List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1551381/publications.pdf Version: 2024-02-01

SVIVAIN LATOUR

#	Article	IF	CITATIONS
1	Inherited immunodeficiencies associated with proximal and distal defects in T cell receptor signaling and co-signaling. Biomedical Journal, 2022, 45, 321-333.	3.1	5
2	ldentification of Germline Non-coding Deletions in XIAP Gene Causing XIAP Deficiency Reveals a Key Promoter Sequence. Journal of Clinical Immunology, 2022, 42, 559-571.	3.8	6
3	Gain-of-function <i>IKZF1</i> variants in humans cause immune dysregulation associated with abnormal T/B cell late differentiation. Science Immunology, 2022, 7, eabi7160.	11.9	27
4	Identification of germline monoallelic mutations in <i>IKZF2</i> in patients with immune dysregulation. Blood Advances, 2022, 6, 2444-2451.	5.2	18
5	A loss-of-function <i>IFNAR1</i> allele in Polynesia underlies severe viral diseases in homozygotes. Journal of Experimental Medicine, 2022, 219, .	8.5	28
6	Epstein-Barr Virus Genome Deletions in Epstein-Barr Virus-Positive T/NK Cell Lymphoproliferative Diseases. Journal of Virology, 2022, 96, .	3.4	3
7	Inherited TNFSF9 deficiency causes broad Epstein–Barr virus infection with EBV+ smooth muscle tumors. Journal of Experimental Medicine, 2022, 219, .	8.5	7
8	DEF6 deficiency, a mendelian susceptibility to EBV infection, lymphoma, and autoimmunity. Journal of Allergy and Clinical Immunology, 2021, 147, 740-743.e9.	2.9	21
9	Germline IKAROS dimerization haploinsufficiency causes hematologic cytopenias and malignancies. Blood, 2021, 137, 349-363.	1.4	32
10	Somatic reversion of pathogenic DOCK8 variants alters lymphocyte differentiation and function to effectively cure DOCK8 deficiency. Journal of Clinical Investigation, 2021, 131, .	8.2	18
11	Late-Onset Progressive Multifocal Leukoencephalopathy (PML) and Lymphoma in a 65-Year-Old Patient with XIAP Deficiency. Journal of Clinical Immunology, 2021, 41, 1975-1978.	3.8	2
12	Immunity to EBV as revealed by immunedeficiencies. Current Opinion in Immunology, 2021, 72, 107-115.	5.5	19
13	Transient mTOR inhibition rescues 4-1BB CAR-Tregs from tonic signal-induced dysfunction. Nature Communications, 2021, 12, 6446.	12.8	35
14	Clinical Courses of IKAROS and CTLA4 Deficiencies: A Systematic Literature Review and Retrospective Longitudinal Study. Frontiers in Immunology, 2021, 12, 784901.	4.8	4
15	Late-Onset EBV Susceptibility and Refractory Pure Red Cell Aplasia Revealing DADA2. Journal of Clinical Immunology, 2020, 40, 948-953.	3.8	14
16	CD70 Deficiency Associated With Chronic Epstein-Barr Virus Infection, Recurrent Airway Infections and Severe Gingivitis in a 24-Year-Old Woman. Frontiers in Immunology, 2020, 11, 1593.	4.8	3
17	Rapid identification and characterization of infected cells in blood during chronic active Epstein-Barr virus infection. Journal of Experimental Medicine, 2020, 217, .	8.5	37
18	Loss-of-Function Mutation in PTPN2 Causes Aberrant Activation of JAK Signaling Via STAT and Very Early Onset Intestinal Inflammation. Gastroenterology, 2020, 159, 1968-1971.e4.	1.3	20

#	Article	IF	CITATIONS
19	Extended clinical and immunological phenotype and transplant outcome in CD27 and CD70 deficiency. Blood, 2020, 136, 2638-2655.	1.4	64
20	HEM1 deficiency disrupts mTORC2 and F-actin control in inherited immunodysregulatory disease. Science, 2020, 369, 202-207.	12.6	65
