List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1548668/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Long Noncoding RNA NEAT1-Dependent SFPQ Relocation from Promoter Region to Paraspeckle Mediates IL8 Expression upon Immune Stimuli. Molecular Cell, 2014, 53, 393-406.	9.7	574
2	ldentification of Nafamostat as a Potent Inhibitor of Middle East Respiratory Syndrome Coronavirus S Protein-Mediated Membrane Fusion Using the Split-Protein-Based Cell-Cell Fusion Assay. Antimicrobial Agents and Chemotherapy, 2016, 60, 6532-6539.	3.2	300
3	Construction of an Excisable Bacterial Artificial Chromosome Containing a Full-Length Infectious Clone of Herpes Simplex Virus Type 1: Viruses Reconstituted from the Clone Exhibit Wild-Type Properties In Vitro and In Vivo. Journal of Virology, 2003, 77, 1382-1391.	3.4	270
4	PILRα Is a Herpes Simplex Virus-1 Entry Coreceptor That Associates with Glycoprotein B. Cell, 2008, 132, 935-944.	28.9	264
5	The Anticoagulant Nafamostat Potently Inhibits SARS-CoV-2 S Protein-Mediated Fusion in a Cell Fusion Assay System and Viral Infection In Vitro in a Cell-Type-Dependent Manner. Viruses, 2020, 12, 629.	3.3	232
6	Non-muscle myosin IIA is a functional entry receptor for herpes simplex virus-1. Nature, 2010, 467, 859-862.	27.8	194
7	Interaction of herpes simplex virus 1 alpha regulatory protein ICPO with elongation factor 1delta: ICPO affects translational machinery. Journal of Virology, 1997, 71, 1019-1024.	3.4	180
8	Myelin-associated glycoprotein mediates membrane fusion and entry of neurotropic herpesviruses. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 866-871.	7.1	140
9	Conserved Protein Kinases Encoded by Herpesviruses and Cellular Protein Kinase cdc2 Target the Same Phosphorylation Site in Eukaryotic Elongation Factor 11´. Journal of Virology, 2003, 77, 2359-2368.	3.4	131
10	Simultaneous Tracking of Capsid, Tegument, and Envelope Protein Localization in Living Cells Infected with Triply Fluorescent Herpes Simplex Virus 1. Journal of Virology, 2008, 82, 5198-5211.	3.4	126
11	Identification of Proteins Phosphorylated Directly by the Us3 Protein Kinase Encoded by Herpes Simplex Virus 1. Journal of Virology, 2005, 79, 9325-9331.	3.4	110
12	Herpes Simplex Virus 1 VP22 Inhibits AIM2-Dependent Inflammasome Activation to Enable Efficient Viral Replication. Cell Host and Microbe, 2018, 23, 254-265.e7.	11.0	109
13	Herpes Simplex Virus 1-Encoded Protein Kinase UL13 Phosphorylates Viral Us3 Protein Kinase and Regulates Nuclear Localization of Viral Envelopment Factors UL34 and UL31. Journal of Virology, 2006, 80, 1476-1486.	3.4	104
14	TRAF6 Establishes Innate Immune Responses by Activating NF-κB and IRF7 upon Sensing Cytosolic Viral RNA and DNA. PLoS ONE, 2009, 4, e5674.	2.5	102
15	Selective control of type I IFN induction by the Rac activator DOCK2 during TLR-mediated plasmacytoid dendritic cell activation. Journal of Experimental Medicine, 2010, 207, 721-730.	8.5	100
16	Herpesvirus gB-Induced Fusion between the Virion Envelope and Outer Nuclear Membrane during Virus Egress Is Regulated by the Viral US3 Kinase. Journal of Virology, 2009, 83, 3115-3126.	3.4	91
17	Eukaryotic Elongation Factor 1δ Is Hyperphosphorylated by the Protein Kinase Encoded by the U _L 13 Gene of Herpes Simplex Virus 1. Journal of Virology, 1998, 72, 1731-1736.	3.4	90
18	Protein kinases conserved in herpesviruses potentially share a function mimicking the cellular protein kinase cdc2. Reviews in Medical Virology, 2003, 13, 331-340.	8.3	86

#	Article	IF	CITATIONS
19	ESCRT-III mediates budding across the inner nuclear membrane and regulates its integrity. Nature Communications, 2018, 9, 3379.	12.8	86
20	Interaction of Epstein-Barr Virus Nuclear Antigen Leader Protein (EBNA-LP) with HS1-Associated Protein X-1: Implication of Cytoplasmic Function of EBNA-LP. Journal of Virology, 2000, 74, 10104-10111.	3.4	85
21	Intracellular IL-1Â-binding proteins contribute to biological functions of endogenous IL-1Â in systemic sclerosis fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14501-14506.	7.1	84
22	Cellular Elongation Factor 1l̂´ Is Modified in Cells Infected with Representative Alpha-, Beta-, or Gammaherpesviruses. Journal of Virology, 1999, 73, 4456-4460.	3.4	83
23	Identification of a Physiological Phosphorylation Site of the Herpes Simplex Virus 1-Encoded Protein Kinase Us3 Which Regulates Its Optimal Catalytic Activity In Vitro and Influences Its Function in Infected Cells. Journal of Virology, 2008, 82, 6172-6189.	3.4	81
