Vladimir Djokovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1550776/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Fluorescence microscopy and photodielectric characterization studies of the composite films of polyvinyl alcohol and tryptophan functionalized silver nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 634, 128050.	4.7	5
2	PVDF-HFP/NKBT composite dielectrics: Perovskite particles induce the appearance of an additional dielectric relaxation process in ferroelectric polymer matrix. Polymer Testing, 2021, 96, 107093.	4.8	15
3	Effect of hydrodynamic cavitation water treatment on Pseudomonas aeruginosa quorum-sensing molecules. Environmental Science and Pollution Research, 2021, 28, 26182-26186.	5.3	3
4	Aerosol Synthesis and Gas-Phase Photoelectron Spectroscopy of Ag-Bi-l Nanosystems. Journal of Physical Chemistry C, 2020, 124, 23930-23937.	3.1	13
5	Velocity Map Imaging VUV Angle-Resolved Photoemission on Isolated Nanosystems: Case of Gold Nanoparticles. Journal of Physical Chemistry C, 2020, 124, 24500-24512.	3.1	11
6	Interfacial Charge Transfer Transitions in Colloidal TiO ₂ Nanoparticles Functionalized with Salicylic acid and 5-Aminosalicylic acid: A Comparative Photoelectron Spectroscopy and DFT Study. Journal of Physical Chemistry C, 2019, 123, 29057-29066.	3.1	17
7	Generation of photo charge in poly(ethyleneimine)-TiO2-anthocyanin modified papers conditioned at different humidities. Dyes and Pigments, 2018, 149, 51-58.	3.7	6
8	Dependence of mechanical and electrical properties of silver nanocubes impregnated bacterial cellulose-silk fibroin-polyvinyl alcohol films on light exposure. Polymer Testing, 2018, 71, 110-114.	4.8	11
9	DUV fluorescence bioimaging study of the interaction of partially reduced graphene oxide and liver cancer cells. 2D Materials, 2018, 5, 045019.	4.4	3
10	Structural and electrical properties of ferroelectric poly(vinylidene fluoride) and mechanically activated ZnO nanoparticle composite films. Physica Scripta, 2018, 93, 105801.	2.5	25
11	ATR-FTIR study of the interaction of CO2 with bacterial cellulose-based membranes. Chemical Engineering Journal, 2017, 324, 83-92.	12.7	42
12	Interaction of amino acid-functionalized silver nanoparticles and Candida albicans polymorphs: A deepâ€UV fluorescence imaging study. Colloids and Surfaces B: Biointerfaces, 2017, 155, 341-348.	5.0	11
13	Morphology and magnetic properties of the ethylene-co-vinyl acetate/iron nanocomposite films prepared by implantation with Fe6+ ions. Applied Surface Science, 2016, 378, 362-367.	6.1	2
14	Deep UV fluorescence imaging study of Candida albicans cells treated with gold-riboflavin hydrocolloids. Optical and Quantum Electronics, 2016, 48, 1.	3.3	2
15	A fluorescent nanoprobe for single bacterium tracking: functionalization of silver nanoparticles with tryptophan to probe the nanoparticle accumulation with single cell resolution. Analyst, The, 2016, 141, 1988-1996.	3.5	14
16	Photo-induced changes and contact relaxation of the surface AC-conductivity of the paper prepared from poly(ethyleneimine)–TiO2–anthocyanin modified cellulose fibers. Cellulose, 2015, 22, 779-788.	4.9	9
17	Tryptophan-functionalized gold nanoparticles for deep UV imaging of microbial cells. Colloids and Surfaces B: Biointerfaces, 2015, 135, 742-750.	5.0	35
18	Ferroelectric nanocomposites of polyvinylidene fluoride/polymethyl methacrylate blend and BaTiO3 particles: Fabrication of β-crystal polymorph rich matrix through mechanical activation of the filler. Journal of Applied Physics, 2014, 115, .	2.5	48

