List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1550696/publications.pdf Version: 2024-02-01

DONNA L FARRER

#	Article	IF	CITATIONS
1	Tissue-Resident Immune Cells in Humans. Annual Review of Immunology, 2022, 40, 195-220.	21.8	51
2	Surface phenotypes of naive and memory B cells in mouse and human tissues. Nature Immunology, 2022, 23, 135-145.	14.5	46
3	Immune and epithelial determinants of age-related risk and alveolar injury in fatal COVID-19. JCI Insight, 2022, 7, .	5.0	2
4	Neoadjuvant chemoradiation alters the immune microenvironment in pancreatic ductal adenocarcinoma. Oncolmmunology, 2022, 11, 2066767.	4.6	9
5	Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science, 2022, 376, eabl5197.	12.6	265
6	Tissue immunity to SARS oVâ€2: Role in protection and immunopathology*. Immunological Reviews, 2022, 309, 25-39.	6.0	11
7	Anti-viral protective capacity of tissue resident memory T cells. Current Opinion in Virology, 2021, 46, 20-26.	5.4	32
8	Distinct antibody responses to SARS-CoV-2 in children and adults across the COVID-19 clinical spectrum. Nature Immunology, 2021, 22, 25-31.	14.5	403
9	Engineering antibody therapies for protective immunity. Journal of Thoracic and Cardiovascular Surgery, 2021, 161, 1358-1361.	0.8	3
10	COVID-19 vaccines: modes of immune activation and future challenges. Nature Reviews Immunology, 2021, 21, 195-197.	22.7	529
11	Lasting memories of SARS-CoV-2 infection. Journal of Experimental Medicine, 2021, 218, .	8.5	2
12	Tissue-specific immunity for a changing world. Cell, 2021, 184, 1517-1529.	28.9	58
13	Tissue-resident memory T cells in tumor immunity and immunotherapy. Journal of Experimental Medicine, 2021, 218, .	8.5	94
14	Human plasmacytoid dendritic cells mount a distinct antiviral response to virus-infected cells. Science Immunology, 2021, 6, .	11.9	28
15	Longitudinal profiling of respiratory and systemic immune responses reveals myeloid cell-driven lung inflammation in severe COVID-19. Immunity, 2021, 54, 797-814.e6.	14.3	272
16	Tissues, not blood, are where immune cells function. Nature, 2021, 593, 506-509.	27.8	69
17	Structural Cells as Key Regulators of Organ-specific Immunity. Transplantation, 2021, 105, 1137-1139.	1.0	2
18	Maintenance of the human memory T cell repertoire by subset and tissue site. Genome Medicine, 2021, 13, 100.	8.2	35

#	Article	IF	CITATIONS
19	Influenza infection fortifies local lymph nodes to promote lung-resident heterosubtypic immunity. Journal of Experimental Medicine, 2021, 218, .	8.5	29
20	SARS-CoV-2 infection generates tissue-localized immunological memory in humans. Science Immunology, 2021, 6, eabl9105.	11.9	147
21	Molecular programs of fibrotic change in aging human lung. Nature Communications, 2021, 12, 6309.	12.8	33
22	Heterogeneity of human anti-viral immunity shaped by virus, tissue, age, and sex. Cell Reports, 2021, 37, 110071.	6.4	34
23	ILC3s control airway inflammation by limiting T cell responses to allergens and microbes. Cell Reports, 2021, 37, 110051.	6.4	16
24	The cell-surface 5′-nucleotidase CD73 defines a functional T memory cell subset that declines with age. Cell Reports, 2021, 37, 109981.	6.4	15
25	Infant T cells are developmentally adapted for robust lung immune responses through enhanced T cell receptor signaling. Science Immunology, 2021, 6, eabj0789.	11.9	9
26	Generation of protective pneumococcal-specific nasal resident memory CD4+ T cells via parenteral immunization. Mucosal Immunology, 2020, 13, 172-182.	6.0	26
27	Form and function for T cells in health and disease. Nature Reviews Immunology, 2020, 20, 83-84.	22.7	22
28	The Whole Body as the System in Systems Immunology. IScience, 2020, 23, 101509.	4.1	24
29	Comprehensive analyses of B-cell compartments across the human body reveal novel subsets and a gut-resident memory phenotype. Blood, 2020, 136, 2774-2785.	1.4	74
30	Stealth Killing by Uterine NK Cells for Tolerance and Tissue Homeostasis. Cell, 2020, 182, 1074-1076.	28.9	3
31	Tissue Determinants of Human NK Cell Development, Function, and Residence. Cell, 2020, 180, 749-763.e13.	28.9	242
32	The Role of the Thymus in the Immune Response. Thoracic Surgery Clinics, 2019, 29, 123-131.	1.0	159
33	Human lung tissue resident memory T cells in health and disease. Current Opinion in Immunology, 2019, 59, 101-108.	5.5	64
34	Single-cell transcriptomics of human T cells reveals tissue and activation signatures in health and disease. Nature Communications, 2019, 10, 4706.	12.8	460
35	Modulation of the fungal mycobiome is regulated by the chitin-binding receptor FIBCD1. Journal of Experimental Medicine, 2019, 216, 2689-2700.	8.5	23
36	Training T cells for tissue residence. Science, 2019, 366, 188-189.	12.6	2

