List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1551201/publications.pdf Version: 2024-02-01

DAN DEED

#	Article	IF	CITATIONS
1	Delivery strategies of RNA therapeutics for ex vivo and in vivo B-cell malignancies. , 2022, , 117-146.		Ο
2	Principles for designing an optimal mRNA lipid nanoparticle vaccine. Current Opinion in Biotechnology, 2022, 73, 329-336.	6.6	102
3	Dualâ€Targeted Lipid Nanotherapeutic Boost for Chemoâ€Immunotherapy of Cancer. Advanced Materials, 2022, 34, e2106350.	21.0	25
4	Delivery strategies of RNA therapeutics to leukocytes. Journal of Controlled Release, 2022, 342, 362-371.	9.9	9
5	Nanoparticles Accumulate in the Female Reproductive System during Ovulation Affecting Cancer Treatment and Fertility. ACS Nano, 2022, 16, 5246-5257.	14.6	12
6	Dualâ€Targeted Lipid Nanotherapeutic Boost for Chemoâ€Immunotherapy of Cancer (Adv. Mater. 13/2022). Advanced Materials, 2022, 34, .	21.0	2
7	Extrahepatic delivery of RNA to immune cells. , 2022, , 57-86.		1
8	Design of SARS-CoV-2 hFc-Conjugated Receptor-Binding Domain mRNA Vaccine Delivered <i>via</i> Lipid Nanoparticles. ACS Nano, 2021, 15, 9627-9637.	14.6	66
9	Cytosolic delivery of nucleic acids: The case of ionizable lipid nanoparticles. Bioengineering and Translational Medicine, 2021, 6, e10213.	7.1	142
10	Therapeutic Gene Silencing Using Targeted Lipid Nanoparticles in Metastatic Ovarian Cancer. Small, 2021, 17, e2100287.	10.0	18
11	Lipid Nanoparticle RBD-hFc mRNA Vaccine Protects hACE2 Transgenic Mice against a Lethal SARS-CoV-2 Infection. Nano Letters, 2021, 21, 4774-4779.	9.1	20
12	Gene Silencing: Therapeutic Gene Silencing Using Targeted Lipid Nanoparticles in Metastatic Ovarian Cancer (Small 19/2021). Small, 2021, 17, 2170086.	10.0	0
13	Conformation-sensitive targeting of lipid nanoparticles for RNA therapeutics. Nature Nanotechnology, 2021, 16, 1030-1038.	31.5	78
14	Bioinspired artificial exosomes based on lipid nanoparticles carrying let-7b-5p promote angiogenesis inÂvitro and inÂvivo. Molecular Therapy, 2021, 29, 2239-2252.	8.2	42
15	Therapeutic inhibitory RNA in head and neck cancer via functional targeted lipid nanoparticles. Journal of Controlled Release, 2021, 337, 378-389.	9.9	21
16	Roadmap on nanomedicine. Nanotechnology, 2021, 32, 012001.	2.6	17
17	Fe ₃ O ₄ Nanoparticles and Paraffin Wax as Phase Change Materials Embedded in Polymer Matrixes for Temperature-Controlled Magnetic Hyperthermia. ACS Applied Nano Materials, 2021, 4, 11187-11198.	5.0	9
18	RNA delivery with a human virus-like particle. Nature Biotechnology, 2021, 39, 1514-1515.	17.5	11