24	Entry of Herpes Simplex Virus 1 and Other Alphaherpesviruses via the Paired Immunoglobulin-Like Type 2 Receptor α. Journal of Virology, 2009, 83, 4520-4527.	3.4	78
25	ldentification of a feline immunodeficiency virus gene which is essential for cell-free virus infectivity. Journal of Virology, 1992, 66, 6181-6185.	3.4	77
26	Herpes Simplex Virus 1 Protein Kinase Us3 Phosphorylates Viral Envelope Glycoprotein B and Regulates Its Expression on the Cell Surface. Journal of Virology, 2009, 83, 250-261.	3.4	73
27	Epstein-Barr Virus Protein Kinase BGLF4 Is a Virion Tegument Protein That Dissociates from Virions in a Phosphorylation-Dependent Process and Phosphorylates the Viral Immediate-Early Protein BZLF1. Journal of Virology, 2006, 80, 5125-5134.	3.4	69
28	Epstein–Barr virus-encoded protein kinase BGLF4 mediates hyperphosphorylation of cellular elongation factor 1δ (EF-1δ): EF-1δ is universally modified by conserved protein kinases of herpesviruses in mammalian cells. Journal of General Virology, 2001, 82, 1457-1463.	2.9	69
29	Herpes Simplex Virus 1 UL47 Interacts with Viral Nuclear Egress Factors UL31, UL34, and Us3 and Regulates Viral Nuclear Egress. Journal of Virology, 2014, 88, 4657-4667.	3.4	64
30	A single amino acid substitution in the cyclin D binding domain of the infected cell protein no. 0 abrogates the neuroinvasiveness of herpes simplex virus without affecting its ability to replicate. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 8184-8189.	7.1	63
31	The genome of feline immunodeficiency virus. Archives of Virology, 1994, 134, 221-234.	2.1	60
32	Herpes Simplex Virus Type 1 UL51 Protein Is Involved in Maturation and Egress of Virus Particles. Journal of Virology, 2005, 79, 6947-6956.	3.4	60
33	Herpes simplex virus 1 alpha regulatory protein ICPO functionally interacts with cellular transcription factor BMAL1. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 1877-1882.	7.1	59
34	Identification of protein kinases responsible for phosphorylation of Epstein–Barr virus nuclear antigen leader protein at serine-35, which regulates its coactivator function. Journal of General Virology, 2003, 84, 3381-3392.	2.9	58
35	Role of Herpes Simplex Virus 1 Immediate Early Protein ICP22 in Viral Nuclear Egress. Journal of Virology, 2014, 88, 7445-7454.	3.4	58
36	Development of an Effective Polyvalent Vaccine against both Marek's and Newcastle Diseases Based on Recombinant Marek's Disease Virus Type 1 in Commercial Chickens with Maternal Antibodies. Journal of Virology, 2000, 74, 3217-3226.	3.4	57

#	Article	IF	CITATIONS
37	Phosphorylation of MCM4 at Sites Inactivating DNA Helicase Activity of the MCM4-MCM6-MCM7 Complex during Epstein-Barr Virus Productive Replication. Journal of Virology, 2006, 80, 10064-10072.	3.4	55
38	Binding of Herpes Simplex Virus Glycoprotein B (gB) to Paired Immunoglobulin-Like Type 2 Receptor α Depends on Specific Sialylated O <i>-</i> Linked Glycans on gB. Journal of Virology, 2009, 83, 13042-13045.	3.4	55
39	Role of Host Cell p32 in Herpes Simplex Virus 1 De-Envelopment during Viral Nuclear Egress. Journal of Virology, 2015, 89, 8982-8998.	3.4	55
40	Possible role of macrophage-derived soluble mediators in the pathogenesis of encephalomyocarditis virus-induced diabetes in mice. Journal of Virology, 1997, 71, 4024-4031.	3.4	55
41	Herpes simplex virus type 2 membrane protein UL56 associates with the kinesin motor protein KIF1A. Journal of General Virology, 2005, 86, 527-533.	2.9	54
42	Characterization of an integrase mutant of feline immunodeficiency virus. Archives of Virology, 1998, 143, 1-14.	2.1	53
43	Roles of p53 in Herpes Simplex Virus 1 Replication. Journal of Virology, 2013, 87, 9323-9332.	3.4	53
44	The Herpes Simplex Virus 2 UL21 Protein Is Essential for Virus Propagation. Journal of Virology, 2013, 87, 5904-5915.	3.4	52
45	Combating herpesvirus encephalitis by potentiating a TLR3–mTORC2 axis. Nature Immunology, 2018, 19, 1071-1082.	14.5	52
46	Differences in the Regulatory and Functional Effects of the Us3 Protein Kinase Activities of Herpes Simplex Virus 1 and 2. Journal of Virology, 2009, 83, 11624-11634.	3.4	51
47	Anterograde Transport of Herpes Simplex Virus Capsids in Neurons by both Separate and Married Mechanisms. Journal of Virology, 2011, 85, 5919-5928.	3.4	51