#	Article	IF	CITATIONS
37	Tissue-Resident Memory T Cells in Mice and Humans: Towards a Quantitative Ecology. Journal of Immunology, 2019, 203, 2561-2569.	0.8	12
38	Adipose tissue quantification and primary graft dysfunction after lung transplantation: The Lung Transplant Body Composition study. Journal of Heart and Lung Transplantation, 2019, 38, 1246-1256.	0.6	29
39	Phenotypic alterations in pancreatic lymph node stromal cells from human donors with type 1 diabetes and NOD mice. Diabetologia, 2019, 62, 2040-2051.	6.3	11
40	Dissecting lung development and fibrosis at single-cell resolution. Genome Medicine, 2019, 11, 33.	8.2	10
41	Generation and persistence of human tissue-resident memory T cells in lung transplantation. Science Immunology, 2019, 4, .	11.9	203
42	Location, location, location: Tissue resident memory T cells in mice and humans. Science Immunology, 2019, 4, .	11.9	406
43	Spatial and Temporal Mapping of Human Innate Lymphoid Cells Reveals Elements of Tissue Specificity. Immunity, 2019, 50, 505-519.e4.	14.3	139
44	Tissue-Resident Memory T Cells Mediate Immune Homeostasis in the Human Pancreas through the PD-1/PD-L1 Pathway. Cell Reports, 2019, 29, 3916-3932.e5.	6.4	69
45	Microanatomical dissection of human intestinal T-cell immunity reveals site-specific changes in gut-associated lymphoid tissues over life. Mucosal Immunology, 2019, 12, 378-389.	6.0	72
46	Human Intestinal Allografts Contain Functional Hematopoietic Stem and Progenitor Cells that Are Maintained by a Circulating Pool. Cell Stem Cell, 2019, 24, 227-239.e8.	11.1	43
47	Study of T Cell Immunosenescence in Various Tissue Compartments. , 2019, , 233-257.		0
48	Human T Cell Development, Localization, and Function throughout Life. Immunity, 2018, 48, 202-213.	14.3	780
49	Biased Generation and In Situ Activation of Lung Tissue–Resident Memory CD4 T Cells in the Pathogenesis of Allergic Asthma. Journal of Immunology, 2018, 200, 1561-1569.	0.8	89
50	The neonatal window of opportunity—early priming for life. Journal of Allergy and Clinical Immunology, 2018, 141, 1212-1214.	2.9	87
51	Human immunology studies using organ donors: Impact of clinical variations on immune parameters in tissues and circulation. American Journal of Transplantation, 2018, 18, 74-88.	4.7	57
52	Developmental Regulation of Effector and Resident Memory T Cell Generation during Pediatric Viral Respiratory Tract Infection. Journal of Immunology, 2018, 201, 432-439.	0.8	27
53	Computational Evaluation of B-Cell Clone Sizes in Bulk Populations. Frontiers in Immunology, 2018, 9, 1472.	4.8	46
54	Human Lymph Nodes Maintain TCF-1hi Memory T Cells with High Functional Potential and Clonal Diversity throughout Life. Journal of Immunology, 2018, 201, 2132-2140.	0.8	63

