List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1550850/publications.pdf Version: 2024-02-01

	25034	39675
11,369	57	94
citations	h-index	g-index
222	222	16196
225	225	10100
docs citations	times ranked	citing authors
	11,369 citations 223 docs citations	11,36957citationsh-index223223docs citations1100000000000000000000000000000000000

ΒΕΔΝΗΛΟΟ ΒΟΔ1//ΝΕ

#	Article	IF	CITATIONS
1	Nrf2, the Master Regulator of Anti-Oxidative Responses. International Journal of Molecular Sciences, 2017, 18, 2772.	4.1	462
2	Mitochondrial composition and function under the control of hypoxia. Redox Biology, 2017, 12, 208-215.	9.0	403
3	Nitric Oxide Impairs Normoxic Degradation of HIF-11 \pm by Inhibition of Prolyl Hydroxylases. Molecular Biology of the Cell, 2003, 14, 3470-3481.	2.1	375
4	Nitric oxide: NO apoptosis or turning it ON?. Cell Death and Differentiation, 2003, 10, 864-869.	11.2	320
5	Redox Control of Inflammation in Macrophages. Antioxidants and Redox Signaling, 2013, 19, 595-637.	5.4	303
6	Nitric oxide (NO): an effector of apoptosis. Cell Death and Differentiation, 1999, 6, 969-975.	11.2	277
7	Nitric oxide-induced apoptosis: p53-dependent and p53-independent signalling pathways. Biochemical Journal, 1996, 319, 299-305.	3.7	264
8	Apoptotic cells promote macrophage survival by releasing the antiapoptotic mediator sphingosine-1-phosphate. Blood, 2006, 108, 1635-1642.	1.4	230
9	Redirecting tumor-associated macrophages to become tumoricidal effectors as a novel strategy for cancer therapy. Oncotarget, 2017, 8, 48436-48452.	1.8	216
10	S1PR1 on tumor-associated macrophages promotes lymphangiogenesis and metastasis via NLRP3/IL-1β. Journal of Experimental Medicine, 2017, 214, 2695-2713.	8.5	216
11	Iron as a Central Player and Promising Target in Cancer Progression. International Journal of Molecular Sciences, 2019, 20, 273.	4.1	199
12	Hypoxia inhibits ferritinophagy, increases mitochondrial ferritin, and protects from ferroptosis. Redox Biology, 2020, 36, 101670.	9.0	189
13	Cancer cell and macrophage cross-talk in the tumor microenvironment. Current Opinion in Pharmacology, 2017, 35, 12-19.	3.5	188
14	Tumor Cell Apoptosis Polarizes Macrophages—Role of Sphingosine-1-Phosphate. Molecular Biology of the Cell, 2007, 18, 3810-3819.	2.1	151
15	Heme Oxygenase-1 Contributes to an Alternative Macrophage Activation Profile Induced by Apoptotic Cell Supernatants. Molecular Biology of the Cell, 2009, 20, 1280-1288.	2.1	151
16	Interleukin-38 is released from apoptotic cells to limit inflammatory macrophage responses. Journal of Molecular Cell Biology, 2016, 8, 426-438.	3.3	134
17	Cyclooxygenaseâ€2: an essential regulator of NOâ€mediated apoptosis. FASEB Journal, 1997, 11, 887-895.	0.5	128
18	Nitric oxide, apoptosis and macrophage polarization during tumor progression. Nitric Oxide - Biology and Chemistry, 2008, 19, 95-102.	2.7	127

#	Article	IF	CITATIONS
19	The Intimate Relation Between Nitric Oxide and Superoxide in Apoptosis and Cell Survival. Antioxidants and Redox Signaling, 2005, 7, 497-507.	5.4	115
20	Nitric oxide and superoxide: Interference with hypoxic signaling. Cardiovascular Research, 2007, 75, 275-282.	3.8	114
21	The Role of Nitric Oxide (NO) in Stability Regulation of Hypoxia Inducible Factor-1α (HIF-1α). Current Medicinal Chemistry, 2003, 10, 845-855.	2.4	111
22	Sumoylation of Peroxisome Proliferator-Activated Receptor Î ³ by Apoptotic Cells Prevents Lipopolysaccharide-Induced NCoR Removal from κB Binding Sites Mediating Transrepression of Proinflammatory Cytokines. Journal of Immunology, 2008, 181, 5646-5652.	0.8	110
23	Reprogramming of tumor-associated macrophages by targeting β-catenin/FOSL2/ARID5A signaling: A potential treatment of lung cancer. Science Advances, 2020, 6, eaaz6105.	10.3	110
24	Roles of hypoxia-inducible factor-1α (HIF-1α) versus HIF-2α in the survival of hepatocellular tumor spheroids. Hepatology, 2010, 51, 2183-2192.	7.3	109
25	Hypoxia causes epigenetic gene regulation in macrophages by attenuating Jumonji histone demethylase activity. Cytokine, 2011, 53, 256-262.	3.2	109
26	Apoptotic tumor cell-derived microRNA-375 uses CD36 to alter the tumor-associated macrophage phenotype. Nature Communications, 2019, 10, 1135.	12.8	108
27	Macrophage fatty acid oxidation and its roles in macrophage polarization and fatty acid-induced inflammation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1796-1807.	2.4	106
28	Microenvironmental Th9 and Th17 lymphocytes induce metastatic spreading in lung cancer. Journal of Clinical Investigation, 2020, 130, 3560-3575.	8.2	103
29	Role of Mitogen-Activated Protein Kinases inS-Nitrosoglutathione-Induced Macrophage Apoptosisâ€. Biochemistry, 1999, 38, 2279-2286.	2.5	97
30	Regulation of macrophage function by sphingosine-1-phosphate. Immunobiology, 2009, 214, 748-760.	1.9	97
31	Sphingosine kinase 2 deficient tumor xenografts show impaired growth and fail to polarize macrophages towards an antiâ€inflammatory phenotype. International Journal of Cancer, 2009, 125, 2114-2121.	5.1	94
32	Fatty acid oxidation is dispensable for human macrophage IL-4-induced polarization. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 1329-1335.	2.4	94
33	Nitric oxide induced poly(ADP-ribose) polymerase cleavage in RAW 264.7 macrophage apoptosis is blocked by Bcl-2. FEBS Letters, 1996, 384, 162-166.	2.8	91
34	Vitamin D Promotes Vascular Regeneration. Circulation, 2014, 130, 976-986.	1.6	91
35	Regulation and Functions of 15-Lipoxygenases in Human Macrophages. Frontiers in Pharmacology, 2019, 10, 719.	3.5	83
36	Sphingosine-1-Phosphate and Macrophage Biology—How the Sphinx Tames the Big Eater. Frontiers in Immunology, 2019, 10, 1706.	4.8	80