#	Article	IF	CITATIONS
19	An ovarian spheroid based tumor model that represents vascularized tumors and enables the investigation of nanomedicine therapeutics. Nanoscale, 2020, 12, 1894-1903.	5.6	22
20	Monoclonal antibody-based molecular imaging strategies and theranostic opportunities. Theranostics, 2020, 10, 938-955.	10.0	84
21	CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy. Science Advances, 2020, 6, .	10.3	270
22	Investigation of pH-Responsiveness inside Lipid Nanoparticles for Parenteral mRNA Application Using Small-Angle X-ray Scattering. Langmuir, 2020, 36, 13331-13341.	3.5	28
23	Paving the Road for RNA Therapeutics. Trends in Pharmacological Sciences, 2020, 41, 755-775.	8.7	152
24	Polysarcosine-Functionalized Lipid Nanoparticles for Therapeutic mRNA Delivery. ACS Applied Nano Materials, 2020, 3, 10634-10645.	5.0	108
25	Resveratrol Enhances mRNA and siRNA Lipid Nanoparticles Primary CLL Cell Transfection. Pharmaceutics, 2020, 12, 520.	4.5	16
26	RNA Delivery: A Combinatorial Library of Lipid Nanoparticles for RNA Delivery to Leukocytes (Adv.) Tj ETQq0 0 0 r	gBT /Over 21.0	locgk 10 Tf 50
27	Progress and challenges towards CRISPR/Cas clinical translation. Advanced Drug Delivery Reviews, 2020, 154-155, 176-186.	13.7	33
28	Cationic Amphiphilic Drugs Boost the Lysosomal Escape of Small Nucleic Acid Therapeutics in a Nanocarrier-Dependent Manner. ACS Nano, 2020, 14, 4774-4791.	14.6	40
29	Targeted lipid nanoparticles for RNA therapeutics and immunomodulation in leukocytes. Advanced Drug Delivery Reviews, 2020, 159, 364-376.	13.7	46

29	Drug Delivery Reviews, 2020, 159, 364-376.	13.7	46
30	A Combinatorial Library of Lipid Nanoparticles for RNA Delivery to Leukocytes. Advanced Materials, 2020, 32, e1906128.	21.0	126
31	Reprogramming the lymphocyte axis for advanced immunotherapy. Advanced Drug Delivery Reviews, 2019, 141, 1-2.	13.7	0
32	On the issue of transparency and reproducibility in nanomedicine. Nature Nanotechnology, 2019, 14, 629-635.	31.5	149
33	Leukocyte-specific siRNA delivery revealing IRF8 as a potential anti-inflammatory target. Journal of Controlled Release, 2019, 313, 33-41.	9.9	38
34	Triggered ferroptotic polymer micelles for reversing multidrug resistance to chemotherapy. Biomaterials, 2019, 223, 119486.	11.4	159
35	Therapeutic mRNA delivery to leukocytes. Journal of Controlled Release, 2019, 305, 165-175.	9.9	43
36	Systemic Modulation of Lymphocyte Subsets Using siRNAs Delivered via Targeted Lipid Nanoparticles. Methods in Molecular Biology, 2019, 1974, 151-159.	0.9	4

3

#	Article	IF	CITATIONS
37	Challenges in IBD Research: Novel Technologies. Inflammatory Bowel Diseases, 2019, 25, S24-S30.	1.9	14
38	A tissue chamber chip for assessing nanoparticle mobility in the extravascular space. Biomedical Microdevices, 2019, 21, 41.	2.8	5
39	Personalized Tissue Implants: Personalized Hydrogels for Engineering Diverse Fully Autologous Tissue Implants (Adv. Mater. 1/2019). Advanced Materials, 2019, 31, 1970007.	21.0	4
40	Personalized Hydrogels for Engineering Diverse Fully Autologous Tissue Implants. Advanced Materials, 2019, 31, e1803895.	21.0	85
41	Engineering lymphocytes with RNAi. Advanced Drug Delivery Reviews, 2019, 141, 55-66.	13.7	21
42	Targeting central nervous system pathologies with nanomedicines. Journal of Drug Targeting, 2019, 27, 542-554.	4.4	16
43	Progress and challenges towards targeted delivery of cancer therapeutics. Nature Communications, 2018, 9, 1410.	12.8	1,488
44	A modular platform for targeted RNAi therapeutics. Nature Nanotechnology, 2018, 13, 214-219.	31.5	197
45	Focus on RNA interference: from nanoformulations toin vivodelivery. Nanotechnology, 2018, 29, 010201.	2.6	6
46	Hierarchical theranostic nanomedicine: MRI contrast agents as a physical vehicle anchor for high drug loading and triggered on-demand delivery. Journal of Materials Chemistry B, 2018, 6, 1995-2003.	5.8	13
47	Quantitative analysis of recombinant glucocerebrosidase brain delivery via lipid nanoparticles. Nano Futures, 2018, 2, 045003.	2.2	2
48	Gene Silencing in the Right Place at the Right Time. Molecular Therapy, 2018, 26, 2539-2541.	8.2	0
49	Cell specific delivery of modified mRNA expressing therapeutic proteins to leukocytes. Nature Communications, 2018, 9, 4493.	12.8	190
50	Orchestrating a Symphony on a Single Conjugate: Aptamer Targeting, Gene Silencing, and Immunomodulation to Enhance Antitumor Response. Molecular Therapy, 2017, 25, 5-7.	8.2	10
51	Emerging Trends in Micro- and Nanoscale Technologies in Medicine: From Basic Discoveries to Translation. ACS Nano, 2017, 11, 5195-5214.	14.6	104
52	Current Progress in Non-viral RNAi-Based Delivery Strategies to Lymphocytes. Molecular Therapy, 2017, 25, 1491-1500.	8.2	40
53	Comprehensive and Systematic Analysis of the Immunocompatibility of Polyelectrolyte Capsules. Bioconjugate Chemistry, 2017, 28, 556-564.	3.6	39
54	Delivering the right message: Challenges and opportunities in lipid nanoparticles-mediated modified mRNA therapeutics—An innate immune system standpoint. Seminars in Immunology, 2017, 34, 68-77.	5.6	103