48	Regulation of the Catalytic Activity of Herpes Simplex Virus 1 Protein Kinase Us3 by Autophosphorylation and Its Role in Pathogenesis. Journal of Virology, 2009, 83, 5773-5783.	3.4	50
49	Complete fusion of a transposon and herpesvirus created the Teratorn mobile element in medaka fish. Nature Communications, 2017, 8, 551.	12.8	49
50	Localization of the viral antigen of feline immunodeficiency virus in the lymph nodes of cats at the early stage of infection. Archives of Virology, 1993, 131, 335-347.	2.1	47
51	Formation of aggresome-like structures in herpes simplex virus type 2-infected cells and a potential role in virus assembly. Experimental Cell Research, 2004, 299, 486-497.	2.6	47
52	The role of protein kinase activity expressed by the UL13 gene of herpes simplex virus 1: The activity is not essential for optimal expression of UL41 and ICP0. Virology, 2005, 341, 301-312.	2.4	47
53	Epsteinâ€Barr Virus (EBV) Nuclear Antigen Leader Protein (EBNAâ€LP) Forms Complexes with a Cellular Antiâ€Apoptosis Protein Bclâ€2 or Its EBV Counterpart BHRF1 through HS1â€Associated Protein Xâ€1. Microbiology and Immunology, 2003, 47, 91-99.	1.4	46
54	Identification of Major Phosphorylation Sites of Epstein-Barr Virus Nuclear Antigen Leader Protein (EBNA-LP): Ability of EBNA-LP To Induce Latent Membrane Protein 1 Cooperatively with EBNA-2 Is Regulated by Phosphorylation. Journal of Virology, 2001, 75, 5119-5128.	3.4	45

#	Article	IF	CITATIONS
55	Cell lines that support replication of a novel herpes simplex virus 1 UL31 deletion mutant can properly target UL34 protein to the nuclear rim in the absence of UL31. Virology, 2004, 329, 68-76.	2.4	44
56	Herpesvirus protein ICP27 switches PML isoform by altering mRNA splicing. Nucleic Acids Research, 2009, 37, 6515-6527.	14.5	44
57	Herpes Simplex Virus 1 VP22 Regulates Translocation of Multiple Viral and Cellular Proteins and Promotes Neurovirulence. Journal of Virology, 2012, 86, 5264-5277.	3.4	43
58	A silkworm–baculovirus model for assessing the therapeutic effects of antiviral compounds: characterization and application to the isolation of antivirals from traditional medicines. Journal of General Virology, 2008, 89, 188-194.	2.9	42
59	Herpes Simplex Virus 1 Protein Kinase Us3 and Major Tegument Protein UL47 Reciprocally Regulate Their Subcellular Localization in Infected Cells. Journal of Virology, 2011, 85, 9599-9613.	3.4	42
60	Roles of the auxiliary genes and AP-1 binding site in the long terminal repeat of feline immunodeficiency virus in the early stage of infection in cats. Journal of Virology, 1996, 70, 8518-8526.	3.4	41
61	Antigenic analysis of feline calicivirus capsid precursor protein and its deleted polypeptides produced in a mammalian cDNA expression system. Virus Research, 1993, 30, 17-26.	2.2	40
62	Identification of proteins directly phosphorylated by UL13 protein kinase from herpes simplex virus 1. Microbes and Infection, 2007, 9, 1434-1438.	1.9	40
63	APOBEC1-Mediated Editing and Attenuation of Herpes Simplex Virus 1 DNA Indicate That Neurons Have an Antiviral Role during Herpes Simplex Encephalitis. Journal of Virology, 2011, 85, 9726-9736.	3.4	40
64	Feline CD 4 molecules expressed on feline non-lymphoid cell lines are not enough for productive infection of highly lymphotropic feline immunodeficiency virus isolates. Archives of Virology, 1993, 130, 171-178.	2.1	39
65	Nucleolin Is Required for Efficient Nuclear Egress of Herpes Simplex Virus Type 1 Nucleocapsids. Journal of Virology, 2010, 84, 2110-2121.	3.4	39
66	Us3 Kinase Encoded by Herpes Simplex Virus 1 Mediates Downregulation of Cell Surface Major Histocompatibility Complex Class I and Evasion of CD8+ T Cells. PLoS ONE, 2013, 8, e72050.	2.5	38
67	Construction of recombinant herpes simplex virus type I expressing green fluorescent protein without loss of any viral genes. Microbes and Infection, 2004, 6, 485-493.	1.9	37
68	The product of the Herpes simplex virus 1 UL7 gene interacts with a mitochondrial protein, adenine nucleotide translocator 2. Virology Journal, 2008, 5, 125.	3.4	36
69	Herpes Simplex Virus 1 Recruits CD98 Heavy Chain and β1 Integrin to the Nuclear Membrane for Viral De-Envelopment. Journal of Virology, 2015, 89, 7799-7812.	3.4	36
70	Vaginal Memory T Cells Induced by Intranasal Vaccination Are Critical for Protective T Cell Recruitment and Prevention of Genital HSV-2 Disease. Journal of Virology, 2014, 88, 13699-13708.	3.4	34
