
Manuel C Peitsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/155106/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of aerosols on liver xenobiotic metabolism: A comparison of two methods of exposure. Toxicology in Vitro, 2022, 79, 105277.	2.4	2
2	lota-carrageenan extracted from red algae is a potent inhibitor of SARSâ€CoV-2 infection in reconstituted human airway epithelia. Biochemistry and Biophysics Reports, 2022, 29, 101187.	1.3	6
3	Causal Biological Network Model for Inflammasome Signaling Applied for Interpreting Transcriptomic Changes in Various Inflammatory States. International Journal of Inflammation, 2022, 2022, 1-13.	1.5	1
4	Pulmonary Delivery of Aerosolized Chloroquine and Hydroxychloroquine to Treat COVID-19: In Vitro Experimentation to Human Dosing Predictions. AAPS Journal, 2022, 24, 33.	4.4	5
5	Effects of cigarette smoke exposure on a mouse model of multiple sclerosis. Toxicology Reports, 2022, 9, 597-610.	3.3	1
6	Causal biological network models for reactive astrogliosis: a systems approach to neuroinflammation. Scientific Reports, 2022, 12, 4205.	3.3	2
7	Toxicological Assessment of Flavor Ingredients in E-Vapor Products. Frontiers in Toxicology, 2022, 4, 878976.	3.1	2
8	The clove (Syzygium aromaticum) genome provides insights into the eugenol biosynthesis pathway. Communications Biology, 2022, 5, .	4.4	6
9	Applying Systems Toxicology Methods to Drug Safety. , 2021, , 330-341.		1
10	Inflammatory Bowel Disease–Associated Changes in the Gut: Focus on Kazan Patients. Inflammatory Bowel Diseases, 2021, 27, 418-433.	1.9	27
11	Comparison of the biological impact of aerosol of e-vapor device with MESH® technology and cigarette smoke on human bronchial and alveolar cultures. Toxicology Letters, 2021, 337, 98-110.	0.8	7
12	Clinical Assessment of ENDPs. , 2021, , 385-459.		1
13	A Systems-Based Approach to Toxicity Testing. , 2021, , 189-206.		0
14	Scientific Basis for Assessment of Electronic Nicotine Delivery Products. , 2021, , 23-40.		0
15	Smoking-Related Disease Risk Reduction Potential of ENDPs. , 2021, , 461-500.		1
16	Systems pharmacology investigation of mechanism of action of nutraceuticals. , 2021, , 345-361.		2
17	Aerosol Filtration Testing of Fabrics for Development of Reusable Face Masks. Aerosol and Air Quality Research, 2021, 21, 210052.	2.1	7
18	Assessment of ENDPs in Animal Models of Disease. , 2021, , 319-365.		0

2

#	Article	IF	CITATIONS
19	Residual Risk of Nicotine. , 2021, , 513-587.		1
20	Toxicological Assessment of Flavors Used in E-vapor Products. , 2021, , 367-383.		1
21	Toxicological Assessment InÂVitro. , 2021, , 257-304.		Ο
22	<i>In Vivo</i> Profiling of a Natural Alkaloid, Anatabine, in Rodents: Pharmacokinetics and Anti-Inflammatory Efficacy. Journal of Natural Products, 2021, 84, 1012-1021.	3.0	4
23	Discriminating Spontaneous From Cigarette Smoke and THS 2.2 Aerosol Exposure-Related Proliferative Lung Lesions in A/J Mice by Using Gene Expression and Mutation Spectrum Data. Frontiers in Toxicology, 2021, 3, 634035.	3.1	Ο
24	Development of an Advanced Multicellular Intestinal Model for Assessing Immunomodulatory Properties of Anti-Inflammatory Compounds. Frontiers in Pharmacology, 2021, 12, 639716.	3.5	7
25	Impact of wholeâ€body versus noseâ€only inhalation exposure systems on systemic, respiratory, and cardiovascular endpoints in a 2â€month cigarette smoke exposure study in the ApoE ^{â^'/â^'} mouse model. Journal of Applied Toxicology, 2021, 41, 1598-1619.	2.8	11
26	A 6-month inhalation toxicology study in Apoeâ^'/â^' mice demonstrates substantially lower effects of e-vapor aerosol compared with cigarette smoke in the respiratory tract. Archives of Toxicology, 2021, 95, 1805-1829.	4.2	7
27	Systems biology approach highlights mechanistic differences between Crohn's disease and ulcerative colitis. Scientific Reports, 2021, 11, 11519.	3.3	10
28	Systems Toxicology Approach for Assessing Developmental Neurotoxicity in Larval Zebrafish. Frontiers in Genetics, 2021, 12, 652632.	2.3	3
29	Systems toxicology study reveals reduced impact of heated tobacco product aerosol extract relative to cigarette smoke on premature aging and exacerbation effects in aged aortic cells in vitro. Archives of Toxicology, 2021, 95, 3341-3359.	4.2	7
30	Effects of nicotinic acetylcholine receptor-activating alkaloids on anxiety-like behavior in zebrafish. Journal of Natural Medicines, 2021, 75, 926-941.	2.3	5
31	Impact of 6-Month Exposure to Aerosols From Potential Modified Risk Tobacco Products Relative to Cigarette Smoke on the Rodent Gastrointestinal Tract. Frontiers in Microbiology, 2021, 12, 587745.	3.5	4
32	Effects of plant alkaloids on mitochondrial bioenergetic parameters. Food and Chemical Toxicology, 2021, 154, 112316.	3.6	1
33	Subchronic effects of plant alkaloids on anxiety-like behavior in zebrafish. Pharmacology Biochemistry and Behavior, 2021, 207, 173223.	2.9	10
34	Assessment of in vitro kinetics and biological impact of nebulized trehalose on human bronchial epithelium. Food and Chemical Toxicology, 2021, 157, 112577.	3.6	5
35	Translational Models for ENDP Assessment. , 2021, , 207-222.		0
36	Toxicological Assessment of ENDPs InÂVivo. , 2021, , 305-317.		0