#	Article	IF	CITATIONS
55	Next-Generation Lipids in RNA Interference Therapeutics. ACS Nano, 2017, 11, 7572-7586.	14.6	158
56	ECM-based macroporous sponges release essential factors to support the growth of hematopoietic cells. Journal of Controlled Release, 2017, 257, 84-90.	9.9	16
57	Advanced Strategies in Immune Modulation of Cancer Using Lipid-Based Nanoparticles. Frontiers in Immunology, 2017, 8, 69.	4.8	32
58	siRNA delivery: current trends and future perspectives. Therapeutic Delivery, 2016, 7, 51-53.	2.2	11
59	Colitis ImmunoPET. Inflammatory Bowel Diseases, 2016, 22, 529-538.	1.9	18
60	Advances in RNAi therapeutic delivery to leukocytes using lipid nanoparticles. Journal of Drug Targeting, 2016, 24, 780-786.	4.4	28
61	Modulation of Immune Response Using Engineered Nanoparticle Surfaces. Small, 2016, 12, 76-82.	10.0	71
62	Immunomodulation of hematological malignancies using oligonucleotides based-nanomedicines. Journal of Controlled Release, 2016, 244, 149-156.	9.9	18
63	Zooming in on selectins in cancer. Science Translational Medicine, 2016, 8, 345fs11.	12.4	4
64	Targeting Cancer Using Nanocarriers. Advances in Delivery Science and Technology, 2016, , 131-155.	0.4	1
65	Harnessing nanomedicine for therapeutic intervention in glioblastoma. Expert Opinion on Drug Delivery, 2016, 13, 1573-1582.	5.0	46
66	RNA nanomedicines: the next generation drugs?. Current Opinion in Biotechnology, 2016, 39, 28-34.	6.6	31
67	Transforming Nanomedicines From Lab Scale Production to Novel Clinical Modality. Bioconjugate Chemistry, 2016, 27, 855-862.	3.6	67
68	Harnessing RNAi-based nanomedicines for therapeutic gene silencing in B-cell malignancies. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E16-22.	7.1	73
69	Platelet mimicry: The emperor's new clothes?. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 245-248.	3.3	19
70	Metastability in lipid based particles exhibits temporally deterministic and controllable behavior. Scientific Reports, 2015, 5, 9481.	3.3	16
71	Systemic Gene Silencing in Primary T Lymphocytes Using Targeted Lipid Nanoparticles. ACS Nano, 2015, 9, 6706-6716.	14.6	146
72	Serum chemokine network correlates with chemotherapy in non-small cell lung cancer. Cancer Letters, 2015, 365, 57-67.	7.2	17