21	Primary immunodeficiencies reveal the molecular requirements for effective host defense against EBV infection. Blood, 2020, 135, 644-655.	1.4	80
22	Impaired lymphocyte function and differentiation in CTPS1-deficient patients result from a hypomorphic homozygous mutation. JCI Insight, 2020, 5, .	5.0	29
23	Hematopoietic stem cell transplantation for cytidine triphosphate synthase 1 (CTPS1) deficiency. Bone Marrow Transplantation, 2019, 54, 130-133.	2.4	13
24	Signaling pathways involved in the Tâ€cellâ€mediated immunity against Epsteinâ€Barr virus: Lessons from genetic diseases. Immunological Reviews, 2019, 291, 174-189.	6.0	85
25	Aggressive large Bâ€cell lymphoma triggered by a parvovirus B19 infection in a previously healthy child. Hematological Oncology, 2019, 37, 483-486.	1.7	1
26	Life-threatening pulmonary interstitial lung disease complicating pediatric nonhumoral immunodeficiencies. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 2456-2458.e4.	3.8	0
27	CTP synthetase activity assay by liquid chromatography tandem mass spectrometry in the multiple reaction monitoring mode. Journal of Mass Spectrometry, 2019, 54, 885-893.	1.6	4
28	Concomitant <i>PIK3CD</i> and <i>TNFRSF9</i> deficiencies cause chronic active Epstein-Barr virus infection of T cells. Journal of Experimental Medicine, 2019, 216, 2800-2818.	8.5	59
29	Allogeneic hematopoietic stem cell transplant outcomes for patients with dominant negative IKZF1/IKAROS mutations. Journal of Allergy and Clinical Immunology, 2019, 144, 339-342.	2.9	28
30	TCR density in early iNKT cell precursors regulates agonist selection and subset differentiation in mice. European Journal of Immunology, 2019, 49, 894-910.	2.9	8
31	A recurrent clonally distinct Burkitt lymphoma case highlights genetic key events contributing to oncogenesis. Genes Chromosomes and Cancer, 2019, 58, 595-601.	2.8	6
32	Intestinal dysbiosis in inflammatory bowel disease associated with primary immunodeficiency. Journal of Allergy and Clinical Immunology, 2019, 143, 775-778.e6.	2.9	28
33	Loss of <scp>RASCRP</scp> 1 in humans impairs Tâ€cell expansion leading to Epsteinâ€Barr virus susceptibility. EMBO Molecular Medicine, 2018, 10, 188-199.	6.9	61
34	RASGRP1 mutation in autoimmune lymphoproliferative syndrome-like disease. Journal of Allergy and Clinical Immunology, 2018, 142, 595-604.e16.	2.9	44
35	Diagnostic Yield of Next-generation Sequencing in Very Early-onset Inflammatory Bowel Diseases: A Multicentre Study. Journal of Crohn's and Colitis, 2018, 12, 1104-1112.	1.3	68
36	Comprehensive molecular diagnosis of Epstein–Barr virus-associated lymphoproliferative diseases using next-generation sequencing. International Journal of Hematology, 2018, 108, 319-328.	1.6	6

#	Article	IF	CITATIONS
37	Inherited Immunodeficiencies With High Predisposition to Epstein–Barr Virus-Driven Lymphoproliferative Diseases. Frontiers in Immunology, 2018, 9, 1103.	4.8	83
38	Dominant-negative IKZF1 mutations cause a T, B, and myeloid cell combined immunodeficiency. Journal of Clinical Investigation, 2018, 128, 3071-3087.	8.2	133
39	Inherited CD70 deficiency in humans reveals a critical role for the CD70–CD27 pathway in immunity to Epstein-Barr virus infection. Journal of Experimental Medicine, 2017, 214, 73-89.	8.5	122
40	Clinical spectrum and features of activated phosphoinositide 3-kinase δ syndrome: AÂlarge patient cohort study. Journal of Allergy and Clinical Immunology, 2017, 139, 597-606.e4.	2.9	377