#	Article	IF	CITATIONS
37	A 7-month inhalation toxicology study in C57BL/6 mice demonstrates reduced pulmonary inflammation and emphysematous changes following smoking cessation or switching to e-vapor products. Toxicology Research and Application, 2021, 5, 239784732199587.	0.6	3
38	Tobacco Harm Reduction Concepts and Policy Approaches. , 2021, , 1-15.		1
39	Effects of whitening toothpaste and bleaching treatment on resin composite discoloration caused by cigarette smoke and electronic vapor aerosol. American Journal of Dentistry, 2021, 34, 63-69.	0.1	1
40	An electrophysiological characterization of naturally occurring tobacco alkaloids and their action on human α4β2 and α7 nicotinic acetylcholine receptors. Phytochemistry, 2020, 170, 112187.	2.9	24
41	Structural, functional, and molecular impact on the cardiovascular system in ApoE-/- mice exposed to aerosol from candidate modified risk tobacco products, Carbon Heated Tobacco Product 1.2 and Tobacco Heating System 2.2, compared with cigarette smoke. Chemico-Biological Interactions, 2020, 315. 108887.	4.0	10
42	Systems toxicology assessment of a representative e-liquid formulation using human primary bronchial epithelial cells. Toxicology Reports, 2020, 7, 67-80.	3.3	16
43	A meta-analysis of microRNAs expressed in human aerodigestive epithelial cultures and their role as potential biomarkers of exposure response to nicotine-containing products. Toxicology Reports, 2020, 7, 1282-1295.	3.3	2
44	Systems Toxicology Approach for Testing Chemical Cardiotoxicity in Larval Zebrafish. Chemical Research in Toxicology, 2020, 33, 2550-2564.	3.3	13
45	Ceramide ratios are affected by cigarette smoke but not heat-not-burn or e-vapor aerosols across four independent mouse studies. Life Sciences, 2020, 263, 118753.	4.3	9
46	Respiratory Effects of Exposure to Aerosol From the Candidate Modified-Risk Tobacco Product THS 2.2 in an 18-Month Systems Toxicology Study With A/J Mice. Toxicological Sciences, 2020, 178, 138-158.	3.1	13
47	Anatabine ameliorates intestinal inflammation and reduces the production of pro-inflammatory factors in a dextran sulfate sodium mouse model of colitis. Journal of Inflammation, 2020, 17, 29.	3.4	12
48	Comparison of the basic morphology and function of 3D lung epithelial cultures derived from several donors. Current Research in Toxicology, 2020, 1, 56-69.	2.7	17
49	Reduced Chronic Toxicity and Carcinogenicity in A/J Mice in Response to Life-Time Exposure to Aerosol From a Heated Tobacco Product Compared With Cigarette Smoke. Toxicological Sciences, 2020, 178, 44-70.	3.1	12
50	Comparing the preclinical risk profile of inhalable candidate and potential candidate modified risk tobacco products: A bridging use case. Toxicology Reports, 2020, 7, 1187-1206.	3.3	8
51	Evaluation of toxicity of aerosols from flavored e-liquids in Sprague–Dawley rats in a 90-day OECD inhalation study, complemented by transcriptomics analysis. Archives of Toxicology, 2020, 94, 2179-2206.	4.2	14
52	E-vapor aerosols do not compromise bone integrity relative to cigarette smoke after 6-month inhalation in an ApoE–/– mouse model. Archives of Toxicology, 2020, 94, 2163-2177.	4.2	17
53	The reduction of DSS-induced colitis severity in mice exposed to cigarette smoke is linked to immune modulation and microbial shifts. Scientific Reports, 2020, 10, 3829.	3.3	20
54	Analysis of chemical deposits on tooth enamel exposed to total particulate matter from cigarette smoke and tobacco heating system 2.2 aerosol by novel GC–MS deconvolution procedures. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1152, 122228.	2.3	15

#	Article	IF	CITATIONS
55	In Vitro High-Content Imaging-Based Phenotypic Analysis of Bronchial 3D Organotypic Air–Liquid Interface Cultures. SLAS Technology, 2020, 25, 247-252.	1.9	5
56	A 6-month systems toxicology inhalation study in ApoE ^{â^'/â^'} mice demonstrates reduced cardiovascular effects of E-vapor aerosols compared with cigarette smoke. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H604-H631.	3.2	38
57	Lung transcriptomic clock predicts premature aging in cigarette smoke-exposed mice. BMC Genomics, 2020, 21, 291.	2.8	15
58	Multi-omics systems toxicology study of mouse lung assessing the effects of aerosols from two heat-not-burn tobacco products and cigarette smoke. Computational and Structural Biotechnology Journal, 2020, 18, 1056-1073.	4.1	25
59	Production of Valuable Compounds in Tobacco. Compendium of Plant Genomes, 2020, , 249-263.	0.5	3
60	Alternatives to Animal Use in Risk Assessment of Mixtures. International Journal of Toxicology, 2020, 39, 165-172.	1.2	9
61	State-of-the-art methods and devices for the generation, exposure, and collection of aerosols from heat-not-burn tobacco products. Toxicology Research and Application, 2020, 4, 239784731989786.	0.6	5
62	Systems Toxicology Approach to Unravel Early Indicators of Squamous Cell Carcinoma Rate in Rat Nasal Epithelium Induced by Formaldehyde Exposure. Advances in Intelligent Systems and Computing, 2020, , 16-24.	0.6	1
63	State-of-the-art methods and devices for generation, exposure, and collection of aerosols from e-vapor products. Toxicology Research and Application, 2020, 4, 239784732097975.	0.6	1
64	Antiparasitic properties of leaf extracts derived from selected Nicotiana species and Nicotiana tabacum varieties. Food and Chemical Toxicology, 2019, 132, 110660.	3.6	27
65	Effects of Switching to a Heat-Not-Burn Tobacco Product on Biologically Relevant Biomarkers to Assess a Candidate Modified Risk Tobacco Product: A Randomized Trial. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 1934-1943.	2.5	64
66	GladiaTOX: GLobal Assessment of Dose-IndicAtor in TOXicology. Bioinformatics, 2019, 35, 4190-4192.	4.1	6
67	Comparison of monoamine oxidase inhibition by cigarettes and modified risk tobacco products. Toxicology Reports, 2019, 6, 1206-1215.	3.3	16
68	NPA: an R package for computing network perturbation amplitudes using gene expression data and two-layer networks. BMC Bioinformatics, 2019, 20, 451.	2.6	7
69	Effects of different discoloration challenges and whitening treatments on dental hard tissues and composite resin restorations. Journal of Dentistry, 2019, 89, 103182.	4.1	38
70	Application of a multi-layer systems toxicology framework for in vitro assessment of the biological effects of Classic Tobacco e-liquid and its corresponding aerosol using an e-cigarette device with MESHâ,,¢ technology. Archives of Toxicology, 2019, 93, 3229-3247.	4.2	26
71	Respirable aerosol exposures of nicotine dry powder formulations to <i>in vitro</i> , <i>ex vivo</i> , and <i>in vivo</i> pre-clinical models demonstrate consistency of pharmacokinetic profiles. Inhalation Toxicology, 2019, 31, 248-257.	1.6	5
72	Mitochondria as a possible target for nicotine action. Journal of Bioenergetics and Biomembranes, 2019, 51, 259-276.	2.3	61

