
Christof Holzer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1549419/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TURBOMOLE: Modular program suite for <i>ab initio</i> quantum-chemical and condensed-matter simulations. Journal of Chemical Physics, 2020, 152, 184107.	3.0	616
2	Accuracy Assessment of <i>GW</i> Starting Points for Calculating Molecular Excitation Energies Using the Bethe–Salpeter Formalism. Journal of Chemical Theory and Computation, 2018, 14, 2127-2136.	5.3	74
3	Experimental and Theoretical Determination of Dissociation Energies of Dispersion-Dominated Aromatic Molecular Complexes. Chemical Reviews, 2016, 116, 5614-5641.	47.7	62
4	Ionized, electron-attached, and excited states of molecular systems with spin–orbit coupling: Two-component <i>GW</i> and Bethe–Salpeter implementations. Journal of Chemical Physics, 2019, 150, 204116.	3.0	48
5	An improved seminumerical Coulomb and exchange algorithm for properties and excited states in modern density functional theory. Journal of Chemical Physics, 2020, 153, 184115.	3.0	48
6	The furan microsolvation blind challenge for quantum chemical methods: First steps. Journal of Chemical Physics, 2018, 148, 014301.	3.0	44
7	18-Crown-6 Coordinated Metal Halides with Bright Luminescence and Nonlinear Optical Effects. Journal of the American Chemical Society, 2021, 143, 798-804.	13.7	44
8	Assessing the Accuracy of Local Hybrid Density Functional Approximations for Molecular Response Properties. Journal of Chemical Theory and Computation, 2021, 17, 2928-2947.	5.3	39
9	Quasirelativistic two-component core excitations and polarisabilities from a damped-response formulation of the Bethe–Salpeter equation. Molecular Physics, 2020, 118, e1755064.	1.7	38
10	The first microsolvation step for furans: New experiments and benchmarking strategies. Journal of Chemical Physics, 2020, 152, 164303.	3.0	28
11	Communication: A hybrid Bethe–Salpeter/time-dependent density-functional-theory approach for excitation energies. Journal of Chemical Physics, 2018, 149, 101101.	3.0	27
12	Communication: Symmetry-adapted perturbation theory with intermolecular induction and dispersion energies from the Bethe–Salpeter equation. Journal of Chemical Physics, 2017, 147, 181101.	3.0	25
13	Bethe–Salpeter correlation energies of atoms and molecules. Journal of Chemical Physics, 2018, 149, 144106.	3.0	24
14	Boosting Light Emission from Single Hydrogen Phthalocyanine Molecules by Charging. Nano Letters, 2020, 20, 7600-7605.	9.1	24
15	<i>GW</i> quasiparticle energies of atoms in strong magnetic fields. Journal of Chemical Physics, 2019, 150, 214112.	3.0	21
16	Synthesis of New Donorâ€5ubstituted Biphenyls: Preâ€ligands for Highly Luminescent (C^C^D) Gold(III) Pincer Complexes. Chemistry - A European Journal, 2020, 26, 17156-17164.	3.3	21
17	A local hybrid exchange functional approximation from first principles. Journal of Chemical Physics, 2022, 157, .	3.0	18
18	NMR Coupling Constants Based on the Bethe–Salpeter Equation in the <i>GW</i> Approximation. Journal of Chemical Theory and Computation, 2022, 18, 1030-1045.	5.3	17

CHRISTOF HOLZER

#	Article	IF	CITATIONS
19	Vibrational Coherence Controls Molecular Fragmentation: Ultrafast Photodynamics of the [Ag ₂ Cl] ⁺ Scaffold. Journal of Physical Chemistry Letters, 2018, 9, 804-810.	4.6	14
20	The GW/BSE Method in Magnetic Fields. Frontiers in Chemistry, 2021, 9, 746162.	3.6	14
21	Explicitly Correlated Dispersion and Exchange Dispersion Energies in Symmetry-Adapted Perturbation Theory. Journal of Chemical Theory and Computation, 2019, 15, 5965-5986.	5.3	13
22	A Multiâ€Scale Approach for Modeling the Optical Response of Molecular Materials Inside Cavities. Advanced Materials, 2022, 34, e2200350.	21.0	13
23	Impact of the current density on paramagnetic NMR properties. Journal of Chemical Physics, 2022, 157, .	3.0	13
24	Quasi-relativistic two-component computations of intermolecular dispersion energies. Molecular Physics, 2017, 115, 2775-2781.	1.7	12
25	Linear Response of Current-Dependent Density Functional Approximations in Magnetic Fields. Journal of Physical Chemistry Letters, 2022, 13, 4335-4341.	4.6	11
26	Coordinative Flexibility of a Thiophenolate Oxazoline Ligand in Nickel(II), Palladium(II), and Platinum(II) Complexes. European Journal of Inorganic Chemistry, 2015, 2015, 1569-1578.	2.0	8
27	Mercaptoarylâ€Oxazoline Complexes of Palladium and Their High Activities as Catalysts for Suzuki–Miyaura Coupling Reactions in Water. European Journal of Inorganic Chemistry, 2018, 2018, 568-575.	2.0	8
28	Efficient Calculation of Magnetic Circular Dichroism Spectra Using Spin-Noncollinear Linear-Response Time-Dependent Density Functional Theory in Finite Magnetic Fields. Journal of Chemical Theory and Computation, 2022, 18, 3747-3758.	5.3	7
29	Modeling and measuring plasmonic excitations in hollow spherical gold nanoparticles. Journal of Chemical Physics, 2022, 156, 094103.	3.0	5
30	Multiscale Modeling of Broadband Perfect Absorbers Based on Gold Metallic Molecules. ACS Omega, 0, , .	3.5	3
31	A tetranuclear nickel(II) heterocubane complex of a bidentate N,O-hydroxymethyl-oxazoline ligand. Synthesis, characterization, magnetic measurements and DFT investigations. Journal of Coordination Chemistry, 2016, 69, 433-446.	2.2	2