#	Article	IF	CITATIONS
55	Functional heterogeneity of human tissue-resident memory T cells based on dye efflux capacities. JCI Insight, 2018, 3, .	5.0	45
56	Efficient Expansion of Polyfunctional Virus-Specific T Cells from Human Lymph Nodes: Implications for Cellular Therapies. Blood, 2018, 132, 3715-3715.	1.4	2
57	Study of T Cell Immunosenescence in Various Tissue Compartments. , 2018, , 1-26.		0
58	Tissue reservoirs of antiviral T cell immunity in persistent human CMV infection. Journal of Experimental Medicine, 2017, 214, 651-667.	8.5	129
59	Thymic–Peripheral Crosstalk in Lymphodepletion Therapy. American Journal of Transplantation, 2017, 17, 1970-1971.	4.7	0
60	Long-term Persistence of Innate Lymphoid Cells in the Gut After Intestinal Transplantation. Transplantation, 2017, 101, 2449-2454.	1.0	22
61	Dendritic Cells Display Subset and Tissue-Specific Maturation Dynamics over Human Life. Immunity, 2017, 46, 504-515.	14.3	230
62	CD4+ T cell effector commitment coupled to self-renewal by asymmetric cell divisions. Journal of Experimental Medicine, 2017, 214, 39-47.	8.5	91
63	An atlas of B-cell clonal distribution in the human body. Nature Biotechnology, 2017, 35, 879-884.	17.5	150
64	Reduced generation of lung tissue–resident memory T cells during infancy. Journal of Experimental Medicine, 2017, 214, 2915-2932.	8.5	76
65	Tissue compartmentalization of T cell responses during early life. Seminars in Immunopathology, 2017, 39, 593-604.	6.1	12
66	Human Tissue-Resident Memory T Cells Are Defined by Core Transcriptional and Functional Signatures in Lymphoid and Mucosal Sites. Cell Reports, 2017, 20, 2921-2934.	6.4	792
67	The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation. Nature, 2017, 549, 282-286.	27.8	400
68	The Latent Reservoir for HIV-1: How Immunologic Memory and Clonal Expansion Contribute to HIV-1 Persistence. Journal of Immunology, 2016, 197, 407-417.	0.8	121
69	Long-term maintenance of human naÃ ⁻ ve T cells through in situ homeostasis in lymphoid tissue sites. Science Immunology, 2016, 1, .	11.9	127
70	Bidirectional intragraft alloreactivity drives the repopulation of human intestinal allografts and correlates with clinical outcome. Science Immunology, 2016, 1, .	11.9	98
71	Early-life compartmentalization of human T cell differentiation and regulatory function in mucosal and lymphoid tissues. Nature Medicine, 2016, 22, 72-77.	30.7	248
72	Airway CD8 ⁺ T Cells Are Associated with Lung Injury during Infant Viral Respiratory Tract Infection. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 822-830.	2.9	49