#	Article	IF	CITATIONS
73	Systems toxicology meta-analysis—From aerosol exposure to nanotoxicology. Current Opinion in Toxicology, 2019, 16, 39-48.	5.0	7
74	Toxicological assessment of Tobacco Heating System 2.2: Findings from an independent peer review. Regulatory Toxicology and Pharmacology, 2019, 104, 115-127.	2.7	9
75	A lower impact of an acute exposure to electronic cigarette aerosols than to cigarette smoke in human organotypic buccal and small airway cultures was demonstrated using systems toxicology assessment. Internal and Emergency Medicine, 2019, 14, 863-883.	2.0	30
76	Construction of a Suite of Computable Biological Network Models Focused on Mucociliary Clearance in the Respiratory Tract. Frontiers in Genetics, 2019, 10, 87.	2.3	6
77	A Meta-Analysis of the Performance of a Blood-Based Exposure Response Gene Signature Across Clinical Studies on the Tobacco Heating System 2.2 (THS 2.2). Frontiers in Pharmacology, 2019, 10, 198.	3.5	2
78	Assessing the lung cancer risk reduction potential of candidate modified risk tobacco products. Internal and Emergency Medicine, 2019, 14, 821-834.	2.0	13
79	A six-month systems toxicology inhalation/cessation study in ApoEâ^'/â^' mice to investigate cardiovascular and respiratory exposure effects of modified risk tobacco products, CHTP 1.2 and THS 2.2, compared with conventional cigarettes. Food and Chemical Toxicology, 2019, 126, 113-141.	3.6	40
80	Bridging inhaled aerosol dosimetry to physiologically based pharmacokinetic modeling for toxicological assessment: nicotine delivery systems and beyond. Critical Reviews in Toxicology, 2019, 49, 725-741.	3.9	25
81	Tobacco Heating System 2.2 has a limited impact on DNA methylation of candidate enhancers in mouse lung compared with cigarette smoke. Food and Chemical Toxicology, 2019, 123, 501-510.	3.6	11
82	Assessment of a 72-hour repeated exposure to Swedish snus extract and total particulate matter from 3R4F cigarette smoke on gingival organotypic cultures. Food and Chemical Toxicology, 2019, 125, 252-270.	3.6	8
83	A method for determination of tracheobronchial airway geometries from four different strains of mice. FASEB Journal, 2019, 33, lb107.	0.5	1
84	Effects of cigarette smoke and tobacco heating aerosol on color stability of dental enamel, dentin, and composite resin restorations. Quintessence International, 2019, 50, 156-166.	0.4	18
85	Comparative biological impacts of an aerosol from carbon-heated tobacco and smoke from cigarettes on human respiratory epithelial cultures: A systems toxicology assessment. Food and Chemical Toxicology, 2018, 115, 109-126.	3.6	25
86	Assessment of the impact of aerosol from a potential modified risk tobacco product compared with cigarette smoke on human organotypic oral epithelial cultures under different exposure regimens. Food and Chemical Toxicology, 2018, 115, 148-169.	3.6	26
87	A 90-day OECD TG 413 rat inhalation study with systems toxicology endpoints demonstrates reduced exposure effects of the aerosol from the carbon heated tobacco product version 1.2 (CHTP1.2) compared with cigarette smoke. I. Inhalation exposure, clinical pathology and histopathology. Food and Chemical Toxicology. 2018. 116. 388-413.	3.6	28
88	Assessment of mitochondrial function following short- and long-term exposure of human bronchial epithelial cells to total particulate matter from a candidate modified-risk tobacco product and reference cigarettes. Food and Chemical Toxicology, 2018, 115, 1-12.	3.6	38
89	A 90-day OECD TG 413 rat inhalation study with systems toxicology endpoints demonstrates reduced exposure effects of the aerosol from the carbon heated tobacco product version 1.2 (CHTP1.2) compared with cigarette smoke. II. Systems toxicology assessment. Food and Chemical Toxicology, 2018, 115, 284-301.	3.6	13
90	The biological effects of long-term exposure of human bronchial epithelial cells to total particulate matter from a candidate modified-risk tobacco product. Toxicology in Vitro, 2018, 50, 95-108.	2.4	23

#	Article	IF	CITATIONS
91	The sbv IMPROVER Systems Toxicology computational challenge: Identification of human and species-independent blood response markers as predictors of smoking exposure and cessation status. Computational Toxicology, 2018, 5, 38-51.	3.3	13
92	Epigenomics in tobacco risk assessment: Opportunities for integrated new approaches. Current Opinion in Toxicology, 2018, 11-12, 67-83.	5.0	2
93	Biological changes in C57BL/6 mice following 3Âweeks of inhalation exposure to cigarette smoke or e-vapor aerosols. Inhalation Toxicology, 2018, 30, 553-567.	1.6	28
94	A lung/liver-on-a-chip platform for acute and chronic toxicity studies. Lab on A Chip, 2018, 18, 3814-3829.	6.0	132
95	Animal Inhalation Models to Investigate Modulation of Inflammatory Bowel Diseases. , 2018, , .		0
96	The impact of genome evolution on the allotetraploid Nicotiana rustica – an intriguing story of enhanced alkaloid production. BMC Genomics, 2018, 19, 855.	2.8	23
97	Embracing Transparency Through Data Sharing. International Journal of Toxicology, 2018, 37, 466-471.	1.2	9
98	Proteomics and Lipidomics in Inflammatory Bowel Disease Research: From Mechanistic Insights to Biomarker Identification. International Journal of Molecular Sciences, 2018, 19, 2775.	4.1	35
99	Developing Network-Based Systems Toxicology by Combining Transcriptomics Data with Literature Mining and Multiscale Quantitative Modeling. , 2018, , .		0
100	In vitro systems toxicology-based assessment of the potential modified risk tobacco product CHTP 1.2 for vascular inflammation- and cytotoxicity-associated mechanisms promoting adhesion of monocytic cells to human coronary arterial endothelial cells. Food and Chemical Toxicology, 2018, 120, 390-406.	3.6	12
101	Next-generation tobacco and nicotine products. Toxicology Research and Application, 2018, 2, 239784731877370.	0.6	6
102	Interrogating the microbiome: experimental and computational considerations in support of study reproducibility. Drug Discovery Today, 2018, 23, 1644-1657.	6.4	63
103	Aerosol from Tobacco Heating System 2.2 has reduced impact on mouse heart gene expression compared with cigarette smoke. Food and Chemical Toxicology, 2017, 101, 157-167.	3.6	14
104	Crowd-Sourced Verification of Computational Methods and Data in Systems Toxicology: A Case Study with a Heat-Not-Burn Candidate Modified Risk Tobacco Product. Chemical Research in Toxicology, 2017, 30, 934-945.	3.3	15
105	Multicomponent aerosol particle deposition in a realistic cast of the human upper respiratory tract. Inhalation Toxicology, 2017, 29, 113-125.	1.6	28
106	A systems toxicology approach for comparative assessment: Biological impact of an aerosol from a candidate modified-risk tobacco product and cigarette smoke on human organotypic bronchial epithelial cultures. Toxicology in Vitro, 2017, 39, 29-51.	2.4	49
107	Novel approaches to develop community-built biological network models for potential drug discovery. Expert Opinion on Drug Discovery, 2017, 12, 1-9.	5.0	13
108	Systems toxicology meta-analysis of in vitro assessment studies: biological impact of a candidate modified-risk tobacco product aerosol compared with cigarette smoke on human organotypic cultures of the aerodigestive tract. Toxicology Research, 2017, 6, 631-653.	2.1	24