#	Article	IF	CITATIONS
37	Characterization of RA839, a Noncovalent Small Molecule Binder to Keap1 and Selective Activator of Nrf2 Signaling. Journal of Biological Chemistry, 2015, 290, 28446-28455.	3.4	78
38	Tumour stroma-derived lipocalin-2 promotes breast cancer metastasis. Journal of Pathology, 2016, 239, 274-285.	4.5	78
39	Cleavage of sphingosine kinase 2 by caspase-1 provokes its release from apoptotic cells. Blood, 2010, 115, 3531-3540.	1.4	77
40	PPARγ1 attenuates cytosol to membrane translocation of PKCα to desensitize monocytes/macrophages. Journal of Cell Biology, 2007, 176, 681-694.	5.2	76
41	Nitric oxide induces phosphorylation of p53 and impairs nuclear export. Oncogene, 2003, 22, 2857-2868.	5.9	74
42	Macrophage iron homeostasis and polarization in the context of cancer. Immunobiology, 2015, 220, 295-304.	1.9	73
43	Lipocalin 2 from macrophages stimulated by tumor cell–derived sphingosine 1-phosphate promotes lymphangiogenesis and tumor metastasis. Science Signaling, 2016, 9, ra64.	3.6	73
44	Interleukin-10-Induced Neutrophil Gelatinase-Associated Lipocalin Production in Macrophages with Consequences for Tumor Growth. Molecular and Cellular Biology, 2012, 32, 3938-3948.	2.3	71
45	Hypoxia Potentiates Palmitate-induced Pro-inflammatory Activation of Primary Human Macrophages. Journal of Biological Chemistry, 2016, 291, 413-424.	3.4	70
46	Antioxidant signaling via Nrf2 counteracts lipopolysaccharide-mediated inflammatory responses in foam cell macrophages. Free Radical Biology and Medicine, 2011, 50, 1382-1391.	2.9	69
47	Macrophages programmed by apoptotic cells promote angiogenesis <i>via</i> prostaglandin E ₂ . FASEB Journal, 2011, 25, 2408-2417.	0.5	69
48	IL-38 Ameliorates Skin Inflammation and Limits IL-17 Production from γδT Cells. Cell Reports, 2019, 27, 835-846.e5.	6.4	68
49	Transcription factors p53 and HIF-1α as targets of nitric oxide. Cellular Signalling, 2001, 13, 525-533.	3.6	65
50	Nitric oxide, oxidative stress, and apoptosis. Kidney International, 2003, 63, S22-S24.	5.2	65
51	Intracellular Iron Chelation Modulates the Macrophage Iron Phenotype with Consequences on Tumor Progression. PLoS ONE, 2016, 11, e0166164.	2.5	65
52	Inhibition of macrophage fatty acid β-oxidation exacerbates palmitate-induced inflammatory and endoplasmic reticulum stress responses. Diabetologia, 2014, 57, 1067-1077.	6.3	64
53	Macrophage-derived lipocalin-2 transports iron in the tumor microenvironment. Oncolmmunology, 2018, 7, e1408751.	4.6	64
54	Sphingosineâ€1â€phosphate signalling induces the production of Lcnâ€2 by macrophages to promote kidney regeneration. Journal of Pathology, 2011, 225, 597-608.	4.5	63

