-TKIs in Non-small Cell Lung Cancer. Anticancer Research, 2019, 39, 671-677.	1.1	4
20	Polycomb protein SCML2 facilitates H3K27me3 to establish bivalent domains in the male germline. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4957-4962.	7.1	57
21	Accurate estimation of 5-methylcytosine in mammalian mitochondrial DNA. Scientific Reports, 2018, 8, 5801.	3.3	35
22	DBTSS/DBKERO for integrated analysis of transcriptional regulation. Nucleic Acids Research, 2018, 46, D229-D238.	14.5	48
23	Derivation of Human Trophoblast Stem Cells. Cell Stem Cell, 2018, 22, 50-63.e6.	11.1	570
24	Clinical and Immunological Characterization of ICF Syndrome in Japan. Journal of Clinical Immunology, 2018, 38, 927-937.	3.8	29
25	Generation of human oogonia from induced pluripotent stem cells in vitro. Science, 2018, 362, 356-360.	12.6	221
26	Role of SmcHD1 in establishment of epigenetic states required for the maintenance of the X-inactivated state in mice. Development (Cambridge), 2018, 145, .	2.5	19
27	CDCA7 and HELLS mutations undermine nonhomologous end joining in centromeric instability syndrome. Journal of Clinical Investigation, 2018, 129, 78-92.	8.2	62
28	Most T790M mutations are present on the same EGFR allele as activating mutations in patients with non–small cell lung cancer. Lung Cancer, 2017, 108, 75-82.	2.0	37
29	Evolution of the sperm methylome of primates is associated with retrotransposon insertions and genome instability. Human Molecular Genetics, 2017, 26, 3508-3519.	2.9	16
30	<i>In vitro</i> expansion of mouse primordial germ cellâ€like cells recapitulates an epigenetic blank slate. EMBO Journal, 2017, 36, 1888-1907.	7.8	92
31	Roles of MIWI, MILI and PLD6 in small RNA regulation in mouse growing oocytes. Nucleic Acids Research, 2017, 45, gkx027.	14.5	46
32	Iron-heme-Bach1 axis is involved in erythroblast adaptation to iron deficiency. Haematologica, 2017, 102, 454-465.	3.5	21
33	The $5\hat{a}\in^2$ region of <i>Xist</i> RNA has the potential to associate with chromatin through the A-repeat. Rna, 2017, 23, 1894-1901.	3.5	8
34	Defects in dosage compensation impact global gene regulation in the mouse trophoblast. Development (Cambridge), 2017, 144, 2784-2797.	2.5	31
35	Software updates in the Illumina HiSeq platform affect whole-genome bisulfite sequencing. BMC Genomics, 2017, 18, 31.	2.8	29
36	Locus-specific hypomethylation of the mouse IAP retrotransposon is associated with transcription factor-binding sites. Mobile DNA, 2017, 8, 20.	3.6	13

#	Article	IF	Citations
37	Switching of dominant retrotransposon silencing strategies from posttranscriptional to transcriptional mechanisms during male germ-cell development in mice. PLoS Genetics, 2017, 13, e1006926.	3.5	39
38	Role of UHRF1 in de novo DNA methylation in oocytes and maintenance methylation in preimplantation embryos. PLoS Genetics, 2017, 13, e1007042.	3.5	95
39	InÂVitro Derivation and Propagation of Spermatogonial Stem Cell Activity from Mouse Pluripotent Stem Cells. Cell Reports, 2016, 17, 2789-2804.	6.4	136
40	Global Landscape and Regulatory Principles of DNA Methylation Reprogramming for Germ Cell Specification by Mouse Pluripotent Stem Cells. Developmental Cell, 2016, 39, 87-103.	7.0	106
41	Allele-Specific Methylome and Transcriptome Analysis Reveals Widespread Imprinting in the Human Placenta. American Journal of Human Genetics, 2016, 99, 1045-1058.	6.2	103
42	De novo DNA methylation drives 5hmC accumulation in mouse zygotes. Nature Cell Biology, 2016, 18, 225-233.	10.3	205
43	DNA methylation and gene expression dynamics during spermatogonial stem cell differentiation in the early postnatal mouse testis. BMC Genomics, 2015, 16, 624.	2.8	112
44	Mutations in CDCA7 and HELLS cause immunodeficiency–centromeric instability–facial anomalies syndrome. Nature Communications, 2015, 6, 7870.	12.8	148
45	Whole-Mount MeFISH: A Novel Technique for Simultaneous Visualization of Specific DNA Methylation and Protein/RNA Expression. PLoS ONE, 2014, 9, e95750.	2.5	15
46	DNMT3L promotes quiescence in postnatal spermatogonial progenitor cells. Development (Cambridge), 2014, 141, 2402-2413.	2.5	45
47	${\sf HSP90\hat{l}\pm}$ plays an important role in piRNA biogenesis and retrotransposon repression in mouse. Nucleic Acids Research, 2014, 42, 11903-11911.	14.5	42
48	<i>Setdb1</i> is required for germline development and silencing of H3K9me3-marked endogenous retroviruses in primordial germ cells. Genes and Development, 2014, 28, 2041-2055.	5.9	228
49	Maternal high-fat diet induces insulin resistance and deterioration of pancreatic \hat{l}^2 -cell function in adult offspring with sex differences in mice. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E1163-E1175.	3.5	96
50	Mouse Oocyte Methylomes at Base Resolution Reveal Genome-Wide Accumulation of Non-CpG Methylation and Role of DNA Methyltransferases. PLoS Genetics, 2013, 9, e1003439.	3.5	263
51	Genetic evidence for Dnmt3aâ€dependent imprinting during oocyte growth obtained by conditional knockout with <i>Zp3</i> â€Cre and complete exclusion of Dnmt3b by chimera formation. Genes To Cells, 2010, 15, 169-179.	1.2	97
52	MVH in piRNA processing and gene silencing of retrotransposons. Genes and Development, 2010, 24, 887-892.	5.9	219
53	Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nature Reviews Genetics, 2008, 9, 129-140.	16.3	752
54	Maternal and zygotic Dnmt1 are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development. Genes and Development, 2008, 22, 1607-1616.	5.9	396

#	Article	IF	CITATIONS
55	Microarray analysis of promoter methylation in lung cancers. Journal of Human Genetics, 2006, 51, 368-374.	2.3	100
56	DNA methylation in epigenetics, development, and imprinting. , 2005, , .		0
57	Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature, 2004, 429, 900-903.	27.8	1,242
58	Disruption of mesodermal enhancers for <i> $lgf2 < li$ > in the minute mutant. Development (Cambridge), 2002, 129, 1657-1668.</i>	2.5	38
59	The paternal methylation imprint of the mouse <i>H19</i> locus is acquired in the gonocyte stage during foetal testis development. Genes To Cells, 2000, 5, 649-659.	1.2	188
60	Differential chromatin packaging of genomic imprinted regions between expressed and non-expressed alleles. Human Molecular Genetics, 2000, 9, 3029-3035.	2.9	6