#	Article	IF	CITATIONS
109	Systems Toxicology: Real World Applications and Opportunities. Chemical Research in Toxicology, 2017, 30, 870-882.	3.3	93
110	Comparative systems toxicology analysis of cigarette smoke and aerosol from a candidate modified risk tobacco product in organotypic human gingival epithelial cultures: A 3-day repeated exposure study. Food and Chemical Toxicology, 2017, 101, 15-35.	3.6	44
111	Comparative effects of a candidate modified-risk tobacco product Aerosol and cigarette smoke on human organotypic small airway cultures: a systems toxicology approach. Toxicology Research, 2017, 6, 930-946.	2.1	21
112	Organs-on-a-chip. Toxicology Research and Application, 2017, 1, 239784731772635.	0.6	21
113	Toxicity of the main electronic cigarette components, propylene glycol, glycerin, and nicotine, in Sprague-Dawley rats in a 90-day OECD inhalation study complemented by molecular endpoints. Food and Chemical Toxicology, 2017, 109, 315-332.	3.6	94
114	Mechanistic Evaluation of the Impact of Smoking and Chronic Obstructive Pulmonary Disease on the Nasal Epithelium. Clinical Medicine Insights: Circulatory, Respiratory and Pulmonary Medicine, 2017, 11, 117954841771092.	0.9	6
115	Perplexing Conclusions Concerning Heat-Not-Burn Tobacco Cigarettes. JAMA Internal Medicine, 2017, 177, 1698.	5.1	6
116	<i>In Vitro</i> Systems Toxicology Assessment of Nonflavored e-Cigarette Liquids in Primary Lung Epithelial Cells. Applied in Vitro Toxicology, 2017, 3, 41-55.	1.1	20
117	Supporting evidence-based analysis for modified risk tobacco products through a toxicology data-sharing infrastructure. F1000Research, 2017, 6, 12.	1.6	7
118	Supporting evidence-based analysis for modified risk tobacco products through a toxicology data-sharing infrastructure. F1000Research, 2017, 6, 12.	1.6	10
119	3-D nasal cultures: Systems toxicological assessment of a candidate modified-risk tobacco product. ALTEX: Alternatives To Animal Experimentation, 2017, 34, 23-48.	1.5	44
120	Effects of cigarette smoking on color stability of dental resin composites. American Journal of Dentistry, 2017, 30, 316-322.	0.1	7
121	Semi-Automated Curation Allows Causal Network Model Building for the Quantification of Age-Dependent Plaque Progression in ApoE–/– Mouse. Gene Regulation and Systems Biology, 2016, 10, GRSB.S40031.	2.3	9
122	Alterations in Serum Polyunsaturated Fatty Acids and Eicosanoids in Patients with Mild to Moderate Chronic Obstructive Pulmonary Disease (COPD). International Journal of Molecular Sciences, 2016, 17, 1583.	4.1	34
123	Community-Reviewed Biological Network Models for Toxicology and Drug Discovery Applications. Gene Regulation and Systems Biology, 2016, 10, GRSB.S39076.	2.3	10
124	The BEL information extraction workflow (BELIEF): evaluation in the BioCreative V BEL and IAT track. Database: the Journal of Biological Databases and Curation, 2016, 2016, baw136.	3.0	15
125	Comprehensive systems biology analysis of a 7-month cigarette smoke inhalation study in C57BL/6 mice. Scientific Data, 2016, 3, 150077.	5.3	25
126	Evaluation of the Tobacco Heating System 2.2. Part 7: Systems toxicological assessment of a mentholated version revealed reduced cellular and molecular exposure effects compared with mentholated and non-mentholated cigarette smoke. Regulatory Toxicology and Pharmacology, 2016, 81, S123-S138.	2.7	42

#	Article	IF	CITATIONS
127	Evaluation of the Tobacco Heating System 2.2. Part 4: 90-day OECD 413 rat inhalation study with systems toxicology endpoints demonstrates reduced exposure effects compared with cigarette smoke. Regulatory Toxicology and Pharmacology, 2016, 81, S59-S81.	2.7	70
128	Evaluation of the Tobacco Heating System 2.2. Part 6: 90-day OECD 413 rat inhalation study with systems toxicology endpoints demonstrates reduced exposure effects of a mentholated version compared with mentholated and non-mentholated cigarette smoke. Regulatory Toxicology and Pharmacology, 2016, 81, S93-S122.	2.7	52
129	Evaluation of the Tobacco Heating System 2.2 (THS2.2). Part 5: microRNA expression from a 90-day rat inhalation study indicates that exposure to THS2.2 aerosol causes reduced effects on lung tissue compared with cigarette smoke. Regulatory Toxicology and Pharmacology, 2016, 81, S82-S92.	2.7	37
130	Effects of cigarette smoke, cessation and switching to a candidate modified risk tobacco product on the liver in <i>Apoe</i> ^{â^'/â^'} mice – a systems toxicology analysis. Inhalation Toxicology, 2016, 28, 226-240.	1.6	22
131	A framework for <i>in vitro</i> systems toxicology assessment of e-liquids. Toxicology Mechanisms and Methods, 2016, 26, 392-416.	2.7	67
132	Quantitative proteomics analysis using 2D-PAGE to investigate the effects of cigarette smoke and aerosol of a prototypic modified risk tobacco product on the lung proteome in C57BL/6 mice. Journal of Proteomics, 2016, 145, 237-245.	2.4	17
133	Evaluation of the Tobacco Heating System 2.2. Part 1: Description of the system and the scientific assessment program. Regulatory Toxicology and Pharmacology, 2016, 81, S17-S26.	2.7	204
134	Aerosol Flow in the Vitrocell 24/48 Exposure System: Flow Mixing and Aerosol Coalescence. Applied in Vitro Toxicology, 2016, 2, 165-174.	1.1	7
135	Systems Toxicology Assessment of the Biological Impact of a Candidate Modified Risk Tobacco Product on Human Organotypic Oral Epithelial Cultures. Chemical Research in Toxicology, 2016, 29, 1252-1269.	3.3	49
136	Evaluation of the tobacco heating system 2.2. Part 9: Application of systems pharmacology to identify exposure response markers in peripheral blood of smokers switching to THS2.2. Regulatory Toxicology and Pharmacology, 2016, 81, S151-S157.	2.7	34
137	High Content Screening Analysis to Evaluate the Toxicological Effects of Harmful and Potentially Harmful Constituents (HPHC). Journal of Visualized Experiments, 2016, , .	0.3	17
138	Training and evaluation corpora for the extraction of causal relationships encoded in biological expression language (BEL). Database: the Journal of Biological Databases and Curation, 2016, 2016, baw113.	3.0	24
139	Mechanistic Network Models in Safety and Toxicity Evaluation of Nutraceuticals. , 2016, , 287-304.		4
140	Systems toxicology-based assessment of the candidate modified risk tobacco product THS2.2 for the adhesion of monocytic cells to human coronary arterial endothelial cells. Toxicology, 2016, 339, 73-86.	4.2	36
141	The Apoeâ~'/â~' mouse model: a suitable model to study cardiovascular and respiratory diseases in the context of cigarette smoke exposure and harm reduction. Journal of Translational Medicine, 2016, 14, 146.	4.4	137
142	<i>In Vitro</i> Systems Toxicology Assessment of a Candidate Modified Risk Tobacco Product Shows Reduced Toxicity Compared to That of a Conventional Cigarette. Chemical Research in Toxicology, 2016, 29, 3-18.	3.3	60
143	Effects of Cigarette Smoke, Cessation, and Switching to Two Heat-Not-Burn Tobacco Products on Lung Lipid Metabolism in <i>C57BL/6</i> and <i>Apoe</i> ^{â[~]/â[~]} Mice—An Integrative Systems Toxicology Analysis. Toxicological Sciences, 2016, 149, 441-457.	3.1	49
144	An 8-Month Systems Toxicology Inhalation/Cessation Study in Apoe ^{â^'/â^'} Mice to Investigate Cardiovascular and Respiratory Exposure Effects of a Candidate Modified Risk Tobacco Product, THS 2.2, Compared With Conventional Cigarettes. Toxicological Sciences, 2016, 149, 411-432.	3.1	81

