Luca Grumolato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1547993/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High endogenous CCL2 expression promotes the aggressive phenotype of human inflammatory breast cancer. Nature Communications, 2021, 12, 6889.	12.8	25
2	ROR2 has a protective role in melanoma by inhibiting Akt activity, cell-cycle progression, and proliferation. Journal of Biomedical Science, 2021, 28, 76.	7.0	8
3	XPO1E571K Mutation Modifies Exportin 1 Localisation and Interactome in B-Cell Lymphoma. Cancers, 2020, 12, 2829.	3.7	12
4	Tolerant/Persister Cancer Cells and the Path to Resistance to Targeted Therapy. Cells, 2020, 9, 2601.	4.1	26
5	CRISPR/Cas9 editing of the genome for cancer modeling. Methods, 2017, 121-122, 130-137.	3.8	34
6	Selenoprotein T is a novel OST subunit that regulates UPR signaling and hormone secretion. EMBO Reports, 2017, 18, 1935-1946.	4.5	48
7	Positive Mediators of Cell Proliferation in Neoplasia: Growth Factors and Receptors. , 2017, , 159-182.		0
8	ROR1 contributes to melanoma cell growth and migration by regulating Nâ€cadherin expression via the PI3K/Akt pathway. Molecular Carcinogenesis, 2016, 55, 1772-1785.	2.7	40
9	Modeling intratumor heterogeneity through CRISPR-barcodes. Molecular and Cellular Oncology, 2016, 3, e1227894.	0.7	3
10	CRISPR-Barcoding for Intratumor Genetic Heterogeneity Modeling and Functional Analysis of Oncogenic Driver Mutations. Molecular Cell, 2016, 63, 526-538.	9.7	58
11	Abstract A38: The Wnt noncanonical receptor ROR1 regulates neuroblastoma cell growth and motility through two distinct mechanisms. , 2016, , .		0
12	Abstract PR10: Functional analysis of oncogenic driver mutations in human cancer cells through CRISPR-barcoding. , 2016, , .		0
13	Oncogenes and Signal Transduction. , 2015, , 19-34.e3.		2
14	Wnk kinases are positive regulators of canonical Wnt/β atenin signalling. EMBO Reports, 2013, 14, 718-725.	4.5	35
15	Chromatin Modifications Sequentially Enhance ErbB2 Expression in ErbB2-Positive Breast Cancers. Cell Reports, 2013, 5, 302-313.	6.4	40
16	β-Catenin-Independent Activation of TCF1/LEF1 in Human Hematopoietic Tumor Cells through Interaction with ATF2 Transcription Factors. PLoS Genetics, 2013, 9, e1003603.	3.5	60
17	Pituitary Adenylate Cyclase-activating Polypeptide (PACAP) Promotes Both Survival and Neuritogenesis in PC12 Cells through Activation of Nuclear Factor IºB (NF-IºB) Pathway. Journal of Biological Chemistry, 2013, 288, 14936-14948.	3.4	19
18	Wnk kinases are positive regulators of canonical Wnt/β atenin signalling. EMBO Reports, 2013, 14, 845-845.	4.5	2

