Yasushi Kawaguchi

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/1548668/publications.pdf
Version: 2024-02-01

\#	Article	IF	Citations
1	Long Noncoding RNA NEAT1-Dependent SFPQ Relocation from Promoter Region to Paraspeckle Mediates IL8 Expression upon Immune Stimuli. Molecular Cell, 2014, 53, 393-406.	4.5	574
2	Identification of Nafamostat as a Potent Inhibitor of Middle East Respiratory Syndrome Coronavirus S Protein-Mediated Membrane Fusion Using the Split-Protein-Based Cell-Cell Fusion Assay. Antimicrobial Agents and Chemotherapy, 2016, 60, 6532-6539.	1.4	300
3	Construction of an Excisable Bacterial Artificial Chromosome Containing a Full-Length Infectious Clone of Herpes Simplex Virus Type 1: Viruses Reconstituted from the Clone Exhibit Wild-Type Properties In Vitro and In Vivo. Journal of Virology, 2003, 77, 1382-1391.	1.5	270
4	PILRî Is a Herpes Simplex Virus-1 Entry Coreceptor That Associates with Glycoprotein B. Cell, 2008, 132, 935-944.	13.5	264
5	The Anticoagulant Nafamostat Potently Inhibits SARS-CoV-2 S Protein-Mediated Fusion in a Cell Fusion Assay System and Viral Infection In Vitro in a Cell-Type-Dependent Manner. Viruses, 2020, 12, 629.	1.5	232
6	Non-muscle myosin IIA is a functional entry receptor for herpes simplex virus-1. Nature, 2010, 467, 859-862.	13.7	194
7	Interaction of herpes simplex virus 1 alpha regulatory protein ICPO with elongation factor 1delta: ICP0 affects translational machinery. Journal of Virology, 1997, 71, 1019-1024.	1.5	180
8	Myelin-associated glycoprotein mediates membrane fusion and entry of neurotropic herpesviruses. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 866-871.	3.3	140
9	Conserved Protein Kinases Encoded by Herpesviruses and Cellular Protein Kinase cdc2 Target the Same Phosphorylation Site in Eukaryotic Elongation Factor lî́. Journal of Virology, 2003, 77, 2359-2368.	1.5	131
10	Simultaneous Tracking of Capsid, Tegument, and Envelope Protein Localization in Living Cells Infected with Triply Fluorescent Herpes Simplex Virus 1. Journal of Virology, 2008, 82, 5198-5211.	1.5	126
11	Identification of Proteins Phosphorylated Directly by the Us3 Protein Kinase Encoded by Herpes Simplex Virus 1. Journal of Virology, 2005, 79, 9325-9331.	1.5	110
12	Herpes Simplex Virus 1 VP22 Inhibits AIM2-Dependent Inflammasome Activation to Enable Efficient Viral Replication. Cell Host and Microbe, 2018, 23, 254-265.e7.	5.1	109
13	Herpes Simplex Virus 1-Encoded Protein Kinase UL13 Phosphorylates Viral Us3 Protein Kinase and Regulates Nuclear Localization of Viral Envelopment Factors UL34 and UL31. Journal of Virology, 2006, 80, 1476-1486.	1.5	104

14 TRAF6 Establishes Innate Immune Responses by Activating NF-ÎOB and IRF7 upon Sensing Cytosolic Viral
19

ESCRT-III mediates budding across the inner nuclear membrane and regulates its integrity. Nature Communications, 2018, 9, 3379.

Interaction of Epstein-Barr Virus Nuclear Antigen Leader Protein (EBNA-LP) with HS1-Associated Protein X-1: Implication of Cytoplasmic Function of EBNA-LP. Journal of Virology, 2000, 74, 10104-10111.
21
22

Intracellular IL-1 Â-binding proteins contribute to biological functions of endogenous IL-1 Â in systemic
sclerosis fibroblasts. Proceedings of the National Academy of Sciences of the United States of
sclerosis fibroblasts. Proceedings of the National Academy of Sciences of the United States of
3.3

America, 2006, 103, 14501-14506.