71	Herpes Simplex Virus 1 Protein Kinase Us3 Phosphorylates Viral dUTPase and Regulates Its Catalytic Activity in Infected Cells. Journal of Virology, 2014, 88, 655-666.	3.4	34
72	Sequences within the feline immunodeficiency virus long terminal repeat that regulate gene expression and respond to activation by feline herpesvirus type 1. Virology, 1992, 190, 465-468.	2.4	33

#	Article	IF	CITATIONS
73	A Single-Amino-Acid Substitution in Herpes Simplex Virus 1 Envelope Glycoprotein B at a Site Required for Binding to the Paired Immunoglobulin-Like Type 2 Receptor α (PILRα) Abrogates PILRα-Dependent Viral Entry and Reduces Pathogenesis. Journal of Virology, 2010, 84, 10773-10783.	3.4	33
74	Effects of Phosphorylation of Herpes Simplex Virus 1 Envelope Glycoprotein B by Us3 Kinase In Vivo and In Vitro. Journal of Virology, 2010, 84, 153-162.	3.4	32
75	Identification of the Capsid Binding Site in the Herpes Simplex Virus 1 Nuclear Egress Complex and Its Role in Viral Primary Envelopment and Replication. Journal of Virology, 2019, 93, .	3.4	32
76	Herpes simplex virus-1 evasion of CD8+ T cell accumulation contributes to viral encephalitis. Journal of Clinical Investigation, 2017, 127, 3784-3795.	8.2	32
77	Role of the Herpes Simplex Virus 1 Us3 Kinase Phosphorylation Site and Endocytosis Motifs in the Intracellular Transport and Neurovirulence of Envelope Glycoprotein B. Journal of Virology, 2011, 85, 5003-5015.	3.4	31
78	Nonmuscle Myosin Heavy Chain IIB Mediates Herpes Simplex Virus 1 Entry. Journal of Virology, 2015, 89, 1879-1888.	3.4	31
79	BI-2536 and BI-6727, dual Polo-like kinase/bromodomain inhibitors, effectively reactivate latent HIV-1. Scientific Reports, 2018, 8, 3521.	3.3	30
80	Discovery of New Fusion Inhibitor Peptides against SARS-CoV-2 by Targeting the Spike S2 Subunit. Biomolecules and Therapeutics, 2021, 29, 282-289.	2.4	30
81	Existence of feline immunodeficiency virus infection in Japanese cat population since 1968 Nihon Juigaku Zasshi, 1990, 52, 891-893.	0.3	29
82	A gD Homologous Gene of Feline Herpesvirus Type I Encodes a Hemagglutinin (gp60). Virology, 1994, 202, 1034-1038.	2.4	29
83	Cell–cell and virus–cell fusion assay–based analyses of alanine insertion mutants in the distal α9 portion of the JRFL gp41 subunit from HIV-1. Journal of Biological Chemistry, 2019, 294, 5677-5687.	3.4	29
84	Influenza Virus-Induced Oxidized DNA Activates Inflammasomes. IScience, 2020, 23, 101270.	4.1	29
85	Heterogeneity of feline herpesvirus type 1 strains. Archives of Virology, 1992, 126, 283-292.	2.1	28
86	Pathogenicity and vaccine efficacy of a thymidine kinase-deficient mutant of feline herpesvirus type 1 in cats. Archives of Virology, 1996, 141, 481-494.	2.1	28
87	Enhanced Phosphorylation of Transcription Factor Sp1 in Response to Herpes Simplex Virus Type 1 Infection Is Dependent on the Ataxia Telangiectasia-Mutated Protein. Journal of Virology, 2007, 81, 9653-9664.	3.4	28
88	Truncated Form of the Epstein-Barr Virus Protein EBNA-LP Protects against Caspase-Dependent Apoptosis by Inhibiting Protein Phosphatase 2A. Journal of Virology, 2007, 81, 7598-7607.	3.4	28
89	Herpes simplex virus protein UL11 but not UL51 is associated with lipid rafts. Virus Genes, 2007, 35, 571-575.	1.6	28
90	Primary target cells of herpes simplex virus type 1 in the hippocampus. Microbes and Infection, 2008, 10, 1514-1523.	1.9	28

Үаѕиѕні Каwасисні

#	Article	IF	CITATIONS
91	Identification and nucleotide sequence of a gene in feline herpesvirus type 1 homologous to the herpes simplex virus gene encoding the glycoprotein B. Archives of Virology, 1992, 127, 387-397.	2.1	27
92	A comprehensive library of mutations of Epstein–Barr virus. Journal of General Virology, 2007, 88, 2463-2472.	2.9	27
93	Roles of the Interhexamer Contact Site for Hexagonal Lattice Formation of the Herpes Simplex Virus 1 Nuclear Egress Complex in Viral Primary Envelopment and Replication. Journal of Virology, 2019, 93, .	3.4	27
94	Activation of feline immunodeficiency virus long terminal repeat by feline herpesvirus type 1. Virology, 1991, 184, 449-454.	2.4	26
95	Identification and nucleotide sequence of a gene in feline herpesvirus type 1 homologous to the herpes simplex virus gene encoding the glycoprotein H. Archives of Virology, 1993, 132, 183-191.	2.1	26