#	Article	lF	CITATIONS
73	Cell-specific uptake of mantle cell lymphoma-derived exosomes by malignant and non-malignant B-lymphocytes. Cancer Letters, 2015, 364, 59-69.	7.2	117
74	Localized RNAi Therapeutics of Chemoresistant Grade IV Glioma Using Hyaluronan-Grafted Lipid-Based Nanoparticles. ACS Nano, 2015, 9, 1581-1591.	14.6	147
75	The Human P-Glycoprotein Transporter Enhances the Type I Interferon Response to Listeria monocytogenes Infection. Infection and Immunity, 2015, 83, 2358-2368.	2.2	14
76	Triggered-release polymeric conjugate micelles for on-demand intracellular drug delivery. Nanotechnology, 2015, 26, 115101.	2.6	49
77	Nanomedicine as an emerging platform for metastatic lung cancer therapy. Cancer and Metastasis Reviews, 2015, 34, 291-301.	5.9	58
78	Dielectrophoretic characterization of cells in a stationary nanoliter droplet array with generated chemical gradients. Biomedical Microdevices, 2015, 17, 91.	2.8	2
79	Overcoming multidrug resistance with nanomedicines. Expert Opinion on Drug Delivery, 2015, 12, 223-238.	5.0	61
80	Structural Characterization of the Drug Translocation Path of MRP1/ABCC1. Israel Journal of Chemistry, 2014, 54, 1382-1393.	2.3	9
81	Precision medicine – Delivering the goods?. Cancer Letters, 2014, 352, 2-3.	7.2	28
82	Toxicity profiling of several common RNAi-based nanomedicines: a comparative study. Drug Delivery and Translational Research, 2014, 4, 96-103.	5.8	52
83	Omics-based nanomedicine: The future of personalized oncology. Cancer Letters, 2014, 352, 126-136.	7.2	75
84	Harnessing RNAi nanomedicine for precision therapy. Molecular and Cellular Therapies, 2014, 2, 5.	0.2	20
85	RNA interference-based therapeutics and diagnostics. Drug Delivery and Translational Research, 2014, 4, 1-2.	5.8	2
86	Nanoparticles for Imaging, Sensing, and Therapeutic Intervention. ACS Nano, 2014, 8, 3107-3122.	14.6	255
87	Tumor targeting profiling of hyaluronan-coated lipid based-nanoparticles. Nanoscale, 2014, 6, 3742-3752.	5.6	60
88	Modulating cancer multidrug resistance by sertraline in combination with a nanomedicine. Cancer Letters, 2014, 354, 290-298.	7.2	51
89	Precision Nanomedicine in Neurodegenerative Diseases. ACS Nano, 2014, 8, 1958-1965.	14.6	95
90	Featuring the special issue guest editor: Dan Peer, Ph.D. Cancer Letters, 2014, 352, 1.	7.2	4

#	Article	IF	CITATIONS
91	Modulation of Drug Resistance in Ovarian Adenocarcinoma Using Chemotherapy Entrapped in Hyaluronan-Grafted Nanoparticle Clusters. ACS Nano, 2014, 8, 2183-2195.	14.6	80
92	Quaternized starch-based carrier for siRNA delivery: From cellular uptake to gene silencing. Journal of Controlled Release, 2014, 185, 109-120.	9.9	50
93	RNAi Nanomedicines toward Advancing Personalized Medicine. , 2014, , 59-79.		0
94	Hyaluronan grafted lipid-based nanoparticles as RNAi carriers for cancer cells. Cancer Letters, 2013, 334, 221-227.	7.2	65
95	Providing the full picture: a mandate for standardizing nanoparticle-based drug delivery. Nanomedicine, 2013, 8, 1031-1033.	3.3	10
96	Molecular and Cellular Therapies: New challenges and opportunities. Molecular and Cellular Therapies, 2013, 1, 1.	0.2	10
97	Themed issue on nanoparticles in biology. Journal of Materials Chemistry B, 2013, 1, 5174.	5.8	1
98	Sweet Fairytale: Carbohydrates as Backbones for Glyconanomedicine. Israel Journal of Chemistry, 2013, 53, 616-629.	2.3	0
99	Structural profiling and biological performance of phospholipid–hyaluronan functionalized single-walled carbon nanotubes. Journal of Controlled Release, 2013, 170, 295-305.	9.9	26
100	elF3c: A potential therapeutic target for cancer. Cancer Letters, 2013, 336, 158-166.	7.2	33
101	A daunting task: manipulating leukocyte function with <scp>RNA</scp> i. Immunological Reviews, 2013, 253, 185-197.	6.0	55
102	Harnessing Nanomedicine for Mucosal Theranostics—A Silver Bullet at Last?. ACS Nano, 2013, 7, 2883-2890.	14.6	31
103	SNP Detection in mRNA in Living Cells Using Allele Specific FRET Probes. PLoS ONE, 2013, 8, e72389.	2.5	17
104	Nanomedicines for Systemic Delivery of RNAi Therapeutics. Advances in Delivery Science and Technology, 2013, , 127-142.	0.4	0
105	Polysaccharides as building blocks for nanotherapeutics. Chemical Society Reviews, 2012, 41, 2623-2640.	38.1	339
106	Integrin-Targeted Stabilized Nanoparticles for an Efficient Delivery of siRNAs In Vitro and In Vivo. Methods in Molecular Biology, 2012, 820, 105-116.	0.9	4
107	Immunotoxicity derived from manipulating leukocytes with lipid-based nanoparticles. Advanced Drug Delivery Reviews, 2012, 64, 1738-1748.	13.7	75
108	RNAi-based nanomedicines for targeted personalized therapy. Advanced Drug Delivery Reviews, 2012, 64, 1508-1521.	13.7	147