22 Cellular Elongation Factor 1 lे' $^{\prime}$ Is Modified in Cells Infected with Representative Alpha-, Beta-, or
1.5

Gammaherpesviruses. Journal of Virology, 1999, 73, 4456-4460.

Identification of a Physiological Phosphorylation Site of the Herpes Simplex Virus 1-Encoded Protein
23 Kinase Us3 Which Regulates Its Optimal Catalytic Activity In Vitro and Influences Its Function in
1.5

Infected Cells. Journal of Virology, 2008, 82, 6172-6189.
24 Entry of Herpes Simplex Virus 1 and Other Alphaherpesviruses via the Paired Immunoglobulin-Like Type
2 Receptor 1 Î. Journal of Virology, 2009, 83, 4520-4527.
1.5

78

Identification of a feline immunodeficiency virus gene which is essential for cell-free virus infectivity.
Journal of Virology, 1992, 66, 6181-6185.
$1.5 \quad 77$

26 Herpes Simplex Virus 1 Protein Kinase Us3 Phosphorylates Viral Envelope Glycoprotein B and Regulates
Its Expression on the Cell Surface. Journal of Virology, 2009, 83, 250-261.

Epstein-Barr Virus Protein Kinase BGLF4 Is a Virion Tegument Protein That Dissociates from Virions in a
$27 \quad$ Phosphorylation-Dependent Process and Phosphorylates the Viral Immediate-Early Protein BZLF1.
1.5

Journal of Virology, 2006, 80, 5125-5134.
Epsteinâ€"Barr virus-encoded protein kinase BGLF4 mediates hyperphosphorylation of cellular elongation factor $1 \hat{l}^{\prime}(E F-1 \hat{1}):$ EF-1 \hat{l}^{\prime} is universally modified by conserved protein kinases of herpesviruses in
1.3

69
mammalian cells. Journal of General Virology, 2001, 82, 1457-1463.
29 Herpes Simplex Virus 1 UL47 Interacts with Viral Nuclear Egress Factors UL31, UL34, and Us3 and
Regulates Viral Nuclear Egress. Journal of Virology, 2014, 88, 4657-4667. 1.5 64A single amino acid substitution in the cyclin D binding domain of the infected cell protein no. 0
abrogates the neuroinvasiveness of herpes simplex virus without affecting its ability to replicate.3.3Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 8184-8189.
31 The genome of feline immunodeficiency virus. Archives of Virology, 1994, 134, 221-234. 0.9
Herpes simplex virus type 2 membrane protein UL56 associates with the kinesin motor protein KIF1A.
41 Journal of General Virology, 2005, 86, 527-533.

45 | Combating herpesvirus encephalitis by potentiating a TLR3ấ"mTORC2 axis. Nature Immunology, 2018 |
| :--- |
| 1071-1082. |

$46 \quad$| Differences in the Regulatory and Functional Effects of the Us3 Protein Kinase Activities of Herpes |
| :--- |
| Simplex Virus 1 and 2. Journal of Virology, 2009, 83, 11624-11634. |

7.052
Anterograde Transport of Herpes Simplex Virus Capsids in Neurons by both Separate and Married
Mechanisms. Journal of Virology, 2011, 85, 5919-5928.

Regulation of the Catalytic Activity of Herpes Simplex Virus 1 Protein Kinase Us3 by
48 Autophosphorylation and Its Role in Pathogenesis. Journal of Virology, 2009, 83, 5773-5783.
1.5

50

Complete fusion of a transposon and herpesvirus created the Teratorn mobile element in medaka fish.
49 Nature Communications, 2017, 8, 551.
5.8

49

Localization of the viral antigen of feline immunodeficiency virus in the lymph nodes of cats at the
0.9
early stage of infection. Archives of Virology, 1993, 131, 335-347.

Formation of aggresome-like structures in herpes simplex virus type 2-infected cells and a potential
51 role in virus assembly. Experimental Cell Research, 2004, 299, 486-497.
1.2

47

The role of protein kinase activity expressed by the UL13 gene of herpes simplex virus 1: The activity is
1.1

47
not essential for optimal expression of UL41 and ICPO. Virology, 2005, 341, 301-312.
Epsteinâ€Barr Virus (EBV) Nuclear Antigen Leader Protein (EBNAâ€ŁP) Forms Complexes with a Cellular
53 Antiâ€Apoptosis Protein Bclâ€2 or Its EBV Counterpart BHRF1 through HSlấAssociated Protein Xâ€ 1.
0.7
46
Microbiology and Immunology, 2003, 47, 91-99.