41	Defects in T Cell Activation and Signaling. , 2016, , 391-399.		Ο
42	SLAMâ€associated protein favors the development of iNKT2 over iNKT17 cells. European Journal of Immunology, 2016, 46, 2162-2174.	2.9	18
43	A hematopoietic cell–driven mechanism involving SLAMF6 receptor, SAP adaptors and SHP-1 phosphatase regulates NK cell education. Nature Immunology, 2016, 17, 387-396.	14.5	54
44	Refractory monogenic Crohn's disease due to X-linked inhibitor of apoptosis deficiency. International Journal of Colorectal Disease, 2016, 31, 1235-1236.	2.2	4
45	X-linked Inhibitor of Apoptosis Protein Deficiency: More than an X-linked Lymphoproliferative Syndrome. Journal of Clinical Immunology, 2015, 35, 331-338.	3.8	83
46	XIAP deficiency syndrome in humans. Seminars in Cell and Developmental Biology, 2015, 39, 115-123.	5.0	112
47	Impairment of immunity to <i>Candida</i> and <i>Mycobacterium</i> in humans with bi-allelic <i>RORC</i> mutations. Science, 2015, 349, 606-613.	12.6	366
48	SYK expression endows human ZAP70-deficient CD8 T cells with residual TCR signaling. Clinical Immunology, 2015, 161, 103-109.	3.2	38
49	A novel hypomorphic mutation in STIM1 results in a late-onset immunodeficiency. Journal of Allergy and Clinical Immunology, 2015, 136, 816-819.e4.	2.9	47
50	CTP synthase 1 deficiency in humans reveals its central role in lymphocyte proliferation. Nature, 2014, 510, 288-292.	27.8	174
51	Characterization of Crohn disease in X-linked inhibitor of apoptosis–deficient male patients and female symptomatic carriers. Journal of Allergy and Clinical Immunology, 2014, 134, 1131-1141.e9.	2.9	101
52	EAT-2, a SAP-like adaptor, controls NK cell activation through phospholipase Cγ, Ca++, and Erk, leading to granule polarization. Journal of Experimental Medicine, 2014, 211, 727-742.	8.5	73
53	TLR-Induced Cytokines Promote Effective Proinflammatory Natural Th17 Cell Responses. Journal of Immunology, 2014, 192, 5635-5642.	0.8	33
54	EAT-2, a SAP-like adaptor, controls NK cell activation through phospholipase Cl̂³, Ca++, and Erk, leading to granule polarization. Journal of Cell Biology, 2014, 205, 2051OIA70.	5.2	0

#	Article	IF	CITATIONS
55	Whole-exome sequencing identifies Coronin-1A deficiency in 3 siblings with immunodeficiency and EBV-associated B-cell lymphoproliferation. Journal of Allergy and Clinical Immunology, 2013, 131, 1594-1603.e9.	2.9	127
56	Cernunnos Deficiency Reduces Thymocyte Life Span and Alters the T Cell Repertoire in Mice and Humans. Molecular and Cellular Biology, 2013, 33, 701-711.	2.3	63
57	X-linked lymphoproliferative syndromes and related autosomal recessive disorders. Current Opinion in Allergy and Clinical Immunology, 2013, 13, 614-622.	2.3	46
58	Allogeneic hematopoietic cell transplantation for XIAP deficiency: an international survey reveals poor outcomes. Blood, 2013, 121, 877-883.	1.4	132
59	Human iNKT and MAIT cells exhibit a PLZF-dependent proapoptotic propensity that is counterbalanced by XIAP. Blood, 2013, 121, 614-623.	1.4	97
60	Identification of SLAMF3 (CD229) as an Inhibitor of Hepatocellular Carcinoma Cell Proliferation and Tumour Progression. PLoS ONE, 2013, 8, e82918.	2.5	13
61	Occurrence of Nodular Lymphocyte-Predominant Hodgkin Lymphoma in Hermansky-Pudlak Type 2 Syndrome Is Associated to Natural Killer and Natural Killer T Cell Defects. PLoS ONE, 2013, 8, e80131.	2.5	34