96	Us3 Protein Kinase Encoded by HSV: The Precise Function and Mechanism on Viral Life Cycle. Advances in Experimental Medicine and Biology, 2018, 1045, 45-62.	1.6	26
97	Roles of the Phosphorylation of Herpes Simplex Virus 1 UL51 at a Specific Site in Viral Replication and Pathogenicity. Journal of Virology, 2018, 92, .	3.4	25
98	The Interaction between Herpes Simplex Virus 1 Tegument Proteins UL51 and UL14 and Its Role in Virion Morphogenesis. Journal of Virology, 2016, 90, 8754-8767.	3.4	24
99	Replicative difference in early-passage feline brain cells among feline immunodeficiency virus isolates. Archives of Virology, 1992, 125, 347-354.	2.1	23
100	The Molecular Cloning and Sequence of an Open Reading Frame Encoding for Non-Structural Proteins of Feline Calicivirus F4 Strain Isolated in Japan Journal of Veterinary Medical Science, 1994, 56, 1093-1099.	0.9	23
101	Association of Two Membrane Proteins Encoded by Herpes Simplex Virus Type 2, UL11 and UL56. Virus Genes, 2006, 32, 153-163.	1.6	23
102	Neurocognitive Impairment in Corticosteroid-naive Patients with Active Systemic Lupus Erythematosus: A Prospective Study. Journal of Rheumatology, 2015, 42, 441-448.	2.0	23
103	The Role of HSV Glycoproteins in Mediating Cell Entry. Advances in Experimental Medicine and Biology, 2018, 1045, 3-21.	1.6	23
104	Metalloproteinase-Dependent and TMPRSS2-Independent Cell Surface Entry Pathway of SARS-CoV-2 Requires the Furin Cleavage Site and the S2 Domain of Spike Protein. MBio, 2022, 13, .	4.1	23
105	Nucleotide Sequence Analysis of Marek's Disease Virus (MDV) Serotype 2 Homolog of MDV Serotype 1 pp38, an Antigen Associated with Transformed Cells. Virology, 1994, 201, 142-146.	2.4	22
106	The bi-directional transcriptional promoters for the latency-relating transcripts of the pp38/pp24 mRNAs and the 1.8 kb-mRNA in the long inverted repeats of Marek's disease virus serotype 1 DNA are regulated by common promoter-specific enhancers. Archives of Virology, 1999, 144, 1893-1907.	2.1	22
107	The Conserved Domain CR2 of Epstein–Barr Virus Nuclear Antigen Leader Protein Is Responsible Not Only for Nuclear Matrix Association but Also for Nuclear Localization. Virology, 2001, 279, 401-413.	2.4	22
108	Novel SR-rich-related Protein Clasp Specifically Interacts with Inactivated Clk4 and Induces the Exon EB Inclusion of Clk. Journal of Biological Chemistry, 2002, 277, 44220-44228.	3.4	22

#	Article	IF	CITATIONS
109	Epstein-Barr Virus Nuclear Antigen Leader Protein Induces Expression of Thymus- and Activation-Regulated Chemokine in B Cells. Journal of Virology, 2004, 78, 3984-3993.	3.4	22
110	Phosphorylation of Herpes Simplex Virus 1 dUTPase Upregulated Viral dUTPase Activity To Compensate for Low Cellular dUTPase Activity for Efficient Viral Replication. Journal of Virology, 2014, 88, 7776-7785.	3.4	22
111	Phosphorylation of a Herpes Simplex Virus 1 dUTPase by a Viral Protein Kinase, Us3, Dictates Viral Pathogenicity in the Central Nervous System but Not at the Periphery. Journal of Virology, 2014, 88, 2775-2785.	3.4	22
112	Restriction endonuclease analysis of field isolates of feline herpesvirus type 1 and identification of heterogeneous regions. Journal of Clinical Microbiology, 1995, 33, 217-221.	3.9	22
113	Comparison of the Rev Transactivation of Feline Immunodeficiency Virus in Feline and Non-Feline Cell Lines Journal of Veterinary Medical Science, 1994, 56, 199-201.	0.9	21
114	Quantification of feline immunodeficiency virus in a newly established feline T-lymphoblastoid cell line (MYA-1 cells). Archives of Virology, 1990, 111, 269-273.	2.1	20
115	US3 protein kinase of herpes simplex virus type 2 is required for the stability of the UL46-encoded tegument protein and its association with virus particles. Journal of General Virology, 2005, 86, 1979-1985.	2.9	20
116	Role of the Immunoreceptor Tyrosine-Based Activation Motif of Latent Membrane Protein 2A (LMP2A) in Epstein-Barr Virus LMP2A-Induced Cell Transformation. Journal of Virology, 2014, 88, 5189-5194.	3.4	19
117	Herpes Simplex Virus 1 UL34 Protein Regulates the Global Architecture of the Endoplasmic Reticulum in Infected Cells. Journal of Virology, 2017, 91, .	3.4	19
118	Comparative Functional Analysis of the Various Lentivirus Long Terminal Repeats in Human Colon Carcinoma Cell Line (SW480 Cells) and Feline Renal Cell Line (CRFK Cells) Journal of Veterinary Medical Science, 1994, 56, 895-899.	0.9	18