Identification of Major Phosphorylation Sites of Epstein-Barr Virus Nuclear Antigen Leader Protein

Herpesvirus protein ICP27 switches PML isoform by altering mRNA splicing. Nucleic Acids Research,

A silkwormâ $€$ "baculovirus model for assessing the therapeutic effects of antiviral compounds:
58 characterization and application to the isolation of antivirals from traditional medicines. Journal of
1.3General Virology, 2008, 89, 188-194.
$59 \quad$ Herpes Simplex Virus 1 Protein Kinase Us3 and Major Tegument Protein UL47 Reciprocally Regulate Their
1.5

Subcellular Localization in Infected Cells. Journal of Virology, 2011, 85, 9599-9613.

Roles of the auxiliary genes and AP-1 binding site in the long terminal repeat of feline
immunodeficiency virus in the early stage of infection in cats. Journal of Virology, 1996, 70, 8518-8526.
1.5

Antigenic analysis of feline calicivirus capsid precursor protein and its deleted polypeptides produced
in a mammalian cDNA expression system. Virus Research, 1993, 30, 17-26.
1.1

40

62 Identification of proteins directly phosphorylated by UL13 protein kinase from herpes simplex virus 1.
Microbes and Infection, 2007, 9, 1434-1438.

APOBEC1-Mediated Editing and Attenuation of Herpes Simplex Virus 1 DNA Indicate That Neurons Have
63 an Antiviral Role during Herpes Simplex Encephalitis. Journal of Virology, 2011, 85, 9726-9736.
Feline CD 4 molecules expressed on feline non-lymphoid cell lines are not enough for productive
64 infection of highly lymphotropic feline immunodeficiency virus isolates. Archives of Virology, 1993,
0.9

39 130, 171-178.

65 Nucleolin Is Required for Efficient Nuclear Egress of Herpes Simplex Virus Type 1 Nucleocapsids.

Us3 Kinase Encoded by Herpes Simplex Virus 1 Mediates Downregulation of Cell Surface Major
66 Histocompatibility Complex Class I and Evasion of CD8+ T Cells. PLoS ONE, 2013, 8, e72050.
1.1

38

67 Construction of recombinant herpes simplex virus type I expressing green fluorescent protein
without loss of any viral genes. Microbes and Infection, 2004, 6, 485-493.

The product of the Herpes simplex virus 1 UL7 gene interacts with a mitochondrial protein, adenine nucleotide translocator 2. Virology Journal, 2008, 5, 125.
1.4

36

Herpes Simplex Virus 1 Recruits CD98 Heavy Chain and $\hat{1} 21$ Integrin to the Nuclear Membrane for Viral
69 De-Envelopment. Journal of Virology, 2015, 89, 7799-7812.
1.5

36

Vaginal Memory T Cells Induced by Intranasal Vaccination Are Critical for Protective T Cell
Recruitment and Prevention of Genital HSV-2 Disease. Journal of Virology, 2014, 88, 13699-13708.
1.5

34

Herpes Simplex Virus 1 Protein Kinase Us3 Phosphorylates Viral dUTPase and Regulates Its Catalytic
1.5

34
$71 \quad$ Herpes Simplex Virus 1 Protein Kinase Us3 Phosphorylates Viral du
Activity in Infected Cells. Journal of Virology, 2014, 88, 655-666.

73 A Single-Amino-Acid Substitution in Herpes Simplex Virus 1 Envelope Clycoprotein B at a Site Required
A Single-Amino-Acid Substitution in Herpes Simplex Virus 1 Envelope Glycoprotein B at a Site Required
for Binding to the Paired Immunoglobulin-Like Type 2 Receptor $\hat{1} \pm$ (PILR $\mid \pm$) Abrogates PILR $\mid \pm$-Dependent Viral
Entry and Reduces Pathogenesis. Journal of Virology, 2010, $84,10773-10783$.