#	Article	IF	CITATIONS
145	The SIB Swiss Institute of Bioinformatics' resources: focus on curated databases. Nucleic Acids Research, 2016, 44, D27-D37.	14.5	64
146	Advancing Risk Assessment through the Application of Systems Toxicology. Toxicological Research, 2016, 32, 5-8.	2.1	14
147	Construction of biological networks from unstructured information based on a semi-automated curation workflow. Database: the Journal of Biological Databases and Curation, 2015, 2015, bav057.	3.0	33
148	The systems toxicology challenge. , 2015, , .		0
149	Identification of gene expression signature for cigarette smoke exposure response—from man to mouse. Human and Experimental Toxicology, 2015, 34, 1200-1211.	2.2	30
150	A Systems Biology Approach Reveals the Dose- and Time-Dependent Effect of Primary Human Airway Epithelium Tissue Culture after Exposure to Cigarette Smoke in Vitro. Bioinformatics and Biology Insights, 2015, 9, BBI.S19908.	2.0	11
151	Impact Assessment of Repeated Exposure of Organotypic 3D Bronchial and Nasal Tissue Culture Models to Whole Cigarette Smoke. Journal of Visualized Experiments, 2015, , .	0.3	29
152	Causal biological network database: a comprehensive platform of causal biological network models focused on the pulmonary and vascular systems. Database: the Journal of Biological Databases and Curation, 2015, 2015, bav030.	3.0	89
153	Transcriptional profiling and targeted proteomics reveals common molecular changes associated with cigarette smoke-induced lung emphysema development in five susceptible mouse strains. Inflammation Research, 2015, 64, 471-486.	4.0	17
154	Understanding the limits of animal models as predictors of human biology: lessons learned from the sbv IMPROVER Species Translation Challenge. Bioinformatics, 2015, 31, 471-483.	4.1	57
155	Where are we at regarding species translation? A review of the sbv IMPROVER challenge. Bioinformatics, 2015, 31, 451-452.	4.1	2
156	A crowd-sourcing approach for the construction of species-specific cell signaling networks. Bioinformatics, 2015, 31, 484-491.	4.1	10
157	A prototypic modified risk tobacco product exhibits reduced effects on chemotaxis and transendothelial migration of monocytes compared with a reference cigarette. Food and Chemical Toxicology, 2015, 80, 277-286.	3.6	17
158	A 7-month cigarette smoke inhalation study in C57BL/6 mice demonstrates reduced lung inflammation and emphysema following smoking cessation or aerosol exposure from a prototypic modified risk tobacco product. Food and Chemical Toxicology, 2015, 80, 328-345.	3.6	88
159	Aerosol from a candidate modified risk tobacco product has reduced effects on chemotaxis and transendothelial migration compared to combustion of conventional cigarettes. Food and Chemical Toxicology, 2015, 86, 81-87.	3.6	37
160	Alterations in the sputum proteome and transcriptome in smokers and early-stage COPD subjects. Journal of Proteomics, 2015, 128, 306-320.	2.4	72
161	Impact Assessment of Cigarette Smoke Exposure on Organotypic Bronchial Epithelial Tissue Cultures: A Comparison of Mono-Culture and Coculture Model Containing Fibroblasts. Toxicological Sciences, 2015, 147, 207-221.	3.1	51
162	Systems Biology Reveals Cigarette Smoke-Induced Concentration-Dependent Direct and Indirect Mechanisms That Promote Monocyte–Endothelial Cell Adhesion. Toxicological Sciences, 2015, 147, 370-385.	3.1	26

#	Article	IF	CITATIONS
163	Toxicity of aerosols of nicotine and pyruvic acid (separate and combined) in Sprague–Dawley rats in a 28-day OECD 412 inhalation study and assessment of systems toxicology. Inhalation Toxicology, 2015, 27, 405-431.	1.6	37
164	Biological impact of cigarette smoke compared to an aerosol produced from a prototypic modified risk tobacco product on normal human bronchial epithelial cells. Toxicology in Vitro, 2015, 29, 2102-2115.	2.4	35
165	Quantifying the Biological Impact of Active Substances Using Causal Network Models. Methods in Pharmacology and Toxicology, 2015, , 223-256.	0.2	3
166	Analysis of Proteomic Data for Toxicological Applications. Methods in Pharmacology and Toxicology, 2015, , 257-284.	0.2	1
167	Enhancement of COPD biological networks using a web-based collaboration interface. F1000Research, 2015, 4, 32.	1.6	22
168	Enhancement of COPD biological networks using a web-based collaboration interface. F1000Research, 2015, 4, 32.	1.6	29
169	Systems Biology Research into Cardiovascular Disease: Contributions of Lipidomics-based Approaches to Biomarker Discovery. Current Drug Discovery Technologies, 2015, 12, 129-154.	1.2	15
170	A Systems Toxicology Approach to Investigating the Cardiovascular Effects of Cigarette Smoke and Environmental Pollutants in ApoE-Deficient Mice. Methods in Pharmacology and Toxicology, 2015, , 345-370.	0.2	0
171	Reputation-based collaborative network biology. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2015, , 270-81.	0.7	4
172	Characterization of the Vitrocell® 24/48 in vitroaerosol exposure system using mainstream cigarette smoke. Chemistry Central Journal, 2014, 8, 62.	2.6	66
173	Proteomics for systems toxicology. Computational and Structural Biotechnology Journal, 2014, 11, 73-90.	4.1	51
174	Discovery of Emphysema Relevant Molecular Networks from an A/J Mouse Inhalation Study Using Reverse Engineering and Forward Simulation (REFSâ,,¢). Gene Regulation and Systems Biology, 2014, 8, GRSB.S13140.	2.3	3
175	Systems toxicology approaches enable mechanistic comparison of spontaneous and cigarette smoke-related lung tumor development in the A/J mouse model. Interdisciplinary Toxicology, 2014, 7, 73-84.	1.0	13
176	A vascular biology network model focused on inflammatory processes to investigate atherogenesis and plaque instability. Journal of Translational Medicine, 2014, 12, 185.	4.4	26
177	A 28-day rat inhalation study with an integrated molecular toxicology endpoint demonstrates reduced exposure effects for a prototypic modified risk tobacco product compared with conventional cigarettes. Food and Chemical Toxicology, 2014, 68, 204-217.	3.6	66
178	Systems Toxicology: From Basic Research to Risk Assessment. Chemical Research in Toxicology, 2014, 27, 314-329.	3.3	287
179	A decade of Systems Biology: where are we and where are we going to?. Drug Discovery Today, 2014, 19, 105-107.	6.4	9
180	Case study: the role of mechanistic network models in systems toxicology. Drug Discovery Today, 2014, 19, 183-192.	6.4	63