#	Article	IF	CITATIONS
109	Nanotoxicity and the importance of being earnest. Advanced Drug Delivery Reviews, 2012, 64, 1661-1662.	13.7	16
110	Nanoparticle Hydrophobicity Dictates Immune Response. Journal of the American Chemical Society, 2012, 134, 3965-3967.	13.7	418
111	RNA Inhibition Highlights Cyclin D1 as a Potential Therapeutic Target for Mantle Cell Lymphoma. PLoS ONE, 2012, 7, e43343.	2.5	24
112	Liposomes, lipid biophysics, and sphingolipid research: from basic to translation research. Chemistry and Physics of Lipids, 2012, 165, 363-364.	3.2	12
113	Altering the immune response with lipid-based nanoparticles. Journal of Controlled Release, 2012, 161, 600-608.	9.9	108
114	Liposomes and other assemblies as drugs and nano-drugs: From basic and translational research to the clinics. Journal of Controlled Release, 2012, 160, 115-116.	9.9	16
115	Grand challenges in modulating the immune response with RNAi nanomedicines. Nanomedicine, 2011, 6, 1771-1785.	3.3	32
116	Enhanced Bioavailability of Polyaromatic Hydrocarbons in the Form of Mucin Complexes. Chemical Research in Toxicology, 2011, 24, 314-320.	3.3	13
117	Targeting Anthracycline-Resistant Tumor Cells with Synthetic Aloe-Emodin Glycosides. ACS Medicinal Chemistry Letters, 2011, 2, 528-531.	2.8	9
118	Reshaping the Future of Nanopharmaceuticals: <i>Ad ludicium</i> . ACS Nano, 2011, 5, 8454-8458.	14.6	90
119	Antibody-Mediated Delivery of siRNAs for Anti-HIV Therapy. Methods in Molecular Biology, 2011, 721, 339-353.	0.9	18
120	Special delivery: targeted therapy with small RNAs. Gene Therapy, 2011, 18, 1127-1133.	4.5	133
121	Hyaluronan-coated nanoparticles: The influence of the molecular weight on CD44-hyaluronan interactions and on the immune response. Journal of Controlled Release, 2011, 156, 231-238.	9.9	204
122	Hyaluronan-grafted particle clusters loaded with Mitomycin C as selective nanovectors for primary head and neck cancers. Biomaterials, 2011, 32, 4840-4848.	11.4	69
123	Assessing cellular toxicities in fibroblasts upon exposure to lipid-based nanoparticles: a high content analysis approach. Nanotechnology, 2011, 22, 494016.	2.6	23
124	Integrin-Targeted Nanoparticles for siRNA Delivery. Methods in Molecular Biology, 2011, 757, 497-507.	0.9	10
125	The systemic toxicity of positively charged lipid nanoparticles and the role of Toll-like receptor 4 in immune activation. Biomaterials, 2010, 31, 6867-6875.	11.4	384
126	Induction of therapeutic gene silencing in leukocyte-implicated diseases by targeted and stabilized nanoparticles: A mini-review. Journal of Controlled Release, 2010, 148, 63-68.	9.9	22