VLADIMIR DJOKOVIC

#	Article	IF	CITATIONS
19	ZnO-modified cellulose fiber sheets for antibody immobilization. Carbohydrate Polymers, 2014, 109, 139-147.	10.2	42
20	ZnO/Ag hybrid nanocubes in alginate biopolymer: Synthesis and properties. Chemical Engineering Journal, 2014, 253, 341-349.	12.7	40
21	Dynamic mechanical and thermal properties of the composites of thermoplastic starch and lanthanum hydroxide nanoparticles. Journal of Applied Polymer Science, 2013, 127, 699-709.	2.6	7
22	Thermal and dynamic mechanical properties of bio-based poly(furfuryl alcohol)/sisal whiskers nanocomposites. Polymer Bulletin, 2013, 70, 1265-1276.	3.3	40
23	Glycogen and gold nanoparticle bioconjugates: controlled plasmon resonance via glycogen-induced nanoparticle aggregation. RSC Advances, 2013, 3, 8705.	3.6	41
24	Structural properties of composites of polyvinylidene fluoride and mechanically activated BaTiO ₃ particles. Physica Scripta, 2013, T157, 014006.	2.5	31
25	Semiconductor nanoparticles in poly((2-dimethylamino)ethyl methacrylate-co-acrylic acid) co-polymers. Physica Scripta, 2013, T157, 014063.	2.5	1
26	Formation of nano-plate silver particles in the presence of polyampholyte copolymer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 414, 17-25.	4.7	19
27	Viscoelastic properties and antimicrobial activity of cellulose fiber sheets impregnated with Ag nanoparticles. Carbohydrate Polymers, 2012, 90, 1139-1146.	10.2	31
28	Fabrication and antibacterial properties of ZnO–alginate nanocomposites. Carbohydrate Polymers, 2012, 88, 263-269.	10.2	119
29	Inhibition of Microbial Growth by Silver–Starch Nanocomposite Thin Films. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 2343-2355.	3.5	28
30	Glass transition and polymer dynamics in silver/poly(methyl methacrylate) nanocomposites. European Polymer Journal, 2011, 47, 1514-1525.	5.4	39
31	Silver nanoparticles encapsulated in glycogen biopolymer: Morphology, optical and antimicrobial properties. Carbohydrate Polymers, 2011, 83, 883-890.	10.2	54
32	Polychloroprene nanocomposites filled with different organically modified clays: Morphology, thermal degradation and stress relaxation behaviour. Polymer Testing, 2011, 30, 585-593.	4.8	20
33	Structure and optical properties of noble metal and oxide nanoparticles dispersed in various polysaccharide biopolymers. , 2011, , .		3
34	PSâ€NH ₂ + PMMA COOH blend: A promising substrate material for the deposition of densely packed gold nanoparticles. Physica Status Solidi - Rapid Research Letters, 2010, 4, 85-87.	2.4	2
35	â€~Green' synthesis and optical properties of silver–chitosan complexes and nanocomposites. Reactive and Functional Polymers, 2010, 70, 869-873.	4.1	86
36	Confined growth of Ag2S semiconductor nanocrystals in the presence of PDMAEMA-co-AA polyampholyte co-polymer. Materials Letters, 2010, 64, 1123-1126.	2.6	11

VLADIMIR DJOKOVIC

#	Article	IF	CITATIONS
37	Biopolymer-protected CdSe nanoparticles. Carbohydrate Research, 2009, 344, 2383-2387.	2.3	26
38	Adsorption of sulfur onto a surface of silver nanoparticles stabilized with sago starch biopolymer. Colloids and Surfaces B: Biointerfaces, 2009, 73, 30-35.	5.0	59
39	Morphology, mechanical and thermal properties of composites of polypropylene and nanostructured wollastonite filler. Polymer Testing, 2009, 28, 348-356.	4.8	132
40	Electrical properties of a composite comprising epoxy resin and α-hematite nanorods. Polymer, 2008, 49, 4000-4008.	3.8	10
41	Composites comprising CdS nanoparticles and poly(ethylene oxide): optical properties and influence of the nanofiller content on the thermal behaviour of the host matrix. Colloid and Polymer Science, 2008, 286, 683-689.	2.1	20
42	Preparation and optical properties of CdS nanoparticles dispersed in poly(2-(dimethylamino)ethyl) Tj ETQq0 0 C) rgBT /Ove	rlock 10 Tf 50
43	Temperature dependence of the electrical conductivity of epoxy/expanded graphite nanosheet composites. Scripta Materialia, 2008, 58, 846-849.	5.2	96
44	Synthesis of Y2SiO5:Eu3+ nanoparticles from a hydrothermally prepared silica sol. Journal of Alloys and Compounds, 2008, 464, 357-360.	5.5	16
45	Study of Sago Starch-CdS Nanocomposite Films: Fabrication, Structure, Optical and Thermal Properties. Journal of Nanoscience and Nanotechnology, 2007, 7, 986-993.	0.9	22
46	Preparation and properties of nano-sized Ag and Ag2S particles in biopolymer matrix. European Physical Journal E, 2007, 22, 51-59.	1.6	70
47	The influence of hematite nano-crystals on the thermal stability of polystyrene. Polymer Degradation and Stability, 2006, 91, 313-316.	5.8	28
48	Synthesis and characterization of nanocomposite of polyvinyl alcohol and lead sulfide nanoparticles. Materials Chemistry and Physics, 2006, 95, 67-71.	4.0	86
49	Polystyrene-co-maleic acid/CdS nanocomposites: Preparation and properties. Journal of Physics and Chemistry of Solids, 2005, 66, 1302-1306.	4.0	10
50	Structure and properties of PbS–polyacrylamide nanocomposites. Applied Physics A: Materials Science and Processing, 2005, 81, 835-838.	2.3	28
51	Preparation and characterization of polystyrene films containing PbS nanoparticles. Journal of Materials Science, 2005, 40, 4407-4409.	3.7	6
52	Composites of linear low density polyethylene and short sisal fibres: The effects of peroxide treatment. Journal of Materials Science, 2004, 39, 3403-3412.	3.7	36
53	The high temperature secondary crystallisation of aged isotactic polypropylene. Polymer Testing, 2004, 23, 621-627.	4.8	28
54	Characterization of polystyrene filled with HgS nanoparticles. Materials Letters, 2004, 58, 361-364.	2.6	33