#	Article	IF	CITATIONS
73	Immunological memory: lessons from the past and a look to the future. Nature Reviews Immunology, 2016, 16, 124-128.	22.7	144
74	Immune Modulation of the T Cell Response in Asthma through Wnt10b. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 584-593.	2.9	25
75	Vaccine-generated lung tissueâ \in resident memory T cells provide heterosubtypic protection to influenza infection. JCI Insight, 2016, 1, .	5.0	328
76	Macrochimerism in Intestinal Transplantation: Association With Lower Rejection Rates and Multivisceral Transplants, Without GVHD. American Journal of Transplantation, 2015, 15, 2691-2703.	4.7	47
77	Emerging concepts in tissue-resident T cells: lessons from humans. Trends in Immunology, 2015, 36, 428-435.	6.8	135
78	Conditional PDK1 Ablation Promotes Epidermal and T-Cell-Mediated Dysfunctions Leading to Inflammatory Skin Disease. Journal of Investigative Dermatology, 2015, 135, 2688-2696.	0.7	10
79	Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature, 2015, 519, 242-246.	27.8	788
80	Mucosal Resident Memory CD4 T Cells in Protection and Immunopathology. Frontiers in Immunology, 2014, 5, 331.	4.8	159
81	CD45 ligation expands Tregs by promoting interactions with DCs. Journal of Clinical Investigation, 2014, 124, 4603-4613.	8.2	25
82	Human memory T cells: generation, compartmentalization and homeostasis. Nature Reviews Immunology, 2014, 14, 24-35.	22.7	699
83	Spatial Map of Human T Cell Compartmentalization and Maintenance over Decades of Life. Cell, 2014, 159, 814-828.	28.9	476
84	Memory CD4 T Cells in Influenza. Current Topics in Microbiology and Immunology, 2014, 386, 399-421.	1.1	69
85	Lung niches for the generation and maintenance of tissue-resident memory T cells. Mucosal Immunology, 2014, 7, 501-510.	6.0	342
86	Tissueâ€resident T cells, <i>in situ</i> immunity and transplantation. Immunological Reviews, 2014, 258, 150-166.	6.0	48
87	An AXL/LRP-1/RANBP9 complex mediates DC efferocytosis and antigen cross-presentation in vivo. Journal of Clinical Investigation, 2014, 124, 1296-1308.	8.2	91
88	Thymic Stromal Lymphopoietin-Mediated Extramedullary Hematopoiesis Promotes Allergic Inflammation. Immunity, 2013, 39, 1158-1170.	14.3	64
89	Distribution and Compartmentalization of Human Circulating and Tissue-Resident Memory T Cell Subsets. Immunity, 2013, 38, 187-197.	14.3	730
90	Splenic Priming of Virus-Specific CD8 T Cells following Influenza Virus Infection. Journal of Virology, 2013, 87, 4496-4506.	3.4	23

#	Article	IF	CITATIONS
91	Innate Lymphoid Cells Promote Anatomical Containment of Lymphoid-Resident Commensal Bacteria. Science, 2012, 336, 1321-1325.	12.6	638
92	Expansion of HIV-specific T follicular helper cells in chronic HIV infection. Journal of Clinical Investigation, 2012, 122, 3271-3280.	8.2	401
93	Cutting Edge: Tissue-Retentive Lung Memory CD4 T Cells Mediate Optimal Protection to Respiratory Virus Infection. Journal of Immunology, 2011, 187, 5510-5514.	0.8	536
94	Bordetella pertussis Infection Exacerbates Influenza Virus Infection through Pertussis Toxin-Mediated Suppression of Innate Immunity. PLoS ONE, 2011, 6, e19016.	2.5	34
95	A repertoire-independent and cell-intrinsic defect in murine GVHD induction by effector memory T cells. Blood, 2011, 118, 6209-6219.	1.4	39
96	Identification and Targeting of Costimulation-Resistant T cells in Renal Transplantation. American Journal of Transplantation, 2011, 11, 8-9.	4.7	5
97	Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nature Immunology, 2011, 12, 1045-1054.	14.5	1,211
98	Enhancing alloreactivity does not restore GVHD induction but augments skin graft rejection by CD4 ⁺ effector memory T cells. European Journal of Immunology, 2011, 41, 2782-2792.	2.9	16
99	Transcriptional Control of Rapid Recall by Memory CD4 T Cells. Journal of Immunology, 2011, 187, 133-140.	0.8	43
100	NF-κB Signaling Participates in Both RANKL- and IL-4–Induced Macrophage Fusion: Receptor Cross-Talk Leads to Alterations in NF-κB Pathways. Journal of Immunology, 2011, 187, 1797-1806.	0.8	47
101	Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nature Immunology, 2011, 12, 1045-54.	14.5	875
102	Increased Memory Conversion of NaÃ ⁻ ve CD8 T Cells Activated during Late Phases of Acute Virus Infection Due to Decreased Cumulative Antigen Exposure. PLoS ONE, 2011, 6, e14502.	2.5	16
103	Generation, persistence and plasticity of CD4 Tâ€cell memories. Immunology, 2010, 130, 463-470.	4.4	59
104	Novel signaling interactions between proteinase-activated receptor 2 and Toll-like receptors in vitro and in vivo. Mucosal Immunology, 2010, 3, 29-39.	6.0	138
105	Ablation of SLP-76 signaling after T cell priming generates memory CD4 T cells impaired in steady-state and cytokine-driven homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 827-831.	7.1	29
106	Memory CD4 T Cells Direct Protective Responses to Influenza Virus in the Lungs through Helper-Independent Mechanisms. Journal of Virology, 2010, 84, 9217-9226.	3.4	165
107	Prolonged Antigen Presentation Is Required for Optimal CD8+ T Cell Responses against Malaria Liver Stage Parasites. PLoS Pathogens, 2010, 6, e1000877.	4.7	90
108	The anti-tumor agent, 5,6-dimethylxanthenone-4-acetic acid (DMXAA), induces IFN-β-mediated antiviral activity in vitro and in vivo. Journal of Leukocyte Biology, 2010, 89, 351-357.	3.3	46