119	Phylogenetic analysis of the long terminal repeat of feline immunodeficiency viruses from Japan, Argentina and Australia. Archives of Virology, 1995, 140, 41-52.	2.1	18
120	The C/EBP Site in the Feline Immunodeficiency Virus (FIV) Long Terminal Repeat (LTR) Is Necessary for Its Efficient Replication and Is Also Involved in the Inhibition of FIV LTR-Directed Gene Expression by Pseudorabies Virus ICP4. Virology, 1995, 208, 492-499.	2.4	18
121	Sequence variations of Epstein-Barr virus LMP2A gene in gastric carcinoma in Japan. Virus Genes, 1999, 19, 103-111.	1.6	18
122	Identification of a herpes simplex virus 1 gene encoding neurovirulence factor by chemical proteomics. Nature Communications, 2020, 11, 4894.	12.8	18
123	Construction of the Recombinant Feline Herpesvirus Type 1 Deleted Thymidine Kinase Gene Journal of Veterinary Medical Science, 1995, 57, 709-714.	0.9	17
124	Expression and properties of feline herpesvirus type 1 gD (hemagglutinin) by a recombinant baculovirus. Virus Research, 1996, 46, 75-80.	2.2	17
125	Microarray analysis of transcriptional responses to infection by herpes simplex virus types 1 and 2 and their US3-deficient mutants. Microbes and Infection, 2008, 10, 405-413.	1.9	17
126	Characterization of a thymidine kinase-deficient mutant of equine herpesvirus 4 and in vitro susceptibility of the virus to antiviral agents. Antiviral Research, 2010, 85, 389-395.	4.1	17

#	Article	IF	CITATIONS
127	p53 Is a Host Cell Regulator during Herpes Simplex Encephalitis. Journal of Virology, 2016, 90, 6738-6745.	3.4	17
128	Cellular Transcriptional Coactivator RanBP10 and Herpes Simplex Virus 1 ICP0 Interact and Synergistically Promote Viral Gene Expression and Replication. Journal of Virology, 2016, 90, 3173-3186.	3.4	17
129	Molecular Interactions Between Retroviruses and Herpesviruses Journal of Veterinary Medical Science, 1995, 57, 801-811.	0.9	16
130	Physical interaction of Epstein–Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) with human oestrogen-related receptor 1 (hERR1): hERR1 interacts with a conserved domain of EBNA-LP that is critical for EBV-induced B-cell immortalization. Journal of General Virology, 2003, 84, 319-327.	2.9	16
131	Nucleotide Sequence and Characterization of the Feline Herpesvirus Type 1 Immediate Early Gene. Virology, 1994, 204, 430-435.	2.4	15
132	Conserved Region CR2 of Epstein-Barr Virus Nuclear Antigen Leader Protein Is a Multifunctional Domain That Mediates Self-Association as well as Nuclear Localization and Nuclear Matrix Association. Journal of Virology, 2002, 76, 1025-1032.	3.4	15
133	Epstein–Barr virus protein kinase BGLF4 interacts with viral transactivator BZLF1 and regulates its transactivation activity. Journal of General Virology, 2009, 90, 1575-1581.	2.9	15
134	Multiple Roles of the Cytoplasmic Domain of Herpes Simplex Virus 1 Envelope Glycoprotein D in Infected Cells. Journal of Virology, 2016, 90, 10170-10181.	3.4	15
135	Role of the Arginine Cluster in the Disordered Domain of Herpes Simplex Virus 1 UL34 for the Recruitment of ESCRT-III for Viral Primary Envelopment. Journal of Virology, 2022, 96, JVI0170421.	3.4	15
136	Comparisons among Feline Herpesvirus Type 1 Isolates by Immunoblot Analysis Journal of Veterinary Medical Science, 1995, 57, 147-150.	0.9	14
137	Identification of multiple sites suitable for insertion of foreign genes in herpes simplex virus genomes. Microbiology and Immunology, 2009, 53, 155-161.	1.4	14
138	Expression and identification of the feline herpesvirus type 1 glycoprotein B (gp143/108). Virus Research, 1995, 39, 55-61.	2.2	13
139	Role of the Nuclease Activities Encoded by Herpes Simplex Virus 1 UL12 in Viral Replication and Neurovirulence. Journal of Virology, 2014, 88, 2359-2364.	3.4	13
140	Characterization of a Herpes Simplex Virus 1 (HSV-1) Chimera in Which the Us3 Protein Kinase Gene Is Replaced with the HSV-2 Us3 Gene. Journal of Virology, 2016, 90, 457-473.	3.4	13
141	Role of Phosphatidylethanolamine Biosynthesis in Herpes Simplex Virus 1-Infected Cells in Progeny Virus Morphogenesis in the Cytoplasm and in Viral Pathogenicity <i>In Vivo</i> . Journal of Virology, 2020, 94, .	3.4	13
142	Evasion of the Cell-Mediated Immune Response by Alphaherpesviruses. Viruses, 2020, 12, 1354.	3.3	13
143	Cochlear supporting cells function as macrophage-like cells and protect audiosensory receptor hair cells from pathogens. Scientific Reports, 2020, 10, 6740.	3.3	13