#	Article	IF	CITATIONS
55	p53 accumulation in apoptotic macrophages is an energy demanding process that precedes cytochrome c release in response to nitric oxide. Oncogene, 1999, 18, 6403-6410.	5.9	62
56	Apoptotic cells enhance sphingosineâ€lâ€phosphate receptor 1 dependent macrophage migration. European Journal of Immunology, 2013, 43, 3306-3313.	2.9	62
57	Hypoxia and HIF-1 activation in bacterial infections. Microbes and Infection, 2017, 19, 144-156.	1.9	60
58	Apoptotic cells induce arginase II in macrophages, thereby attenuating NO production. FASEB Journal, 2007, 21, 2704-2712.	0.5	59
59	Etoposide and cisplatin induced apoptosis in activated RAW 264.7 macrophages is attenuated by cAMP-induced gene expression. Oncogene, 1998, 17, 387-394.	5.9	58
60	Nox2-dependent signaling between macrophages and sensory neurons contributes to neuropathic pain hypersensitivity. Pain, 2014, 155, 2161-2170.	4.2	55
61	Genome-wide identification of hypoxia-inducible factor-1 and -2 binding sites in hypoxic human macrophages alternatively activated by IL-10. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 10-22.	1.9	54
62	Overexpression of CuZn superoxide dismutase protects RAW 264.7 macrophages against nitric oxide cytotoxicity. Biochemical Journal, 1999, 338, 295-303.	3.7	50
63	Apoptotic Cell-Derived Sphingosine-1-Phosphate Promotes HuR-Dependent Cyclooxygenase-2 mRNA Stabilization and Protein Expression. Journal of Immunology, 2008, 180, 1239-1248.	0.8	50
64	The supernatant of apoptotic cells causes transcriptional activation of hypoxia-inducible factor–1α in macrophages via sphingosine-1-phosphate and transforming growth factor-β. Blood, 2009, 114, 2140-2148.	1.4	50
65	Low–molecular-weight hyaluronic acid induces nuclear factor-κB–dependent resistance against tumor necrosis factor α–mediated liver injury in mice. Hepatology, 2001, 34, 535-547.	7.3	49
66	Apoptotic tumor cells induce <scp>IL</scp> â€27 release from human <scp>DC</scp> s to activate <scp>T</scp> reg cells that express <scp>CD</scp> 69 and attenuate cytotoxicity. European Journal of Immunology, 2012, 42, 1585-1598.	2.9	48
67	MPGES-1-derived PGE2 suppresses CD80 expression on tumor-associated phagocytes to inhibit anti-tumor immune responses in breast cancer. Oncotarget, 2015, 6, 10284-10296.	1.8	48
68	S1PR4 ablation reduces tumor growth and improves chemotherapy via CD8+ T cell expansion. Journal of Clinical Investigation, 2020, 130, 5461-5476.	8.2	48
69	Depletion of tristetraprolin in breast cancer cells increases interleukin-16 expression and promotes tumor infiltration with monocytes/macrophages. Carcinogenesis, 2013, 34, 850-857.	2.8	46
70	AMPK activates LXRÎ \pm and ABCA1 expression in human macrophages. International Journal of Biochemistry and Cell Biology, 2016, 78, 1-9.	2.8	46
71	Lipocalin-2 and iron trafficking in the tumor microenvironment. Pharmacological Research, 2017, 120, 146-156.	7.1	46
72	Beyond Immune Cell Migration: The Emerging Role of the Sphingosine-1-phosphate Receptor S1PR4 as a Modulator of Innate Immune Cell Activation. Mediators of Inflammation, 2017, 2017, 1-12.	3.0	46

#	Article	IF	CITATIONS
73	Efferocytosis potentiates the expression of arachidonate 15-lipoxygenase (ALOX15) in alternatively activated human macrophages through LXR activation. Cell Death and Differentiation, 2021, 28, 1301-1316.	11.2	46
74	Myeloid Cell–Derived HIF-1α Promotes Control of <i>Leishmania major</i> . Journal of Immunology, 2016, 197, 4034-4041.	0.8	45
75	Redox-signals and macrophage biology. Molecular Aspects of Medicine, 2018, 63, 70-87.	6.4	45
76	<i>N</i> -Benzylbenzamides: A Novel Merged Scaffold for Orally Available Dual Soluble Epoxide Hydrolase/Peroxisome Proliferator-Activated Receptor γ Modulators. Journal of Medicinal Chemistry, 2016, 59, 61-81.	6.4	44
77	Functional Dominance of CHIP-Mutated Hematopoietic Stem Cells in Patients Undergoing Autologous Transplantation. Cell Reports, 2019, 27, 2022-2028.e3.	6.4	44
78	The proteogenomic subtypes of acute myeloid leukemia. Cancer Cell, 2022, 40, 301-317.e12.	16.8	43
79	TMEM126B deficiency reduces mitochondrial SDH oxidation by LPS, attenuating HIF-1α stabilization and IL-1β expression. Redox Biology, 2019, 20, 204-216.	9.0	41
80	Iron Handling in Tumor-Associated Macrophages—Is There a New Role for Lipocalin-2?. Frontiers in Immunology, 2017, 8, 1171.	4.8	40
81	Histone Deacetylation Inhibitors as Therapy Concept in Sepsis. International Journal of Molecular Sciences, 2019, 20, 346.	4.1	40
82	Heat-shock protein 70 attenuates nitric oxide-induced apoptosis in RAW macrophages by preventing cytochrome c release. Biochemical Journal, 2002, 362, 635-641.	3.7	39
83	Loss of Nrf2 in bone marrow-derived macrophages impairs antigen-driven CD8+ T cell function by limiting CSH and Cys availability. Free Radical Biology and Medicine, 2015, 83, 77-88.	2.9	39
84	Nitric oxide maintains endothelial redox homeostasis through <scp>PKM</scp> 2 inhibition. EMBO Journal, 2019, 38, e100938.	7.8	39
85	ER-Mitochondria Communication in Cells of the Innate Immune System. Cells, 2019, 8, 1088.	4.1	38
86	Tumor-associated macrophages as targets for tumor immunotherapy. Immunotherapy, 2009, 1, 83-95.	2.0	37
87	Chronic hypoxia alters mitochondrial composition in human macrophages. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 2750-2760.	2.3	37
88	IL-6 augments IL-4-induced polarization of primary human macrophages through synergy of STAT3, STAT6 and BATF transcription factors. Oncolmmunology, 2018, 7, e1494110.	4.6	37
89	The liaison between apoptotic cells and macrophages – the end programs the beginning. Biological Chemistry, 2009, 390, 379-390.	2.5	36
90	Sensors, Transmitters, and Targets in Mitochondrial Oxygen Shortage—A Hypoxia-Inducible Factor Relay Story. Antioxidants and Redox Signaling, 2014, 20, 339-352.	5.4	36