62	Primary T-cell immunodeficiency with immunodysregulation caused by autosomal recessive LCK deficiency. Journal of Allergy and Clinical Immunology, 2012, 130, 1144-1152.e11.	2.9	96
63	Clinical and Genetic Characteristics of XIAP Deficiency in Japan. Journal of Clinical Immunology, 2012, 32, 411-420.	3.8	84
64	X-linked lymphoproliferative disease due to SAP/SH2D1A deficiency: a multicenter study on the manifestations, management and outcome of the disease. Blood, 2011, 117, 53-62.	1.4	268
65	Clinical similarities and differences of patients with X-linked lymphoproliferative syndrome type 1 (XLP-1/SAP deficiency) versus type 2 (XLP-2/XIAP deficiency). Blood, 2011, 117, 1522-1529.	1.4	320
66	Human X-linked variable immunodeficiency caused by a hypomorphic mutation in XIAP in association with a rare polymorphism in CD40LG. Blood, 2011, 118, 252-261.	1.4	41
67	Inherited defects causing hemophagocytic lymphohistiocytic syndrome. Annals of the New York Academy of Sciences, 2011, 1246, 64-76.	3.8	28
68	A novel XIAP mutation in a Japanese boy with recurrent pancytopenia and splenomegaly. Haematologica, 2010, 95, 688-689.	3.5	23
69	Efficacy of Gene Therapy for X-Linked Severe Combined Immunodeficiency. New England Journal of Medicine, 2010, 363, 355-364.	27.0	561
70	Essential function for SAP family adaptors in the surveillance of hematopoietic cells by natural killer cells. Nature Immunology, 2009, 10, 973-980.	14.5	115
71	Munc18-2 deficiency causes familial hemophagocytic lymphohistiocytosis type 5 and impairs cytotoxic granule exocytosis in patient NK cells. Journal of Clinical Investigation, 2009, 119, 3765-3773.	8.2	301
72	Stepwise Development of MAIT Cells in Mouse and Human. PLoS Biology, 2009, 7, e1000054.	5.6	531

#	Article	IF	CITATIONS
73	Chronic Active Gastritis in X-linked Lymphoproliferative Disease. American Journal of Surgical Pathology, 2008, 32, 323-328.	3.7	15
74	Natural killer T cells and X-linked lymphoproliferative syndrome. Current Opinion in Allergy and Clinical Immunology, 2007, 7, 510-514.	2.3	37
75	Consequence of the SLAM-SAP Signaling Pathway in Innate-like and Conventional Lymphocytes. Immunity, 2007, 27, 698-710.	14.3	100
76	Genetic defects affecting lymphocyte cytotoxicity. Current Opinion in Immunology, 2007, 19, 348-353.	5.5	74
77	XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature, 2006, 444, 110-114.	27.8	649
78	Association between SAP and FynT: Inducible SH3 Domain-Mediated Interaction Controlled by Engagement of the SLAM Receptor. Molecular and Cellular Biology, 2006, 26, 5559-5568.	2.3	30
79	Impaired Ig class switch in mice deficient for the X-linked lymphoproliferative disease gene Sap. Blood, 2005, 106, 2069-2075.	1.4	44
80	Negative regulation of natural killer cell function by EAT-2, a SAP-related adaptor. Nature Immunology, 2005, 6, 1002-1010.	14.5	133
81	Defective NKT cell development in mice and humans lacking the adapter SAP, the X-linked lymphoproliferative syndrome gene product. Journal of Experimental Medicine, 2005, 201, 695-701.	8.5	311
82	Regulation of natural cytotoxicity by the adaptor SAP and the Src-related kinase Fyn. Journal of Experimental Medicine, 2005, 202, 181-192.	8.5	102
83	Molecular Dissection of 2B4 Signaling: Implications for Signal Transduction by SLAM-Related Receptors. Molecular and Cellular Biology, 2004, 24, 5144-5156.	2.3	105