Effects of Phosphorylation of Herpes Simplex Virus 1 Envelope Glycoprotein B by Us3 Kinase In Vivo and
1.5

32 In Vitro. Journal of Virology, 2010, 84, 153-162.

> Identification of the Capsid Binding Site in the Herpes Simplex Virus 1 Nuclear Egress Complex and Its Role in Viral Primary Envelopment and Replication. Journal of Virology, 2019, 93,.

Herpes simplex virus-1 evasion of CD8+T cell accumulation contributes to viral encephalitis. Journal of Clinical Investigation, 2017, 127, 3784-3795.
3.9

Role of the Herpes Simplex Virus 1 Us3 Kinase Phosphorylation Site and Endocytosis Motifs in the
77 Intracellular Transport and Neurovirulence of Envelope Clycoprotein B. Journal of Virology, 2011, 85,
1.5 5003-5015.

78 Nonmuscle Myosin Heavy Chain IIB Mediates Herpes Simplex Virus 1 Entry. Journal of Virology, 2015, 89,
1879-1888.
1.5

31
BI-2536 and BI-6727, dual Polo-like kinase/bromodomain inhibitors, effectively reactivate latent HIV-1.
$79 \quad \begin{aligned} & \text { BI-2536 and BI-6727, dual Polo-like } \\ & \text { Scientific Reports, 2018, 8, } 3521 .\end{aligned}$
Discovery of New Fusion Inhibitor Peptides against SARS-CoV-2 by Targeting the Spike S2 Subunit.
Biomolecules and Therapeutics, 2021, 29, 282-289.
1.6

30

Existence of feline immunodeficiency virus infection in Japanese cat population since 1968.. Nihon
81 Juigaku Zasshi, 1990, 52, 891-893.

A gD Homologous Gene of Feline Herpesvirus Type I Encodes a Hemagglutinin (gp60). Virology, 1994,
1.1

29
85 Heterogeneity of feline herpesvirus type 1 strains. Archives of Virology, 1992, 126, 283-292. 0.9 28

Pathogenicity and vaccine efficacy of a thymidine kinase-deficient mutant of feline herpesvirus type 1 in

94 Activation of feline immunodeficiency virus long terminal repeat by feline herpesvirus type 1. Virology,
Association of Two Membran
Genes, 2006, 32, 153-163.
$0.7 \quad 23$

The bi-directional transcriptional promoters for the latency-relating transcripts of the pp38/pp24
106 mRNAs and the $1.8 \hat{a} € \%$ okb-mRNA in the long inverted repeats of Marekâ $€^{\text {TM }}$ s disease virus serotyp regulated by common promoter-specific enhancers. Archives of Virology, 1999, 144, 1893-1907.

107 The Conserved Domain CR2 of Epsteinâ€ "Barr Virus Nuclear Antigen Leader Protein Is Responsible Not Only for Nuclear Matrix Association but Also for Nuclear Localization. Virology, 2001, 279, 401-413.
109

> Epstein-Barr Virus Nuclear Antigen Leader Protein Induces Expression of Thymus- and Activation-Regulated Chemokine in B Cells. Journal of Virology, 2004, 78, 3984-3993.

Phosphorylation of Herpes Simplex Virus 1 duTPase Upregulated Viral duTPase Activity To Compensate
110 for Low Cellular duTPase Activity for Efficient Viral Replication. Journal of Virology, 2014, 88,
1.5

22
7776-7785.
Phosphorylation of a Herpes Simplex Virus 1 dUTPase by a Viral Protein Kinase, Us3, Dictates Viral
111 Pathogenicity in the Central Nervous System but Not at the Periphery. Journal of Virology, 2014, 88,
Pathogenicity in the Central Nervous System but Not at the Periphery. Journal of Virology, 2014, 88,
1.5

2775-2785.
112 Restriction endonuclease analysis of field isolates of feline herpesvirus type 1 and identification of heterogeneous regions. Journal of Clinical Microbiology, 1995, 33, 217-221.
1.8