#	Article	IF	CITATIONS
127	Detection of intestinal inflammation by MicroPET imaging using a 64Cu-labeled anti-β7 integrin antibody. Inflammatory Bowel Diseases, 2010, 16, 1458-1466.	1.9	25
128	Paclitaxel-clusters coated with hyaluronan as selective tumor-targeted nanovectors. Biomaterials, 2010, 31, 7106-7114.	11.4	136
129	RNAi nanomedicines: challenges and opportunities within the immune system. Nanotechnology, 2010, 21, 232001.	2.6	42
130	IKAP/hELP1 down-regulation in neuroblastoma cells causes enhanced cell adhesion mediated by contactin overexpression. Cell Adhesion and Migration, 2010, 4, 541-550.	2.7	3
131	RNAi-mediated CCR5 Silencing by LFA-1-targeted Nanoparticles Prevents HIV Infection in BLT Mice. Molecular Therapy, 2010, 18, 370-376.	8.2	192
132	Systemic siRNA delivery to leukocyte-implicated diseases. Cell Cycle, 2009, 8, 853-859.	2.6	30
133	RNAi nanoparticles in the service of personalized medicine. Nanomedicine, 2009, 4, 853-855.	3.3	9
134	T.86. siRNA Delivery with Integrin LFA-1-targeted Nanoparticles Prevents HIV Infection in Humanized Mice. Clinical Immunology, 2009, 131, S75-S76.	3.2	1
135	Treatment of resistant human colon cancer xenografts by a fluoxetine–doxorubicin combination enhances therapeutic responses comparable to an aggressive bevacizumab regimen. Cancer Letters, 2009, 274, 118-125.	7.2	43
136	Nanocarriers delivering RNAi to cancer cells: from challenge to cautious optimism. Therapy: Open Access in Clinical Medicine, 2009, 6, 293-296.	0.2	1
137	Systemic Leukocyte-Directed siRNA Delivery Revealing Cyclin D1 as an Anti-Inflammatory Target. Science, 2008, 319, 627-630.	12.6	475
138	Genetic perturbation of the putative cytoplasmic membrane-proximal salt bridge aberrantly activates α4 integrins. Blood, 2008, 112, 5007-5015.	1.4	31
139	Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte function-associated antigen-1. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4095-4100.	7.1	262
140	Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2007, 2, 751-760.	31.5	7,469
141	Corneal gene therapy. Journal of Controlled Release, 2007, 124, 107-133.	9.9	74
142	Fluoxetine and reversal of multidrug resistance. Cancer Letters, 2006, 237, 180-187.	7.2	79
143	AL-57, a ligand-mimetic antibody to integrin LFA-1, reveals chemokine-induced affinity up-regulation in lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13991-13996.	7.1	51
144	Tumor-Targeted Hyaluronan Nanoliposomes Increase the Antitumor Activity of Liposomal Doxorubicin in Syngeneic and Human Xenograft Mouse Tumor Models. Neoplasia, 2004, 6, 343-353.	5.3	197

#	Article	IF	CITATIONS
145	Fluoxetine Inhibits Multidrug Resistance Extrusion Pumps and Enhances Responses to Chemotherapy in Syngeneic and in Human Xenograft Mouse Tumor Models. Cancer Research, 2004, 64, 7562-7569.	0.9	86
146	Loading mitomycin C inside long circulating hyaluronan targeted nano-liposomes increases its antitumor activity in three mice tumor models. International Journal of Cancer, 2004, 108, 780-789.	5.1	215
147	Hyaluronan is a key component in cryoprotection and formulation of targeted unilamellar liposomes. Biochimica Et Biophysica Acta - Biomembranes, 2003, 1612, 76-82.	2.6	80
148	Physicochemical Evaluation of a Stability-Driven Approach to Drug Entrapment in Regular and in Surface-Modified Liposomes. Archives of Biochemistry and Biophysics, 2000, 383, 185-190.	3.0	40