VLADIMIR DJOKOVIC

#	Article	IF	CITATIONS
55	Fabrication and Characterization of Silverâ^'Polyvinyl Alcohol Nanocomposites. Chemistry of Materials, 2003, 15, 5019-5024.	6.7	565
56	Binary mixtures of polyethylene and oxidized wax: Dependency of thermal and mechanical properties upon mixing procedure. Journal of Applied Polymer Science, 2003, 89, 2446-2456.	2.6	6
57	Thermal and mechanical properties of cross-linked and uncross-linked linear low-density polyethylene–wax blends. Polymer Degradation and Stability, 2003, 79, 53-59.	5.8	67
58	The influence of wax content on the physical properties of low-density polyethylene-wax blends. Polymer International, 2003, 52, 999-1004.	3.1	21
59	Formation and behaviour of low-temperature melting peak of quenched and annealed isotactic polypropylene. Polymer International, 2002, 51, 111-116.	3.1	13
60	Influence of CdS-filler on the thermal properties of polystyrene. European Polymer Journal, 2002, 38, 1659-1662.	5.4	47
61	Stress relaxation in hematite nanoparticles-polystyrene composites. Macromolecular Rapid Communications, 2000, 21, 994-997.	3.9	36
62	Viscoelastic behavior of semicrystalline polymers at elevated temperatures on the basis of a two-process model for stress relaxation. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 3239-3246.	2.1	31
63	Recrystallization processes induced by accelerated ageing in isotactic polypropylene of different morphologies. Polymer Degradation and Stability, 2000, 67, 233-237.	5.8	18
64	Theory of photothermal effects in thermally inhomogeneous solids with constant effusivity. Journal Physics D: Applied Physics, 2000, 33, 1736-1738.	2.8	3
65	Viscoelastic Properties of Polyethylene at Elevated Temperatures on the Basis of Two-Process Model for Stress Relaxation. Materials Science Forum, 2000, 352, 195-200.	0.3	1
66	Influence of orientation and irradiation on stress relaxation of linear low-density polyethylene (LLDPE): a two-process model. Polymer, 1999, 40, 2631-2637.	3.8	23
67	Effects of gamma irradiation on the stress relaxation of drawn ultrahigh molecular weight polyethylene. Radiation Physics and Chemistry, 1999, 55, 605-607.	2.8	10
68	Stress Relaxation in High Density Polyethylene. Effects of Orientation and Gamma Radiation. Polymer Journal, 1999, 31, 1194-1199.	2.7	11
69	Conduction of heat in inhomogeneous solids. Applied Physics Letters, 1998, 73, 321-323.	3.3	22
70	DSC melting behavior of drawn and gamma-irradiated low-density polyethylene. Polymer Degradation and Stability, 1997, 56, 227-233.	5.8	13
71	Theoretical Description of the Fourier Transform of the Absolute Amplitude Spectra and Its Applications. , 0, , .		0