144	Nucleotide Sequence of the Glycoprotein C(gC) Homologous Gene of Marek's Disease Virus(MDV) Serotype 2 and Comparison of gC Homologous Genes among Three Serotypes of MDV Journal of Veterinary Medical Science, 1993, 55, 985-990.	0.9	12

#	Article	IF	CITATIONS
145	Role of herpes simplex virus 1 Us3 in viral neuroinvasiveness. Microbiology and Immunology, 2014, 58, 31-37.	1.4	12
146	Phosphorylation of Herpes Simplex Virus 1 dUTPase Regulates Viral Virulence and Genome Integrity by Compensating for Low Cellular dUTPase Activity in the Central Nervous System. Journal of Virology, 2015, 89, 241-248.	3.4	12
147	ESCRT-III controls nuclear envelope deformation induced by progerin. Scientific Reports, 2020, 10, 18877.	3.3	12
148	Establishment of Carrier-State Infection of a Feline Renal Cell Line with Feline Syncytial Virus Journal of Veterinary Medical Science, 1995, 57, 65-69.	0.9	11
149	Detection of Marek's Disease Virus Serotype 1(MDV1) Glycoprotein D in MDV1-Infected Chick Embryo Fibroblasts Journal of Veterinary Medical Science, 1996, 58, 777-780.	0.9	11
150	Construction of an infectious clone of canine herpesvirus genome as a bacterial artificial chromosome. Microbes and Infection, 2006, 8, 1054-1063.	1.9	11
151	The UL12 Protein of Herpes Simplex Virus 1 Is Regulated by Tyrosine Phosphorylation. Journal of Virology, 2014, 88, 10624-10634.	3.4	11
152	Herpes Simplex Virus 1 Small Capsomere-Interacting Protein VP26 Regulates Nucleocapsid Maturation. Journal of Virology, 2017, 91, .	3.4	11
153	Regulation of Herpes Simplex Virus 2 Protein Kinase UL13 by Phosphorylation and Its Role in Viral Pathogenesis. Journal of Virology, 2018, 92, .	3.4	11
154	Long noncoding RNA U90926 is crucial for herpes simplex virus type 1 proliferation in murine retinal photoreceptor cells. Scientific Reports, 2020, 10, 19406.	3.3	11
155	Prohibitin-1 Contributes to Cell-to-Cell Transmission of Herpes Simplex Virus 1 via the MAPK/ERK Signaling Pathway. Journal of Virology, 2021, 95, .	3.4	10
156	Discovery of New Potent anti-MERS CoV Fusion Inhibitors. Frontiers in Pharmacology, 2021, 12, 685161.	3.5	10
157	Continuous production of feline immunodeficiency virus in a feline T-lymphoblastoid cell line (MYA-1) Tj ETQq1 1	0.784314	rgBT /Overlo
158	Adhesion of Insect Cells Expressing the Feline Herpesvirus Type 1 Hemagglutinin(gD) to Feline Cell Lines Journal of Veterinary Medical Science, 1997, 59, 217-219.	0.9	9
159	Function of the Herpes Simplex Virus 1 Small Capsid Protein VP26 Is Regulated by Phosphorylation at a Specific Site. Journal of Virology, 2015, 89, 6141-6147.	3.4	9
160	Roles of Us8A and Its Phosphorylation Mediated by Us3 in Herpes Simplex Virus 1 Pathogenesis. Journal of Virology, 2016, 90, 5622-5635.	3.4	9
161	Preparation of monoclonal antibodies against Marek's disease virus serotype 1 glycoprotein D expressed by a recombinant baculovirus. Virus Research, 1995, 38, 219-230.	2.2	8
162	Regulatory properties of the integrated long terminal repeat of the feline immunodeficiency virus. Virus Research, 1996, 41, 201-207.	2.2	8

#	Article	IF	CITATIONS
163	Persistence of High Virus Neutralizing Antibody Titers in Cats Experimentally Infected with Feline Immunodeficiency Virus Journal of Veterinary Medical Science, 1996, 58, 925-927.	0.9	8
164	Identification and characterization of Marek's disease virus serotype 1 (MDV1) ICP22 gene product: MDV1 ICP22 transactivates the MDV1 ICP27 promoter synergistically with MDV1 ICP4. Veterinary Microbiology, 2002, 85, 305-313.	1.9	8
165	Ubiquitin-specific protease 9X in host cells interacts with herpes simplex virus 1 ICPO. Journal of Veterinary Medical Science, 2016, 78, 405-410.	0.9	8
166	The Antimalarial Compound Atovaquone Inhibits Zika and Dengue Virus Infection by Blocking E Protein-Mediated Membrane Fusion. Viruses, 2020, 12, 1475.	3.3	8
167	Endothelial expression of human amyloid precursor protein leads to amyloid β in the blood and induces cerebral amyloid angiopathy in knock-in mice. Journal of Biological Chemistry, 2022, 298, 101880.	3.4	8
168	Replication of Feline Herpesvirus Type 1 in Feline T-lymphoblastoid Cells Journal of Veterinary Medical Science, 1991, 53, 503-505.	0.9	7
169	Carrier-state infection of feline T-lymphoblastoid cells with feline calicivirus. Veterinary Microbiology, 1994, 40, 379-386.	1.9	7