22

113 Comparison of the Rev Transactivation of Feline Immunodeficiency Virus in Feline and Non-Feline Cell | Lines.. Journal of Veterinary Medical Science, 1994, 56, 199-201. |
| :--- |
| 114 Quantification of feline immunodeficiency virus in a newly established feline T-lymphoblastoid cell |
| line (MYA-1 cells). Archives of Virology, 1990, 111, 269-273. |
| 115 US3 protein kinase of herpes simplex virus type 2 is required for the stability of the UL46-encoded |
| tegument protein and its association with virus particles. Journal of General Virology, 2005, 86, |
| 1979-1985. |

$0.3 \quad 21$

116 Role of the Immunoreceptor Tyrosine-Based Activation Motif of Latent Membrane Protein 2A (LMP2A) in Epstein-Barr Virus LMP2A-Induced Cell Transformation. Journal of Virology, 2014, 88, 5189-5194.

117 Herpes Simplex Virus 1 UL34 Protein Regulates the Global Architecture of the Endoplasmic Reticulum
in Infected Cells. Journal of Virology, 2017, 91,.
Comparative Functional Analysis of the Various Lentivirus Long Terminal Repeats in Human Colon
118 Carcinoma Cell Line (SW480 Cells) and Feline Renal Cell Line (CRFK Cells).. Journal of Veterinary Medical Science, 1994, 56, 895-899.

119	Phylogenetic analysis of the long terminal repeat of feline immunodeficiency viruses from Japan, Argentina and Australia. Archives of Virology, 1995, 140, 41-52.	0.9	18
120	The C/EBP Site in the Feline Immunodeficiency Virus (FIV) Long Terminal Repeat (LTR) Is Necessary for Its Efficient Replication and Is Also Involved in the Inhibition of FIV LTR-Directed Gene Expression by Pseudorabies Virus ICP4. Virology, 1995, 208, 492-499.	1.1	18
121	Sequence variations of Epstein-Barr virus LMP2A gene in gastric carcinoma in Japan. Virus Genes, 1999, 19, 103-111.	0.7	18

122 Identification of a herpes simplex virus 1 gene encoding neurovirulence factor by chemical proteomics. Nature Communications, 2020, 11, 4894.
5.8

18

Construction of the Recombinant Feline Herpesvirus Type 1 Deleted Thymidine Kinase Gene.. Journal of Veterinary Medical Science, 1995, 57, 709-714.
$0.3 \quad 17$

Expression and properties of feline herpesvirus type 1 gD (hemagglutinin) by a recombinant
1.1

17

127	p53 Is a Host Cell Regulator during Herpes Simplex Encephalitis. Journal of Virology, 2016, 90, 6738-6745.	1.5	17
128	Cellular Transcriptional Coactivator RanBP10 and Herpes Simplex Virus 1 ICPO Interact and Synergistically Promote Viral Gene Expression and Replication. Journal of Virology, 2016, 90, 3173-3186.	1.5	17
129	Molecular Interactions Between Retroviruses and Herpesviruses.. Journal of Veterinary Medical Science, 1995, 57, 801-811.	0.3	16
130	Physical interaction of Epsteinâ€"Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) with human oestrogen-related receptor 1 (hERR1): hERR1 interacts with a conserved domain of EBNA-LP that is critical for EBV-induced B-cell immortalization. Journal of General Virology, 2003, 84, 319-327.	1.3	16
131	Nucleotide Sequence and Characterization of the Feline Herpesvirus Type 1 Immediate Early Gene. Virology, 1994, 204, 430-435.	1.1	15
132	Conserved Region CR2 of Epstein-Barr Virus Nuclear Antigen Leader Protein Is a Multifunctional Domain That Mediates Self-Association as well as Nuclear Localization and Nuclear Matrix Association. Journal of Virology, 2002, 76, 1025-1032.	1.5	15
133	Epsteinâ€"Barr virus protein kinase BCLF4 interacts with viral transactivator BZLF1 and regulates its transactivation activity. Journal of Ceneral Virology, 2009, 90, 1575-1581.	1.3	15
134	Multiple Roles of the Cytoplasmic Domain of Herpes Simplex Virus 1 Envelope Glycoprotein D in Infected Cells. Journal of Virology, 2016, 90, 10170-10181.	1.5	15
135	Role of the Arginine Cluster in the Disordered Domain of Herpes Simplex Virus 1 UL34 for the Recruitment of ESCRT-III for Viral Primary Envelopment. Journal of Virology, 2022, 96, JVI0170421.	1.5	15
136	Comparisons among Feline Herpesvirus Type 1 Isolates by Immunoblot Analysis.. Journal of Veterinary Medical Science, 1995, 57, 147-150.	0.3	14
137	Identification of multiple sites suitable for insertion of foreign genes in herpes simplex virus genomes. Microbiology and Immunology, 2009, 53, 155-161.	0.7	14