#	Article	IF	CITATIONS
91	HIF-2alpha-dependent PAI-1 induction contributes to angiogenesis in hepatocellular carcinoma. Experimental Cell Research, 2015, 331, 46-57.	2.6	36
92	FABP4 inhibition suppresses PPARÎ ³ activity and VLDL-induced foam cell formation in IL-4-polarized human macrophages. Atherosclerosis, 2015, 240, 424-430.	0.8	36
93	Ceramide synthase 2 deficiency aggravates AOM-DSS-induced colitis in mice: role of colon barrier integrity. Cellular and Molecular Life Sciences, 2017, 74, 3039-3055.	5.4	36
94	A graphical journey through iron metabolism, microRNAs, and hypoxia in ferroptosis. Redox Biology, 2022, 54, 102365.	9.0	36
95	SYNCRIP-Dependent <i>Nox2</i> mRNA Destabilization Impairs ROS Formation in M2-Polarized Macrophages. Antioxidants and Redox Signaling, 2014, 21, 2483-2497.	5.4	35
96	Chemosensitivity of human colon cancer cells is influenced by a p53-dependent enhancement of ceramide synthase 5 and induction of autophagy. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 1214-1227.	2.4	35
97	Apoptotic Cancer Cells Suppress 5-Lipoxygenase in Tumor-Associated Macrophages. Journal of Immunology, 2018, 200, 857-868.	0.8	34
98	Downregulation of BTLA on NKT Cells Promotes Tumor Immune Control in a Mouse Model of Mammary Carcinoma. International Journal of Molecular Sciences, 2018, 19, 752.	4.1	34
99	Nitric oxide evoked p53-accumulation and apoptosis. Toxicology Letters, 2003, 139, 119-123.	0.8	33
100	Hypoxiaâ€Inducible Factorâ€Iα Under the Control of Nitric Oxide. Methods in Enzymology, 2007, 435, 463-478.	1.0	33
101	HIF-1α is a negative regulator of plasmacytoid DC development in vitro and in vivo. Blood, 2012, 120, 3001-3006.	1.4	33
102	Degradation of the mitochondrial complex I assembly factor TMEM126B under chronic hypoxia. Cellular and Molecular Life Sciences, 2018, 75, 3051-3067.	5.4	33
103	AMP-activated Protein Kinase Suppresses Arachidonate 15-Lipoxygenase Expression in Interleukin 4-polarized Human Macrophages. Journal of Biological Chemistry, 2015, 290, 24484-24494.	3.4	32
104	Killing Is Not Enough: How Apoptosis Hijacks Tumor-Associated Macrophages to Promote Cancer Progression. Advances in Experimental Medicine and Biology, 2016, 930, 205-239.	1.6	32
105	VASP regulates leukocyte infiltration, polarization, and vascular repair after ischemia. Journal of Cell Biology, 2018, 217, 1503-1519.	5.2	31
106	mPGES-1 and ALOX5/-15 in tumor-associated macrophages. Cancer and Metastasis Reviews, 2018, 37, 317-334.	5.9	31
107	An anti-inflammatory eicosanoid switch mediates the suppression of type-2 inflammation by helminth larval products. Science Translational Medicine, 2020, 12, .	12.4	31
108	Macrophage-derived Lipocalin-2 contributes to ischemic resistance mechanisms by protecting from renal injury. Scientific Reports, 2016, 6, 21950.	3.3	30