#	Article	IF	CITATIONS
109	Costimulation Modulation Uncouples Protection from Immunopathology in Memory T Cell Responses to Influenza Virus. Journal of Immunology, 2009, 182, 6834-6843.	0.8	54
110	TLR2 Engagement on Dendritic Cells Promotes High Frequency Effector and Memory CD4 T Cell Responses. Journal of Immunology, 2009, 183, 7832-7841.	0.8	33
111	Pulse-oximetry accurately predicts lung pathology and the immune response during influenza infection. Virology, 2009, 390, 151-156.	2.4	53
112	Memory T-Cell Predominance Following T-Cell Depletional Therapy Derives from Homeostatic Expansion of Naive T Cells. American Journal of Transplantation, 2009, 9, 2615-2623.	4.7	53
113	Biochemical signaling pathways for memory T cell recall. Seminars in Immunology, 2009, 21, 84-91.	5.6	54
114	Recalling the Year in Memory T Cells. Annals of the New York Academy of Sciences, 2008, 1143, 212-225.	3.8	6
115	Heterogeneous Memory T Cells in Antiviral Immunity and Immunopathology. Viral Immunology, 2008, 21, 99-114.	1.3	18
116	CTLA4 Expression Is an Indicator and Regulator of Steady-State CD4+FoxP3+ T Cell Homeostasis. Journal of Immunology, 2008, 181, 1806-1813.	0.8	103
117	A Peptide-Major Histocompatibility Complex II Chimera Favors Survival of Pancreatic β-Ιslets Grafted in Type 1 Diabetic Mice. Transplantation, 2008, 85, 1717-1725.	1.0	5
118	Engagement of TLR2 during priming directs enhanced CD4 T cell expansion and protective capacities compared to other TLR agonists. FASEB Journal, 2008, 22, 672.54.	0.5	0
119	A Biochemical Signature for Rapid Recall of Memory CD4 T Cells. Journal of Immunology, 2007, 179, 3689-3698.	0.8	46
120	Generation, homeostasis, and regulation of memory T cells in transplantation. Current Opinion in Organ Transplantation, 2007, 12, 23-29.	1.6	2
121	Reshaping the past: Strategies for modulating T-cell memory immune responses. Clinical Immunology, 2007, 122, 1-12.	3.2	17
122	Proximal signaling control of human effector CD4 T cell function. Clinical Immunology, 2007, 125, 5-15.	3.2	7
123	Committed to memory: lineage choices for activated T cells. Trends in Immunology, 2006, 27, 261-267.	6.8	39
124	Abrogation of recurrent autoimmunity in the NOD mouse: A critical role for host interleukin 4. Surgery, 2006, 140, 281-288.	1.9	4
125	Control of Memory CD4 T Cell Recall by the CD28/B7 Costimulatory Pathway. Journal of Immunology, 2006, 177, 7698-7706.	0.8	124
126	Human Bone Marrow: A Reservoir for "Enhanced Effector Memory―CD8+ T Cells with Potent Recall Function. Journal of Immunology, 2006, 177, 6730-6737.	0.8	45