#	Article	IF	CITATIONS
181	The tobacco genome sequence and its comparison with those of tomato and potato. Nature Communications, 2014, 5, 3833.	12.8	503
182	Systems Biology Approach for Evaluating the Biological Impact of Environmental Toxicants <i>in Vitro</i> . Chemical Research in Toxicology, 2014, 27, 367-376.	3.3	33
183	<i>In vitro</i> systems toxicology approach to investigate the effects of repeated cigarette smoke exposure on human buccal and gingival organotypic epithelial tissue cultures. Toxicology Mechanisms and Methods, 2014, 24, 470-487.	2.7	50
184	Quantification of biological network perturbations for mechanistic insight and diagnostics using two-layer causal models. BMC Bioinformatics, 2014, 15, 238.	2.6	97
185	Assessment of a novel multi-array normalization method based on spike-in control probes suitable for microRNA datasets with global decreases in expression. BMC Research Notes, 2014, 7, 302.	1.4	9
186	CSEO – the Cigarette Smoke Exposure Ontology. Journal of Biomedical Semantics, 2014, 5, 31.	1.6	7
187	The Response of Human Nasal and Bronchial Organotypic Tissue Cultures to Repeated Whole Cigarette Smoke Exposure. International Journal of Toxicology, 2014, 33, 506-517.	1.2	41
188	Reduced impact of a prototypic modified risk tobacco product compared with conventional cigarette smoke on exposed human and rat primary normal bronchial epithelial cells. Toxicology Letters, 2014, 229, S73.	0.8	0
189	Mechanism of an indirect effect of aqueous cigarette smoke extract on the adhesion of monocytic cells to endothelial cells in an in vitro assay revealed by transcriptomics analysis. Toxicology in Vitro, 2014, 28, 896-908.	2.4	24
190	The species translation challenge—A systems biology perspective on human and rat bronchial epithelial cells. Scientific Data, 2014, 1, 140009.	5.3	46
191	Toxicopanomics: Applications of Genomics, Transcriptomics, Proteomics, and Lipidomics in Predictive Mechanistic Toxicology. , 2014, , 295-332.		3
192	REPUTATION-BASED COLLABORATIVE NETWORK BIOLOGY. , 2014, , .		3
193	Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis. Genome Biology, 2013, 14, R60.	8.8	192
194	Strengths and limitations of microarray-based phenotype prediction: lessons learned from the IMPROVER Diagnostic Signature Challenge. Bioinformatics, 2013, 29, 2892-2899.	4.1	108
195	Confero: an integrated contrast data and gene set platform for computational analysis and biological interpretation of omics data. BMC Genomics, 2013, 14, 514.	2.8	15
196	Cigarette smoke induces molecular responses in respiratory tissues of ApoEâ^'/â^' mice that are progressively deactivated upon cessation. Toxicology, 2013, 314, 112-124.	4.2	47
197	Quantitative assessment of biological impact using transcriptomic data and mechanistic network models. Toxicology and Applied Pharmacology, 2013, 272, 863-878.	2.8	61
198	Cigarette-smoke-induced atherogenic lipid profiles in plasma and vascular tissue of apolipoprotein E-deficient mice are attenuated by smoking cessation. Atherosclerosis, 2013, 229, 86-93.	0.8	47

#	Article	IF	CITATIONS
199	Systems Approaches Evaluating the Perturbation of Xenobiotic Metabolism in Response to Cigarette Smoke Exposure in Nasal and Bronchial Tissues. BioMed Research International, 2013, 2013, 1-14.	1.9	51
200	Systematic Verification of Upstream Regulators of a Computable Cellular Proliferation Network Model on Non-Diseased Lung Cells Using a Dedicated Dataset. Bioinformatics and Biology Insights, 2013, 7, BBI.S12167.	2.0	10
201	Human bronchial epithelial cells exposed in vitro to cigarette smoke at the air-liquid interface resemble bronchial epithelium from human smokers. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 304, L489-L503.	2.9	133
202	Construction of a Computable Network Model for DNA Damage, Autophagy, Cell Death, and Senescence. Bioinformatics and Biology Insights, 2013, 7, BBI.S11154.	2.0	58
203	A Modular Cell-Type Focused Inflammatory Process Network Model for Non-Diseased Pulmonary Tissue. Bioinformatics and Biology Insights, 2013, 7, BBI.S11509.	2.0	55
204	On Crowd-verification of Biological Networks. Bioinformatics and Biology Insights, 2013, 7, BBI.S12932.	2.0	25
205	Whole genome profiling physical map and ancestral annotation of tobacco <scp>H</scp> icks <scp>B</scp> roadleaf. Plant Journal, 2013, 75, 880-889.	5.7	34
206	PEOPLE WATCH. Asia Pacific Biotech News, 2013, 17, 71-73.	0.0	0
207	sbv IMPROVER Diagnostic Signature Challenge. Systems Biomedicine (Austin, Tex), 2013, 1, 193-195.	0.7	1
208	sbv IMPROVER Diagnostic Signature Challenge. Systems Biomedicine (Austin, Tex), 2013, 1, 196-207.	0.7	6
209	Pre-malignant processes of smoking-induced lung adenocarcinoma development: A conceptual biological model. Advances in Lung Cancer (Irvine), 2013, 02, 32-53.	0.2	0
210	Translational systems biology understanding the limits of animal models as predictors of human biology. EMBnet Journal, 2013, 19, 30.	0.6	0
211	Industrial methodology for process verification in research (IMPROVER): toward systems biology verification. Bioinformatics, 2012, 28, 1193-1201.	4.1	49
212	Modulation of atherogenic lipidome by cigarette smoke in apolipoprotein E-deficient mice. Atherosclerosis, 2012, 225, 328-334.	0.8	50
213	Genomic impact of cigarette smoke, with application to three smoking-related diseases. Critical Reviews in Toxicology, 2012, 42, 877-889.	3.9	63
214	Assessment of network perturbation amplitudes by applying high-throughput data to causal biological networks. BMC Systems Biology, 2012, 6, 54.	3.0	92
215	Building an R&D chemical registration system. Journal of Cheminformatics, 2012, 4, 11.	6.1	22
216	Design of a tobacco exon array with application to investigate the differential cadmium accumulation property in two tobacco varieties. BMC Genomics, 2012, 13, 674.	2.8	18

#	Article	IF	CITATIONS
217	A network-based approach to quantifying the impact of biologically active substances. Drug Discovery Today, 2012, 17, 413-418.	6.4	95
218	Construction of a computable cell proliferation network focused on non-diseased lung cells. BMC Systems Biology, 2011, 5, 105.	3.0	64
219	A computable cellular stress network model for non-diseased pulmonary and cardiovascular tissue. BMC Systems Biology, 2011, 5, 168.	3.0	76
220	Verification of systems biology research in the age of collaborative competition. Nature Biotechnology, 2011, 29, 811-815.	17.5	83
221	Protein Structure Modeling and Docking at the Swiss Institute of Bioinformatics. , 2009, , 219-246.		Ο
222	Automated comparative protein structure modeling with SWISSâ€MODEL and Swissâ€₽dbViewer: A historical perspective. Electrophoresis, 2009, 30, S162-73.	2.4	1,574
223	Text mining for biology - the way forward: opinions from leading scientists. Genome Biology, 2008, 9, S7.	9.6	74
224	Protein Structure Modeling. , 2008, , 3-35.		10
225	Docking for Neglected Diseases as Community Efforts. , 2008, , 683-704.		8
226	Computational Structural Biology. , 2008, , .		18
227	Computer-assisted reading in drug discovery. Expert Opinion on Drug Discovery, 2007, 2, 299-304.	5.0	1
228	From proteomics to systems biology of bacterial pathogens: Approaches, tools, and applications. Proteomics, 2007, 7, 992-1003.	2.2	18
229	Tandem mass spectrometry protein identification on a PC grid. Studies in Health Technology and Informatics, 2007, 126, 3-12.	0.3	2
230	The SwissBioGrid Project: Objectivse, Preliminary Results and Lessons Learned. , 2006, , .		7
231	The UltraLink: An Expert System for Contextual Hyperlinking in Knowledge Management. , 2006, , 729-752.		4
232	The application of systems biology to drug discovery. Current Opinion in Chemical Biology, 2006, 10, 294-302.	6.1	98
233	Genome Size and Numbers of Biological Functions. Lecture Notes in Computer Science, 2005, , 44-49.	1.3	19
234	Competitive intelligence and patent analysis in drug discovery. Drug Discovery Today: Technologies, 2005, 2, 211-215.	4.0	16