#	Article	IF	CITATIONS
109	S1PR4 Signaling Attenuates ILT 7 Internalization To Limit IFN-α Production by Human Plasmacytoid Dendritic Cells. Journal of Immunology, 2016, 196, 1579-1590.	0.8	30
110	Histone Deacetylation Inhibitors as Modulators of Regulatory T Cells. International Journal of Molecular Sciences, 2020, 21, 2356.	4.1	30
111	Attenuation of macrophage apoptosis by the cAMP-signalling system. , 2000, 212, 35-43.		29
112	AICAR inhibits NFκB DNA binding independently of AMPK to attenuate LPS-triggered inflammatory responses in human macrophages. Scientific Reports, 2018, 8, 7801.	3.3	29
113	MicroRNA—A Tumor Trojan Horse for Tumor-Associated Macrophages. Cells, 2019, 8, 1482.	4.1	29
114	The iron load of lipocalin-2 (LCN-2) defines its pro-tumour function in clear-cell renal cell carcinoma. British Journal of Cancer, 2020, 122, 421-433.	6.4	29
115	Prostanoids and Resolution of Inflammation – Beyond the Lipid-Mediator Class Switch. Frontiers in Immunology, 2021, 12, 714042.	4.8	29
116	IL-36 family cytokines in protective versus destructive inflammation. Cellular Signalling, 2020, 75, 109773.	3.6	29
117	Betulinic acid suppresses NGAL-induced epithelial-to-mesenchymal transition in melanoma. Biological Chemistry, 2013, 394, 773-781.	2.5	28
118	A Novel Function for 15-Lipoxygenases in Cholesterol Homeostasis and CCL17 Production in Human Macrophages. Frontiers in Immunology, 2018, 9, 1906.	4.8	28
119	Exploring the Role of ATP-Citrate Lyase in the Immune System. Frontiers in Immunology, 2021, 12, 632526.	4.8	28
120	AMPK-independent inhibition of human macrophage ER stress response by AICAR. Scientific Reports, 2016, 6, 32111.	3.3	27
121	Sphingosine kinase 2 is a negative regulator of inflammatory macrophage activation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 1235-1246.	2.4	27
122	Therapeutic Targeting of MicroRNAs in the Tumor Microenvironment. International Journal of Molecular Sciences, 2021, 22, 2210.	4.1	27
123	Dysregulated Adaptive Immunity Is an Early Event in Liver Cirrhosis Preceding Acute-on-Chronic Liver Failure. Frontiers in Immunology, 2020, 11, 534731.	4.8	26
124	Lactate dehydrogenase B regulates macrophage metabolism in the tumor microenvironment. Theranostics, 2021, 11, 7570-7588.	10.0	26
125	Attenuation of p53 expression and Bax down-regulation during phorbol ester mediated inhibition of apoptosis. British Journal of Pharmacology, 1997, 121, 625-634.	5.4	25
126	Inflammatory Conditions Induce IRES-Dependent Translation of cyp24a1. PLoS ONE, 2014, 9, e85314.	2.5	25

#	Article	IF	CITATIONS
127	Extracorporeal Photopheresis Promotes IL- $1^{\hat{1}2}$ Production. Journal of Immunology, 2015, 194, 2569-2577.	0.8	25
128	Polarization of Human Macrophages by Interleukin-4 Does Not Require ATP-Citrate Lyase. Frontiers in Immunology, 2018, 9, 2858.	4.8	25
129	Identification of tumorâ€associated macrophage subsets that are associated with breast cancer prognosis. Clinical and Translational Medicine, 2020, 10, e239.	4.0	25
130	Nitric oxide and apoptosis in mesangial cells. Kidney International, 2002, 61, 786-789.	5.2	24
131	AICAR inhibits PPARÎ ³ during monocyte differentiation to attenuate inflammatory responses to atherogenic lipids. Cardiovascular Research, 2013, 98, 479-487.	3.8	24
132	Inhibitors of Oxidative Phosphorylation Modulate Astrocyte Inflammatory Responses through AMPK-Dependent Ptgs2 mRNA Stabilization. Cells, 2019, 8, 1185.	4.1	24
133	PGE2 in fibrosis and cancer: Insights into fibroblast activation. Prostaglandins and Other Lipid Mediators, 2019, 143, 106339.	1.9	24
134	MicroRNAs as Emerging Regulators of Signaling in the Tumor Microenvironment. Cancers, 2020, 12, 911.	3.7	24
135	S1P Regulation of Macrophage Functions in the Context of Cancer. Anti-Cancer Agents in Medicinal Chemistry, 2011, 11, 818-829.	1.7	23
136	The prostaglandin E2 receptor EP3 controls CC-chemokine ligand 2–mediated neuropathic pain induced by mechanical nerve damage. Journal of Biological Chemistry, 2018, 293, 9685-9695.	3.4	22
137	The Disturbed Iron Phenotype of Tumor Cells and Macrophages in Renal Cell Carcinoma Influences Tumor Growth. Cancers, 2020, 12, 530.	3.7	22
138	S1PR4â€dependent CCL2 production promotes macrophage recruitment in a murine psoriasis model. European Journal of Immunology, 2020, 50, 839-845.	2.9	22
139	Iron-Bound Lipocalin-2 Protects Renal Cell Carcinoma from Ferroptosis. Metabolites, 2021, 11, 329.	2.9	22
140	The multi-faceted roles of prostaglandin E2 in cancer-infiltrating mononuclear phagocyte biology. Immunobiology, 2012, 217, 1225-1232.	1.9	21
141	Strategies to Interfere with Tumor Metabolism through the Interplay of Innate and Adaptive Immunity. Cells, 2019, 8, 445.	4.1	21
142	S1PR4 is required for plasmacytoid dendritic cell differentiation. Biological Chemistry, 2015, 396, 775-782.	2.5	20
143	Docosahexaenoic acid and palmitic acid reciprocally modulate monocyte activation in part through endoplasmic reticulum stress. Journal of Nutritional Biochemistry, 2016, 32, 39-45.	4.2	20
144	Selective targeting of tumor associated macrophages in different tumor models. PLoS ONE, 2018, 13, e0193015.	2.5	20