170	Expression of Marek's disease virus (MDV) serotype 2 gene which has partial homology with MDV serotype 1 pp38 gene. Virus Research, 1995, 35, 223-229.	2.2	7
171	Protection studies against Marek's disease using baculovirusâ€expressed glycoproteins B and C of Marek's disease virus type 1. Avian Pathology, 1996, 25, 5-24.	2.0	7
172	Development of a Monoclonal Antibody against Epsteinâ€Barr Virus Nuclear Antigen Leader Protein (EBNAâ€LP) That Can Detect EBNAâ€LP Expressed in P3HR1 Cells. Microbiology and Immunology, 2005, 49, 477-483.	1.4	7
173	A role for the CCR5–CCL5 interaction in the preferential migration of HSV-2-specific effector cells to the vaginal mucosa upon nasal immunization. Mucosal Immunology, 2019, 12, 1391-1403.	6.0	7
174	Role of the DNA Binding Activity of Herpes Simplex Virus 1 VP22 in Evading AIM2-Dependent Inflammasome Activation Induced by the Virus. Journal of Virology, 2021, 95, .	3.4	7
175	Characterization of Canine Herpesvirus Glycoprotein D (Hemagglutinin) Journal of Veterinary Medical Science, 1997, 59, 1003-1009.	0.9	6
176	Comparison of the Viral Promoter Activities in Feline Cell Lines(CRFK and fcwf-4 Cells) Journal of Veterinary Medical Science, 1992, 54, 189-191.	0.9	5
177	Effects of insertion of multiple AP-1 binding sites into the U3 region of the long terminal repeat of feline immunodeficiency virus. Archives of Virology, 1994, 139, 37-48.	2.1	5
178	Characterization of the Feline Herpesvirus Type 1 Immediate Early Gene Expression Journal of Veterinary Medical Science, 1996, 58, 715-721.	0.9	5
179	Molecular cloning of the feline CD8βâ€chain. Immunology, 1996, 89, 84-88.	4.4	5
180	The Feline Herpesvirus Type 1 ICP4 Down-Regulates Feline Immunodeficiency Virus Long Terminal Repeat(LTR)-Directed Gene Expression Via the C/EBP Site in the LTR Journal of Veterinary Medical Science, 1995, 57, 1129-1131.	0.9	4

#	Article	IF	CITATIONS
181	Expression of the feline herpesvirus type 1 ICP4 gene is controlled by two alternative promoters. Archives of Virology, 1997, 142, 239-253.	2.1	4
182	Analysis of herpesvirus host specificity determinants using herpesvirus genomes as bacterial artificial chromosomes. Microbiology and Immunology, 2009, 53, 433-441.	1.4	4
183	Us3, a Multifunctional Protein Kinase Encoded by Herpes Simplex Virus 1. Cornea, 2013, 32, S22-S27.	1.7	4
184	Interactome analysis of herpes simplex virus 1 envelope glycoprotein H. Microbiology and Immunology, 2015, 59, 331-337.	1.4	4
185	Six-helix bundle completion in the distal C-terminal heptad repeat region of gp41 is required for efficient human immunodeficiency virus type 1 infection. Retrovirology, 2018, 15, 27.	2.0	4
186	Neo-virology: The raison d'etre of viruses. Virus Research, 2019, 274, 197751.	2.2	4
187	Phosphoregulation of a Conserved Herpesvirus Tegument Protein by a Virally Encoded Protein Kinase in Viral Pathogenicity and Potential Linkage between Its Evolution and Viral Phylogeny. Journal of Virology, 2020, 94, .	3.4	4
188	The effects of treatment with chemical agents or infection with feline viruses on protein-binding properties of the feline immunodeficiency virus long terminal repeat. Virus Research, 1997, 51, 203-212.	2.2	3
189	Rapid Screening by Cell-Based Fusion Assay for Identifying Novel Antivirals of Glycoprotein B-Mediated Herpes Simplex Virus Type 1 Infection. Biological and Pharmaceutical Bulletin, 2016, 39, 1897-1902.	1.4	3
190	2016 International meeting of the Global Virus Network. Antiviral Research, 2017, 142, 21-29.	4.1	3
191	Prolonged high-intensity exercise induces fluctuating immune responses to herpes simplex virus infection via glucocorticoids. Journal of Allergy and Clinical Immunology, 2021, 148, 1575-1588.e7.	2.9	3
192	Virus-infection in cochlear supporting cells induces audiosensory receptor hair cell death by TRAIL-induced necroptosis. PLoS ONE, 2021, 16, e0260443.	2.5	3
193	Stable Expression of the cDNA Encoding the Feline CD8.ALPHA. Gene Journal of Veterinary Medical Science, 1994, 56, 1001-1003.	0.9	1
194	Role of the Orphan Transporter SLC35E1 in the Nuclear Egress of Herpes Simplex Virus 1. Journal of Virology, 2022, , e0030622.	3.4	1
195	Bacterial artificial chromosome-based reverse genetics system for cloning and manipulation of the full-length genome of infectious bronchitis virus. Current Research in Microbial Sciences, 2022, , 100155.	2.3	1
196	ãf~ãf«ãfšã,¹ã,¦ã,∰f«ã,¹éŧä¹⁄4å発ç¾å^¶å¾jå›åã®æ©Ÿèf¹⁄2ç™ºç¾æ©Ÿæ§‹ã®è§£æ~Ž. Uirusu, 2002, 52, 207-2	216.1	0