#	Article	IF	CITATIONS
235	Human aspects of the management of drug discovery knowledge. Drug Discovery Today: Technologies, 2005, 2, 205-209.	4.0	7
236	Computational Chemistry at Novartis. Chimia, 2005, 59, 545-549.	0.6	7
237	Manuel Peitsch discusses knowledge management and informatics in drug discovery. Drug Discovery Today Biosilico, 2004, 2, 94-96.	0.7	4
238	SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Research, 2003, 31, 3381-3385.	14.5	4,722
239	About the use of protein models. Bioinformatics, 2002, 18, 934-938.	4.1	40
240	Protein Tertiary Structure Modeling. Current Protocols in Protein Science, 2001, 23, Unit2.8.	2.8	3
241	Annotated Draft Genomic Sequence from aStreptococcus pneumoniaeType 19F Clinical Isolate. Microbial Drug Resistance, 2001, 7, 99-125.	2.0	98
242	MDB: a database system utilizing automatic construction of modules and STAR-derived universal language. Bioinformatics, 2001, 17, 1047-1052.	4.1	6
243	Identification of Novel Chemokines From Expressed Sequence Tag Databases. , 2000, 138, 65-73.		0
244	Automated protein modelling - the proteome in 3D. Pharmacogenomics, 2000, 1, 257-266.	1.3	49
245	Protein structure computing in the genomic era. Research in Microbiology, 2000, 151, 107-112.	2.1	111
246	Covalent Homodimers of Murine Secretory Component Induced by Epitope Substitution Unravel the Capacity of the Polymeric Ig Receptor to Dimerize Noncovalently in the Absence of IgA Ligand. Journal of Biological Chemistry, 1999, 274, 31445-31455.	3.4	16
247	Protein modelling for all. Trends in Biochemical Sciences, 1999, 24, 364-367.	7.5	452
248	A genome-based approach for the identification of essential bacterial genes. Nature Biotechnology, 1998, 16, 851-856.	17.5	259
249	New Insulin-Like Proteins with Atypical Disulfide Bond Pattern Characterized in <i>Caenorhabditis elegans</i> by Comparative Sequence Analysis and Homology Modeling. Genome Research, 1998, 8, 348-353.	5.5	138
250	Characterization of Fas (Apo-1, CD95)-Fas Ligand Interaction. Journal of Biological Chemistry, 1997, 272, 18827-18833.	3.4	175
251	Spatial Orientation of the α and βc Receptor Chain Binding Sites on Monomeric Human Interleukin-5 Constructs. Journal of Biological Chemistry, 1997, 272, 20611-20618.	3.4	6
252	The chemokine information source: identification and characterization of novel chemokines using the WorldWideWeb and Expressed Sequence Tag Databases. Journal of Leukocyte Biology, 1997, 61, 545-550.	3.3	75

#	Article	IF	CITATIONS
253	Amino acid sequence of the α subunit and computer modelling of the α and β subunits of echicetin from the venom of Echis carinatus (saw-scaled viper). Biochemical Journal, 1997, 323, 533-537.	3.7	53
254	Cloning of the TMPRSS2 Gene, Which Encodes a Novel Serine Protease with Transmembrane, LDLRA, and SRCR Domains and Maps to 21q22.3. Genomics, 1997, 44, 309-320.	2.9	217
255	Clinical spectrum of X-linked hyper-IgM syndrome. Journal of Pediatrics, 1997, 131, 47-54.	1.8	604
256	Membrane protein models. Trends in Biochemical Sciences, 1997, 22, 36.	7.5	4
257	Characterisation of Macrophage Inflammatory Proteinâ€5/Human CC Cytokineâ€2, A Member of the Macrophageâ€Inflammatoryâ€Protein Family of Chemokines. FEBS Journal, 1997, 248, 507-515.	0.2	58
258	Structure and bioactivity of recombinant human CTAP-III and NAP-2. The Protein Journal, 1997, 16, 37-49.	1.1	22
259	Large-scale protein modelling and integration with the SWISS-PROT and SWISS-2DPACE databases: The example ofEscherichia coli. Electrophoresis, 1997, 18, 498-501.	2.4	59
260	SWISSâ€MODEL and the Swissâ€₽db Viewer: An environment for comparative protein modeling. Electrophoresis, 1997, 18, 2714-2723.	2.4	10,267
261	Large-Scale Comparative Protein Modelling. Principles and Practice, 1997, , 177-186.	0.3	6
262	Identification of mutations in cystatin B, the gene responsible for the Unverricht-Lundborg type of progressive myoclonus epilepsy (EPM1). American Journal of Human Genetics, 1997, 60, 342-51.	6.2	117
263	Defining the Regions of Human Interleukin-5 Important in Receptor Binding and Cellular Activation. Annals of the New York Academy of Sciences, 1996, 796, 226-234.	3.8	Ο
264	The Molecular Basis of Selectivity Between CC and CXC Chemokines: The Possibility of Chemokine Antagonists as Anti-inflammatory Agents. Annals of the New York Academy of Sciences, 1996, 796, 245-256.	3.8	10
265	The Molecular Basis of the Chemokine/Chemokine Receptor Interaction—Scope for Design of Chemokine Antagonists. Methods, 1996, 10, 126-134.	3.8	25
266	α1 but Not α2 or α3 Isoforms of Na,K-ATPase Are Efficiently Phosphorylated in a Novel Protein Kinase C Motifâ€. Biochemistry, 1996, 35, 14098-14108.	2.5	40
267	ProMod and Swiss-Model: Internet-based tools for automated comparative protein modelling. Biochemical Society Transactions, 1996, 24, 274-279.	3.4	947
268	Selectivity and antagonism of chemokine receptors. Journal of Leukocyte Biology, 1996, 59, 53-60.	3.3	156
269	The carboxy-terminal region of human interleukin-5 is essential for maintenance of tertiary structure but not for dimerization. The Protein Journal, 1996, 15, 491-499.	1.1	2
270	WASPbase: a database of WAS- and XLT-causing mutations. Trends in Immunology, 1996, 17, 496-502.	7.5	78