#	Article	IF	CITATIONS
145	Macrophage HIFâ€2α regulates tumorâ€suppressive Spint1 in the tumor microenvironment. Molecular Carcinogenesis, 2019, 58, 2127-2138.	2.7	20
146	Macrophage-Derived Iron-Bound Lipocalin-2 Correlates with Renal Recovery Markers Following Sepsis-Induced Kidney Damage. International Journal of Molecular Sciences, 2020, 21, 7527.	4.1	20
147	Genetic deletion of Nox4 enhances cancerogen-induced formation of solid tumors. Proceedings of the United States of America, 2021, 118, .	7.1	20
148	Necrosis in DU145 prostate cancer spheroids induces COXâ€2/mPGESâ€1â€derived PGE ₂ to promote tumor growth and to inhibit T cell activation. International Journal of Cancer, 2013, 133, 1578-1588.	5.1	19
149	Phenotypic Plasticity of Fibroblasts during Mammary Carcinoma Development. International Journal of Molecular Sciences, 2019, 20, 4438.	4.1	19
150	HIFâ€2α attenuates lymphangiogenesis by upâ€regulating IGFBP1 in hepatocellular carcinoma. Biology of the Cell, 2015, 107, 175-188.	2.0	18
151	The RNAâ€binding protein HuR inhibits expression of CCL5 and limits recruitment of macrophages into tumors. Molecular Carcinogenesis, 2017, 56, 2620-2629.	2.7	18
152	S1P Provokes Tumor Lymphangiogenesis via Macrophage-Derived Mediators Such as IL-1β or Lipocalin-2. Mediators of Inflammation, 2017, 2017, 1-12.	3.0	18
153	IL-4 reduces the proangiogenic capacity of macrophages by down-regulating HIF-1Â translation. Journal of Leukocyte Biology, 2014, 95, 129-137.	3.3	17
154	Characterization of pomiferin triacetate as a novel mTOR and translation inhibitor. Biochemical Pharmacology, 2014, 88, 313-321.	4.4	17
155	Macrophage NOS2 in Tumor Leukocytes. Antioxidants and Redox Signaling, 2017, 26, 1023-1043.	5.4	17
156	GPER1 influences cellular homeostasis and cytostatic drug resistance via influencing long chain ceramide synthesis in breast cancer cells. International Journal of Biochemistry and Cell Biology, 2019, 112, 95-106.	2.8	17
157	Chronic Hypoxia Enhances β-Oxidation-Dependent Electron Transport via Electron Transferring Flavoproteins. Cells, 2019, 8, 172.	4.1	17
158	Role of Tristetraprolin in the Resolution of Inflammation. Biology, 2021, 10, 66.	2.8	17
159	Nitric oxide: A short lived molecule stays alive. Pharmacological Research, 2010, 61, 265-268.	7.1	16
160	AMP-Activated Protein Kinase Interacts with the Peroxisome Proliferator-Activated Receptor Delta to Induce Genes Affecting Fatty Acid Oxidation in Human Macrophages. PLoS ONE, 2015, 10, e0130893.	2.5	16
161	Macrophage S1PR1 Signaling Alters Angiogenesis and Lymphangiogenesis During Skin Inflammation. Cells, 2019, 8, 785.	4.1	16
162	Lysosome-Dependent LXR and PPARδActivation Upon Efferocytosis in Human Macrophages. Frontiers in Immunology, 2021, 12, 637778.	4.8	16