84	The SAP family of adaptors in immune regulation. Seminars in Immunology, 2004, 16, 409-419.	5.6	51
85	Molecular and immunological basis of X-linked lymphoproliferative disease. Immunological Reviews, 2003, 192, 212-224.	6.0	89
86	The SLAM family of immune-cell receptors. Current Opinion in Immunology, 2003, 15, 277-285.	5.5	107
87	Binding of SAP SH2 domain to FynT SH3 domain reveals a novel mechanism of receptor signalling in immune regulation. Nature Cell Biology, 2003, 5, 149-154.	10.3	254
88	NEGATIVEREGULATION OFIMMUNORECEPTORSIGNALING. Annual Review of Immunology, 2002, 20, 669-707.	21.8	226
89	Proximal protein tyrosine kinases in immunoreceptor signaling. Current Opinion in Immunology, 2001, 13, 299-306.	5.5	174
90	Regulation of SLAM-mediated signal transduction by SAP, the X-linked lymphoproliferative gene product. Nature Immunology, 2001, 2, 681-690.	14.5	245

#	Article	IF	CITATIONS
91	Bidirectional Negative Regulation of Human T and Dendritic Cells by CD47 and Its Cognate Receptor Signal-Regulator Protein-1±: Down-Regulation of IL-12 Responsiveness and Inhibition of Dendritic Cell Activation. Journal of Immunology, 2001, 167, 2547-2554.	0.8	216
92	Dok-3, a Novel Adapter Molecule Involved in the Negative Regulation of Immunoreceptor Signaling. Molecular and Cellular Biology, 2000, 20, 2743-2754.	2.3	178
93	Clnk, a Novel Slp-76–Related Adaptor Molecule Expressed in Cytokine-Stimulated Hemopoietic Cells. Journal of Experimental Medicine, 1999, 190, 1527-1534.	8.5	56
94	Interactions of CD45-associated Protein with the Antigen Receptor Signaling Machinery in T-lymphocytes. Journal of Biological Chemistry, 1999, 274, 14392-14399.	3.4	25
95	High Expression of Inhibitory Receptor SHPS-1 and Its Association with Protein-tyrosine Phosphatase SHP-1 in Macrophages. Journal of Biological Chemistry, 1998, 273, 22719-22728.	3.4	201
96	The Syk Protein Tyrosine Kinase Is Essential for FcÎ ³ Receptor Signaling in Macrophages and Neutrophils. Molecular and Cellular Biology, 1998, 18, 4209-4220.	2.3	356
97	Differential Intrinsic Enzymatic Activity of Syk and Zap-70 Protein-tyrosine Kinases. Journal of Biological Chemistry, 1996, 271, 22782-22790.	3.4	155
98	Variable expression of CD3-ζ chain in tumor-infiltrating lymphocytes (TIL) derived from renal-cell carcinoma: Relationship with til phenotype and function. International Journal of Cancer, 1995, 63, 205-212.	5.1	101
99	Regulation of tyrosine-containing activation motif-dependent cell signalling by Fcl ³ RII. Immunology Letters, 1995, 44, 119-123.	2.5	20
100	The same tyrosine-based inhibition motif, in the intra-cytoplasmic domain of FcÎ ³ RIIB, regulates negatively BCR-, TCR-, and FcR-dependent cell activation. Immunity, 1995, 3, 635-646.	14.3	425
101	Identification, in mouse macrophages and in serum, of a soluble receptor for the Fc portion of IgG (FcγR) encoded by an alternatively spliced transcript of the FcγRII gene. International Immunology, 1993, 5, 859-868.	4.0	25
102	Distinct intracytoplasmic sequences are required for endocytosis and phagocytosis via murine Fcl ³ RII in mast cells. International Immunology, 1993, 5, 1393-1401.	4.0	44
103	Identification of FcγRIIa, a product of the murine αFcγR gene. European Journal of Immunology, 1990, 20, 897-901.	2.9	6
104	The murine α Fcγ R gene product: identification, expression and regulation. Molecular Immunology, 1990, 27, 1181-1188.	2.2	12