145	Role of herpes simplex virus 1 Us3 in viral neuroinvasiveness. Microbiology and Immunology, 2014, 58, 31-37.	0.7	12
146	Phosphorylation of Herpes Simplex Virus 1 dUTPase Regulates Viral Virulence and Genome Integrity by Compensating for Low Cellular duTPase Activity in the Central Nervous System. Journal of Virology, 2015, 89, 241-248.	1.5	12
147	ESCRT-III controls nuclear envelope deformation induced by progerin. Scientific Reports, 2020, 10, 18877.	1.6	12
148	Establishment of Carrier-State Infection of a Feline Renal Cell Line with Feline Syncytial Virus.. Journal of Veterinary Medical Science, 1995, 57, 65-69.	0.3	11
149	Detection of Marek's Disease Virus Serotype 1(MDV1) Clycoprotein D in MDV1-Infected Chick Embryo Fibroblasts.. Journal of Veterinary Medical Science, 1996, 58, 777-780.	0.3	11
150	Construction of an infectious clone of canine herpesvirus genome as a bacterial artificial chromosome. Microbes and Infection, 2006, 8, 1054-1063.	1.0	11
151	The UL12 Protein of Herpes Simplex Virus 1 Is Regulated by Tyrosine Phosphorylation. Journal of Virology, 2014, 88, 10624-10634.	1.5	11
152	Herpes Simplex Virus 1 Small Capsomere-Interacting Protein VP26 Regulates Nucleocapsid Maturation. Journal of Virology, 2017, 91, .	1.5	11
153	Regulation of Herpes Simplex Virus 2 Protein Kinase UL13 by Phosphorylation and Its Role in Viral Pathogenesis. Journal of Virology, 2018, 92, .	1.5	11
154	Long noncoding RNA U90926 is crucial for herpes simplex virus type 1 proliferation in murine retinal photoreceptor cells. Scientific Reports, 2020, 10, 19406.	1.6	11
155	Prohibitin-1 Contributes to Cell-to-Cell Transmission of Herpes Simplex Virus 1 via the MAPK/ERK Signaling Pathway. Journal of Virology, 2021, 95, .	1.5	10
156	Discovery of New Potent anti-MERS CoV Fusion Inhibitors. Frontiers in Pharmacology, 2021, 12, 685161.	1.6	10
157	Continuous production of feline immunodeficiency virus in a feline T-lymphoblastoid cell line (MYA-1) Tj		gB

158 Adhesion of Insect Cells Expressing the Feline Herpesvirus Type 1 Hemagglutinin(gD) to Feline Cell Lines.. Journal of Veterinary Medical Science, 1997, 59, 217-219.
$0.3 \quad 9$
1

Function of the Herpes Simplex Virus 1 Small Capsid Protein VP26 Is Regulated by Phosphorylation at a
$159 \quad$ Specific Site. Journal of Virology, 2015, 89, 6141-6147.
1.5

9

Roles of Us8A and Its Phosphorylation Mediated by Us3 in Herpes Simplex Virus 1 Pathogenesis. Journal of Virology, 2016, 90, 5622-5635.
1.5

9 expressed by a recombinant baculovirus. Virus Research, 1995, 38, 219-230.