#	Article	IF	CITATIONS
127	Divergent Generation of Heterogeneous Memory CD4 T Cells. Journal of Immunology, 2006, 177, 869-876.	0.8	62
128	Control of Adaptive Immunity: From Na??ve to Memory. Journal of Pediatric Gastroenterology and Nutrition, 2005, 40, S17-S19.	1.8	4
129	Novel phenotypes and migratory properties distinguish memory CD4 T cell subsets in lymphoid and lung tissue. European Journal of Immunology, 2005, 35, 3173-3186.	2.9	82
130	Modulation of Memory CD4 T Cell Function and Survival Potential by Altering the Strength of the Recall Stimulus. Journal of Immunology, 2005, 174, 5433-5443.	0.8	28
131	Anti-CD3 priming generates heterogeneous antigen-specific memory CD4 T cells. Clinical Immunology, 2005, 117, 125-132.	3.2	15
132	Regulation of CD103 Expression by CD8+ T Cells Responding to Renal Allografts. Journal of Immunology, 2004, 172, 214-221.	0.8	74
133	Long-Term Islet Graft Survival in NOD Mice by Abrogation of Recurrent Autoimmunity. Diabetes, 2004, 53, 2338-2345.	0.6	12
134	Memory T Cells in Transplantation: Generation, Function, and Potential Role in Rejection. American Journal of Transplantation, 2004, 4, 846-852.	4.7	116
135	Signaling control of memory T cell generation and function. Seminars in Immunology, 2004, 16, 285-293.	5.6	56
136	Gene transfection and expression in resting and activated murine CD4 T cell subsets. Journal of Immunological Methods, 2003, 282, 93-102.	1.4	47
137	T Cell Rewiring in Differentiation and Disease. Journal of Immunology, 2003, 171, 3325-3331.	0.8	57
138	The FcRÎ ³ Subunit and Syk Kinase Replace the CD3ζ-Chain and ZAP-70 Kinase in the TCR Signaling Complex of Human Effector CD4 T Cells. Journal of Immunology, 2003, 170, 4189-4195.	0.8	113
139	Transcriptional Activation of the Human Inducible Nitric-oxide Synthase Promoter by Krüppel-like Factor 6. Journal of Biological Chemistry, 2003, 278, 14812-14819.	3.4	71
140	Differential SLP-76 Expression and TCR-Mediated Signaling in Effector and Memory CD4 T Cells. Journal of Immunology, 2002, 168, 1557-1565.	0.8	59
141	Functional plasticity of an antigen-specific memory CD4 T cell population. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11802-11807.	7.1	64
142	CD103 Expression Is Required for Destruction of Pancreatic Islet Allografts by CD8+ T Cells. Journal of Experimental Medicine, 2002, 196, 877-886.	8.5	99
143	Programmed contraction of CD8+ T cells after infection. Trends in Molecular Medicine, 2002, 8, 367-368.	6.7	0
144	Dissecting the Complexity of the Memory T Cell Response. Immunologic Research, 2002, 25, 247-260.	2.9	23

DONNA L FARBER

#	Article	IF	CITATIONS
145	IDENTIFICATION OF DIFFERENTIALLY EXPRESSED GENES IN HUMAN MEMORY (CD45RO+) CD4+T LYMPHOCYTES. Immunological Investigations, 2001, 30, 87-101.	2.0	5
146	Generation and biochemical analysis of human effector CD4 T cells: alterations in tyrosine phosphorylation and loss of CD31¶ expression. Blood, 2001, 97, 3851-3859.	1.4	67
147	Heterogeneity of the Memory CD4 T Cell Response: Persisting Effectors and Resting Memory T Cells. Journal of Immunology, 2001, 166, 926-935.	0.8	110
148	T Cell Memory: Heterogeneity and Mechanisms. Clinical Immunology, 2000, 95, 173-181.	3.2	37
149	The MBP fusion protein restores the activity of the first phosphatase domain of CD45. FEBS Letters, 1997, 411, 231-235.	2.8	12
150	Differential T cell receptor-mediated signaling in naive and memory CD4 T cells. European Journal of Immunology, 1997, 27, 2094-2101.	2.9	82
151	The extracellular domain of CD45 controls association with the CD4-T cell receptor complex and the response to antigen-specific stimulation Journal of Experimental Medicine, 1996, 183, 249-259.	8.5	112
152	Control of memory CD4 T cell activation: MHC class II molecules on APCs and CD4 ligation inhibit memory but not naive CD4 T cells. Immunity, 1995, 2, 249-259.	14.3	61
153	Isoforms of the transmembrane tyrosine phosphatase cd45 differentially affect T cell recognition. Immunity, 1994, 1, 109-119.	14.3	107
154	Human Tissue-Resident Memory T Cells Are Defined by Core Transcriptional and Functional Signatures in Lymphoid and Mucosal Sites. SSRN Electronic Journal, 0, , .	0.4	0