#	Article	IF	CITATIONS
163	Hypoxia induces calpain activity and degrades SMAD2 to attenuate TGFÎ ² signaling in macrophages. Cell and Bioscience, 2015, 5, 36.	4.8	15
164	Mitochondrial fragmentation in human macrophages attenuates palmitate-induced inflammatory responses. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 433-446.	2.4	15
165	Iron-Bound Lipocalin-2 from Tumor-Associated Macrophages Drives Breast Cancer Progression Independent of Ferroportin. Metabolites, 2021, 11, 180.	2.9	15
166	RNAi screen in apoptotic cancer cell-stimulated human macrophages reveals co-regulation of IL-6/IL-10 expression. Immunobiology, 2013, 218, 40-51.	1.9	14
167	Inactivation of Tristetraprolin in Chronic Hypoxia Provokes the Expression of Cathepsin B. Molecular and Cellular Biology, 2015, 35, 619-630.	2.3	14
168	sST2 translation is regulated by FGF2 via an hnRNP A1-mediated IRES-dependent mechanism. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 848-859.	1.9	14
169	Hypoxia-inducible Factor (HIF) in Hormone Signaling During Health and Disease. Cardiovascular and Hematological Agents in Medicinal Chemistry, 2013, 11, 125-135.	1.0	14
170	Tolerizing CTL by Sustained Hepatic PD-L1 Expression Provides a New Therapy Approach in Mouse Sepsis. Theranostics, 2019, 9, 2003-2016.	10.0	13
171	Sphingosine Kinases are Involved in Macrophage NLRP3 Inflammasome Transcriptional Induction. International Journal of Molecular Sciences, 2020, 21, 4733.	4.1	13
172	IL-38 Ablation Reduces Local Inflammation and Disease Severity in Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2021, 206, 1058-1066.	0.8	13
173	Macrophage Polarization In The Tumor Microenvironment. Redox Biology, 2015, 5, 419.	9.0	12
174	Elevated intrathymic sphingosine-1-phosphate promotes thymus involution during sepsis. Molecular Immunology, 2017, 90, 255-263.	2.2	12
175	Identification of the TXNIP IRES and characterization of the impact of regulatory IRES trans-acting factors. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2018, 1861, 147-157.	1.9	12
176	Lipocalin-2 abrogates epithelial cell cycle arrest by PPARÎ ³ inhibition. Laboratory Investigation, 2018, 98, 1408-1422.	3.7	12
177	Bacterial and Fungal Toll-Like Receptor Activation Elicits Type I IFN Responses in Mast Cells. Frontiers in Immunology, 2020, 11, 607048.	4.8	12
178	5-Lipoxygenase contributes to PPARÎ ³ activation in macrophages in response to apoptotic cells. Cellular Signalling, 2013, 25, 2762-2768.	3.6	11
179	Lipoxin A4: Problems with its determination using reversed phase chromatography–tandem mass spectrometry and confirmation with chiral chromatography. Talanta, 2014, 127, 82-87.	5.5	11
180	GM-CSF in murine psoriasiform dermatitis: Redundant and pathogenic roles uncovered by antibody-induced neutralization and genetic deficiency. PLoS ONE, 2017, 12, e0182646.	2.5	11

#	Article	IF	CITATIONS
181	Loss of HIF-1Î ² in macrophages attenuates AhR/ARNT-mediated tumorigenesis in a PAH-driven tumor model. Oncotarget, 2016, 7, 25915-25929.	1.8	11
182	Phosphatidylserine Synthase PTDSS1 Shapes the Tumor Lipidome to Maintain Tumor-Promoting Inflammation. Cancer Research, 2022, 82, 1617-1632.	0.9	11
183	Diaryl Disulfides as Novel Stabilizers of Tumor Suppressor Pdcd4. PLoS ONE, 2016, 11, e0151643.	2.5	10
184	Redox Regulation of PPAR <i>γ</i> in Polarized Macrophages. PPAR Research, 2020, 2020, 1-16.	2.4	10
185	Cyp2c44 regulates prostaglandin synthesis, lymphangiogenesis, and metastasis in a mouse model of breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5923-5930.	7.1	10
186	Disruption of Prostaglandin E2 Signaling in Cancer-Associated Fibroblasts Limits Mammary Carcinoma Growth but Promotes Metastasis. Cancer Research, 2022, 82, 1380-1395.	0.9	10
187	PD-L1 in the palm of your hand: palmitoylation as a target for immuno-oncology. Signal Transduction and Targeted Therapy, 2019, 4, 18.	17.1	9
188	Exosomal and Non-Exosomal MicroRNAs: New Kids on the Block for Cancer Therapy. International Journal of Molecular Sciences, 2022, 23, 4493.	4.1	9
189	Alox12/15 Deficiency Exacerbates, While Lipoxin A4 Ameliorates Hepatic Inflammation in Murine Alcoholic Hepatitis. Frontiers in Immunology, 2020, 11, 1447.	4.8	8
190	Inhibition of mPGES-1 attenuates efficient resolution of acute inflammation by enhancing CX3CL1 expression. Cell Death and Disease, 2021, 12, 135.	6.3	8
191	Prodromal sensory neuropathy in <i>Pink1sup>â^'/â^'SNCAsup>A53T</i> double mutant Parkinson mice. Neuropathology and Applied Neurobiology, 2021, 47, 1060-1079.	3.2	8
192	MicroRNA-200c Attenuates the Tumor-Infiltrating Capacity of Macrophages. Biology, 2022, 11, 349.	2.8	8
193	uORF-Tools—Workflow for the determination of translation-regulatory upstream open reading frames. PLoS ONE, 2019, 14, e0222459.	2.5	7
194	Immune Checkpoint Blockade Improves Chemotherapy in the PyMT Mammary Carcinoma Mouse Model. Frontiers in Oncology, 2020, 10, 1771.	2.8	7
195	ER-stress promotes VHL-independent degradation of hypoxia-inducible factors via FBXW1A/βTrCP. Redox Biology, 2022, 50, 102243.	9.0	7
196	Flow cytometry-based FRET identifies binding intensities in PPARÎ ³ 1 protein-protein interactions in living cells. Theranostics, 2019, 9, 5444-5463.	10.0	6
197	IL27Rα Deficiency Alters Endothelial Cell Function and Subverts Tumor Angiogenesis in Mammary Carcinoma. Frontiers in Oncology, 2019, 9, 1022.	2.8	6
198	Macrophages attenuate the transcription of CYP1A1 in breast tumor cells and enhance their proliferation. PLoS ONE, 2019, 14, e0209694.	2.5	6