163 | Persistence of High Virus Neutralizing Antibody Titers in Cats Experimentally Infected with Feline |
| :--- |
| Immunodeficiency Virus.. Journal of Veterinary Medical Science, 1996, 58, 925-927. |

8

167	Endothelial expression of human amyloid precursor protein leads to amyloid $\hat{\imath}^{2}$ in the blood and induces cerebral amyloid angiopathy in knock-in mice. Journal of Biological Chemistry, 2022, 298, 101880.	1.6	8
168	Replication of Feline Herpesvirus Type 1 in Feline T-lymphoblastoid Cells.. Journal of Veterinary Medical Science, 1991, 53, 503-505.	0.3	7
169	Carrier-state infection of feline T-lymphoblastoid cells with feline calicivirus. Veterinary Microbiology, 1994, 40, 379-386.	0.8	7
170	Expression of Marek's disease virus (MDV) serotype 2 gene which has partial homology with MDV serotype 1 pp38 gene. Virus Research, 1995, 35, 223-229.	1.1	7
171	Protection studies against Marek's disease using baculovirusâ€expressed glycoproteins B and C of Marek's disease virus type 1. Avian Pathology, 1996, 25, 5-24.	0.8	7
172	Development of a Monoclonal Antibody against Epsteinâ€Barr Virus Nuclear Antigen Leader Protein (EBNAâ€ŁP) That Can Detect EBNAâ€ŁP Expressed in P3HR1 Cells. Microbiology and Immunology, 2005, 49, 477-483.	0.7	7

173 A role for the CCR5â€"CCL5 interaction in the preferential migration of HSV-2-specific effector cells to
the vaginal mucosa upon nasal immunization. Mucosal Immunology, 2019, 12, 1391-1403.
$174 \quad$Role of the DNA Binding Activity of Herpes Simplex Virus 1 VP22 in Evading AIM2-Dependent Inflammasome Activation Induced by the Virus. Journal of Virology, 2021, 95, .
Characterization of Canine Herpesvirus Clycoprotein D (Hemagglutinin).. Journal of Veterinary Medical Science, 1997,59,1003-1009.
1.5

181 Expression of the feline herpesvirus type 1 ICP4 gene is controlled by two alternative promoters.

Analysis of herpesvirus host specificity determinants using herpesvirus genomes as bacterial artificial chromosomes. Microbiology and Immunology, 2009, 53, 433-441.

Us3, a Multifunctional Protein Kinase Encoded by Herpes Simplex Virus 1. Cornea, 2013, 32, S22-S27.
0.9

Interactome analysis of herpes simplex virus 1 envelope glycoprotein H . Microbiology and Immunology, 2015, 59, 331-337.

Six-helix bundle completion in the distal C-terminal heptad repeat region of gp41 is required for efficient human immunodeficiency virus type 1 infection. Retrovirology, 2018, 15, 27.

186 Neo-virology: The raison dâ $€^{\text {TM }}$ etre of viruses. Virus Research, 2019, 274, 197751.

Phosphoregulation of a Conserved Herpesvirus Tegument Protein by a Virally Encoded Protein Kinase
187 in Viral Pathogenicity and Potential Linkage between Its Evolution and Viral Phylogeny. Journal of Virology, 2020, 94, .

The effects of treatment with chemical agents or infection with feline viruses on protein-binding properties of the feline immunodeficiency virus long terminal repeat. Virus Research, 1997, 51, 203-212.

Rapid Screening by Cell-Based Fusion Assay for Identifying Novel Antivirals of Glycoprotein B-Mediated Herpes Simplex Virus Type 1 Infection. Biological and Pharmaceutical Bulletin, 2016, 39, 1897-1902.

1902016 International meeting of the Global Virus Network. Antiviral Research, 2017, 142, 21-29.
1.9
1.5
infection via glucocorticoids. Journal of Allergy and Clinical Immunology, 2021, 148, 1575-1588.e7.

Virus-infection in cochlear supporting cells induces audiosensory receptor hair cell death by TRAIL-induced necroptosis. PLoS ONE, 2021, 16, e0260443.

Stable Expression of the cDNA Encoding the Feline CD8.ALPHA. Gene.. Journal of Veterinary Medical Science, 1994, 56, 1001-1003.

Role of the Orphan Transporter SLC35E1 in the Nuclear Egress of Herpes Simplex Virus 1. Journal of Virology, 2022, , e0030622.

Bacterial artificial chromosome-based reverse genetics system for cloning and manipulation of the
195 full-length genome of infectious bronchitis virus. Current Research in Microbial Sciences, 2022, , 100155.