#	Article	IF	CITATIONS
271	CD40Lbase: a database of CD40L gene mutations causing X-linked hyper-IgM syndrome. Trends in Immunology, 1996, 17, 511-516.	7.5	88
272	A Pathogen-specific Epitope Inserted into Recombinant Secretory Immunoglobulin A Is Immunogenic by the Oral Route. Journal of Biological Chemistry, 1996, 271, 33670-33677.	3.4	49
273	Probing the Structure and Function of the Tachykinin Neurokinin-2 Receptor through Biosynthetic Incorporation of Fluorescent Amino Acids at Specific Sites. Journal of Biological Chemistry, 1996, 271, 19991-19998.	3.4	124
274	CD40Lbase: a database of CD40L gene mutations causing X-linked hyper-IgM syndrome. Trends in Immunology, 1996, 17, 511-516.	7.5	75
275	WASPbase: a database of WAS- and XLT-causing mutations. Trends in Immunology, 1996, 17, 496-502.	7.5	35
276	Increased p34cdc2-dependent kinase activity during apoptosis: a possible activation mechanism of DNase I leading to DNA breakdown. European Journal of Cell Biology, 1996, 69, 143-50.	3.6	8
277	Automated modelling of the transmembrane region of G-protein coupled receptor by Swiss-model. Receptors and Channels, 1996, 4, 161-4.	1.1	8
278	The Swiss-3DImage collection and PDB-Browser on the World-Wide Web. Trends in Biochemical Sciences, 1995, 20, 82-84.	7.5	123
279	Identification of Key Charged Residues of Human Interleukin-5 in Receptor Binding and Cellular Activation. Journal of Biological Chemistry, 1995, 270, 15762-15769.	3.4	58
280	Characterization of the non-functional Fas ligand of gld mice. International Immunology, 1995, 7, 1381-1386.	4.0	64
281	Structural analysis of TCR-ligand interactions studied on H-2Kd-restricted cloned CTL specific for a photoreactive peptide derivative. Immunity, 1995, 3, 51-63.	14.3	50
282	Comparative molecular modelling of the Fas-ligand and other members of the TNF family. Molecular Immunology, 1995, 32, 761-772.	2.2	71
283	Role of a hydrophobic pocket of the human Y1 neuropeptide Y receptor in ligand binding. Molecular and Cellular Endocrinology, 1995, 112, 215-222.	3.2	50
284	Genomic Organization and Expression of Mouse Deoxyribonuclease I. Biochemical and Biophysical Research Communications, 1995, 207, 62-68.	2.1	39
285	Mapping regions of Gαqinteracting with PLCβ1 using multiple overlapping synthetic peptides. FEBS Letters, 1995, 364, 45-50.	2.8	28
286	Interaction of peptides derived from the Fas ligand with the Fyn-SH3 domain. FEBS Letters, 1995, 373, 265-268.	2.8	51
287	Perforin and Granzymes: Crucial Effector Molecules in Cytolytic T Lymphocyte and Natural Killer Cell-Mediated Cytotoxicity. Current Topics in Microbiology and Immunology, 1995, 198, 1-24.	1.1	124
288	A New Function for an Old Enzyme: The Role of DNase I in Apoptosis. Current Topics in Microbiology and Immunology, 1995, 198, 161-174.	1.1	89

#	Article	IF	CITATIONS
289	The apoptosis endonucleases: cleaning up after cell death?. Trends in Cell Biology, 1994, 4, 37-41.	7.9	161
290	Human CD40 ligand: molecular cloning, cellular distribution and regulation of IgE synthesis. Research in Immunology, 1994, 145, 240-249.	0.9	12
291	[5] Granzyme B. Methods in Enzymology, 1994, 244, 80-87.	1.0	30
292	Distribution of deoxyribonuclease I in rat tissues and its correlation to cellular turnover and apoptosis (programmed cell death). European Journal of Cell Biology, 1994, 64, 200-10.	3.6	62
293	Mutational analysis of polymeric immunoglobulin receptor/ligand interactions. Evidence for the involvement of multiple complementarity determining region (CDR)-like loops in receptor domain I. Journal of Biological Chemistry, 1994, 269, 31620-5.	3.4	51
294	Acidic residues in extracellular loops of the human Y1 neuropeptide Y receptor are essential for ligand binding. Journal of Biological Chemistry, 1994, 269, 2863-9.	3.4	76
295	About the involvement of deoxyribonuclease I in apoptosis. Cell Death and Differentiation, 1994, 1, 1-6.	11.2	19
296	Mutations in the putative lipid-interaction domain of complement C9 result in defective secretion of the functional protein. Molecular Immunology, 1993, 30, 95-100.	2.2	15
297	Hydrophobic C-terminal amino acids in the .betasubunit are involved in assembly with the .alphasubunit of sodium-potassium-ATPase. Biochemistry, 1993, 32, 14117-14124.	2.5	41
298	Sequence similarity of phospholipase A2 activating protein and the G protein Î ² -subunits: a new concept of effector protein activation in signal transduction?. Trends in Biochemical Sciences, 1993, 18, 292-293.	7.5	34
299	DNA fragmentation during apoptosis is caused by frequent single-strand cuts. Nucleic Acids Research, 1993, 21, 4206-4209.	14.5	121
300	A 3-D model for the CD40 ligand predicts that it is a compact trimer similar to the tumor necrosis factors. International Immunology, 1993, 5, 233-238.	4.0	169
301	Characterization of the endogenous deoxyribonuclease involved in nuclear DNA degradation during apoptosis (programmed cell death). EMBO Journal, 1993, 12, 371-7.	7.8	148
302	Overexpression of deoxyribonuclease I (DNase I) transfected into COS-cells: its distribution during apoptotic cell death. European Journal of Cell Biology, 1993, 62, 397-405.	3.6	55
303	Propidium iodide staining correlates with the extent of DNA degradation in isolated nuclei. Biochemical and Biophysical Research Communications, 1992, 183, 532-537.	2.1	47
304	Functional characterisation of serum DNase I in MRL-lprlpr mice. Biochemical and Biophysical Research Communications, 1992, 186, 739-745.	2.1	35
305	Assembly of macromolecular pores by immune defense systems. Current Opinion in Cell Biology, 1991, 3, 710-716.	5.4	60
306	Structural and functional characterization of complement c8î³, a member of the lipocalin protein family. Molecular Immunology, 1991, 28, 123-131.	2.2	33

#	Article	IF	CITATIONS
307	The first lipocalin with enzymatic activity. Trends in Biochemical Sciences, 1991, 16, 363.	7.5	56
308	Clusterin (complement lysis inhibitor) forms a high density lipoprotein complex with apolipoprotein A-I in human plasma. Journal of Biological Chemistry, 1991, 266, 11030-6.	3.4	171
309	Localization and molecular modelling of the membrane-inserted domain of the ninth component of human complement and perforin. Molecular Immunology, 1990, 27, 589-602.	2.2	75
310	Is apolipoprotein D a mammalian bilin-binding protein?. The New Biologist, 1990, 2, 197-206.	2.8	46
311	A purification method for apolipoprotein A-I and A-II. Analytical Biochemistry, 1989, 178, 301-305.	2.4	18
312	Phosphorylcholine acts as a Ca2+-dependent receptor molecule for lymphocyte perforin. Nature, 1989, 337, 272-274.	27.8	110
313	A rapid and efficient method for the purification of the complement subcomponents C1r and C1s in zymogen form using fast protein chromatography. Journal of Immunological Methods, 1988, 108, 265-269.	1.4	4
314	Antibody-independent activation of the complement system by mitochondria is mediated by cardiolipin. Biochemical Journal, 1988, 249, 495-500.	3.7	42
315	Antibody-independent activation of C1. I. Differences in the mechanism of C1 activation by nonimmune activators and by immune complexes: C1r-independent activation of C1s by cardiolipin vesicles. Journal of Immunology, 1987, 138, 1864-70.	0.8	15
316	Antibody-independent activation of C1. II. Evidence for two classes of nonimmune activators of the classical pathway of complement. Journal of Immunology, 1987, 138, 1871-6.	0.8	12
317	The Apoe-/- Mouse PhysioLab® Platform: A Validated Physiologically-based Mathematical Model of Atherosclerotic Plaque Progression in the Apoe-/- Mouse. BioDiscovery, 0, , .	0.1	2