#	Article	IF	CITATIONS
199	Translation of TNFAIP2 is tightly controlled by upstream open reading frames. Cellular and Molecular Life Sciences, 2020, 77, 2017-2027.	5.4	6
200	The Consequences of Soluble Epoxide Hydrolase Deletion on Tumorigenesis and Metastasis in a Mouse Model of Breast Cancer. International Journal of Molecular Sciences, 2021, 22, 7120.	4.1	6
201	Mitofusin 2 Deficiency Causes Pro-Inflammatory Effects in Human Primary Macrophages. Frontiers in Immunology, 2021, 12, 723683.	4.8	6
202	Hypoxic inhibition of JMJD3 reduces H3K27me3 demethylation and induction of the STAT6 target gene CCL18. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 1490-1501.	1.9	5
203	The portal vein as a distinct immunological compartment – A comprehensive immune phenotyping study. Human Immunology, 2018, 79, 716-723.	2.4	5
204	Increased glucosylceramide production leads to decreased cell energy metabolism and lowered tumor marker expression in non-cancerous liver cells. Cellular and Molecular Life Sciences, 2021, 78, 7025-7041.	5.4	5
205	Picturing of the Lung Tumor Cellular Composition by Multispectral Flow Cytometry. Frontiers in Immunology, 2022, 13, 827719.	4.8	5
206	Identification and characterisation of a prototype for a new class of competitive PPARÎ ³ antagonists. European Journal of Pharmacology, 2015, 755, 16-26.	3.5	4
207	Metabolic Plasticity Is an Essential Requirement of Acquired Tyrosine Kinase Inhibitor Resistance in Chronic Myeloid Leukemia. Cancers, 2020, 12, 3443.	3.7	4
208	Pharmacological Activation of p53 during Human Monocyte to Macrophage Differentiation Attenuates Their Pro-Inflammatory Activation by TLR4, TLR7 and TLR8 Agonists. Cancers, 2021, 13, 958.	3.7	4
209	miR-193a-3p increases glycolysis under hypoxia by facilitating Akt phosphorylation and PFKFB3 activation in human macrophages. Cellular and Molecular Life Sciences, 2022, 79, 89.	5.4	4
210	Identification of the Cysteine Protease Legumain as a Potential Chronic Hypoxia-Specific Multiple Myeloma Target Gene. Cells, 2022, 11, 292.	4.1	4
211	C5aR activation in the absence of C5a: A new disease mechanism of autoimmune hemolytic anemia in mice. European Journal of Immunology, 2018, 48, 696-704.	2.9	3
212	The influenza virus NS1A binding protein gene modulates macrophages response to cytokines and phagocytic potential in inflammation. Scientific Reports, 2020, 10, 15302.	3.3	3
213	Functional RNA Dynamics Are Progressively Governed by RNA Destabilization during the Adaptation to Chronic Hypoxia. International Journal of Molecular Sciences, 2022, 23, 5824.	4.1	3
214	Apoptotic Cells induce Proliferation of Peritoneal Macrophages. International Journal of Molecular Sciences, 2021, 22, 2230.	4.1	2
215	scFv-Anti-LDL(-)-Metal-Complex Multi-Wall Functionalized-Nanocapsules as a Promising Tool for the Prevention of Atherosclerosis Progression. Frontiers in Medicine, 2021, 8, 652137.	2.6	2
216	Keep a Little Fire Burning—The Delicate Balance of Targeting Sphingosine-1-Phosphate in Cancer Immunity. International Journal of Molecular Sciences, 2022, 23, 1289.	4.1	2

#	Article	IF	CITATIONS
217	The role of nitric oxide and cyclooxygenase-2 in attenuating apoptosis. Journal of Environmental Pathology, Toxicology and Oncology, 2002, 21, 103-12.	1.2	2
218	ll-38 Restricts Skin Inflammation and Anti-Tumor Immunity by Limiting Il-17 Production from γδ T Cells. SSRN Electronic Journal, 2018, , .	0.4	1
219	Co-delivery of carbonic anhydrase IX inhibitor and doxorubicin as a promising approach to address hypoxia-induced chemoresistance. Drug Delivery, 2022, 29, 2072-2085.	5.7	1
220	NO and Gene Regulation. , 2005, , 329-345.		0
221	Macrophage activation by apoptotic cells. Bioinorganic Reaction Mechanisms, 2013, 9, .	0.4	0
222	Happy Birthday: <i>Biological Chemistry</i> is celebrating its 400th volume. Biological Chemistry, 2019, 401, 1-1.	2.5	0
223	Douglas D. Thomas named next Editor-in-Chief of <i>Biological Chemistry</i> . Biological Chemistry, 2020, 402, 3-4.	2.5	0