Luca Grumolato

#	Article	IF	CITATIONS
19	Abstract A02: Beta-catenin-independent activation of TCF1/LEF1 in human hematopoietic tumor cells through interaction with ATF2 transcription factors. , 2013, , .		0
20	A New Piece to the Unsolved Planar Cell Polarity Puzzle. Developmental Cell, 2011, 20, 146-147.	7.0	0
21	Maternal Perinatal Undernutrition has Long-Term Consequences on Morphology, Function and Gene Expression of the Adrenal Medulla in the Adult Male Rat. Journal of Neuroendocrinology, 2011, 23, 711-724.	2.6	16
22	Diverse mechanisms of Wnt activation and effects of pathway inhibition on proliferation of human gastric carcinoma cells. Oncogene, 2011, 30, 956-966.	5.9	16
23	High-Frequency Canonical Wnt Activation in Multiple Sarcoma Subtypes Drives Proliferation through a TCF/β-Catenin Target Gene, CDC25A. Cancer Cell, 2011, 19, 601-612.	16.8	113
24	Abelson family kinases regulate Frizzled planar cell polarity signaling via Dsh phosphorylation. Genes and Development, 2010, 24, 2157-2168.	5.9	41
25	Canonical and noncanonical Wnts use a common mechanism to activate completely unrelated coreceptors. Genes and Development, 2010, 24, 2517-2530.	5.9	406
26	Canonical Wnts function as potent regulators of osteogenesis by human mesenchymal stem cells. Journal of Cell Biology, 2009, 185, 67-75.	5.2	139
27	Canonical Wnts function as potent regulators of osteogenesis by human mesenchymal stem cells. Journal of Experimental Medicine, 2009, 206, i7-i7.	8.5	0
28	Role of PACAP in the physiology and pathology of the sympathoadrenal system. Frontiers in Neuroendocrinology, 2008, 29, 128-141.	5.2	37
29	Oncogenes and Signal Transduction. , 2008, , 17-30.		0
30	Selenoprotein T is a PACAPâ€regulated gene involved in intracellular Ca ²⁺ mobilization and neuroendocrine secretion. FASEB Journal, 2008, 22, 1756-1768.	0.5	124
31	Identification of Potential Gene Markers and Insights into the Pathophysiology of Pheochromocytoma Malignancy. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 4865-4872.	3.6	61
32	Possible implication of the transcriptional regulator Id3 in PACAP-induced pro-survival signaling during PC12 cell differentiation. Regulatory Peptides, 2006, 137, 89-94.	1.9	10
33	Selenoprotein T is a new PACAP- and cAMP-responsive gene involved in the regulation of calcium homeostasis during neuroendocrine cell differentiation. Frontiers in Neuroendocrinology, 2006, 27, 82-83.	5.2	3
34	Circulating EM66 is a highly sensitive marker for the diagnosis and follow-up of pheochromocytoma. International Journal of Cancer, 2006, 118, 2003-2012.	5.1	25
35	Maternal Perinatal Undernutrition Alters Neuronal and Neuroendocrine Differentiation in the Rat Adrenal Medulla at Weaning. Endocrinology, 2006, 147, 3050-3059.	2.8	22
36	The Proinflammatory Cytokines Tumor Necrosis Factor-α and Interleukin-1 Stimulate Neuropeptide Gene Transcription and Secretion in Adrenochromaffin Cells via Activation of Extracellularly Regulated Kinase 1/2 and p38 Protein Kinases, and Activator Protein-1 Transcription Factors. Molecular Endocrinology, 2004, 18, 1721-1739.	3.7	43

Luca Grumolato

#	Article	IF	CITATIONS
37	PACAP and NGF regulate common and distinct traits of the sympathoadrenal lineage: effects on electrical properties, gene markers and transcription factors in differentiating PC12 cells. European Journal of Neuroscience, 2003, 17, 71-82.	2.6	55
38	Microarray and Suppression Subtractive Hybridization Analyses of Gene Expression in Pheochromocytoma Cells Reveal Pleiotropic Effects of Pituitary Adenylate Cyclase-Activating Polypeptide on Cell Proliferation, Survival, and Adhesion. Endocrinology, 2003, 144, 2368-2379.	2.8	57
39	Identification of the Secretogranin II-Derived Peptide EM66 in Pheochromocytomas as a Potential Marker for Discriminating BenignVersusMalignant Tumors. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 2579-2585.	3.6	56
40	Novel Splice Variants of Type I Pituitary Adenylate Cyclase-Activating Polypeptide Receptor in Frog Exhibit Altered Adenylate Cyclase Stimulation and Differential Relative Abundance. Endocrinology, 2002, 143, 2680-2692.	2.8	34
41	Molecular characterization of frog chromogranin B reveals conservation of selective sequences encoding potential novel regulatory peptides1. FEBS Letters, 2002, 511, 127-132.	2.8	11
42	Proinflammatory Cytokines TNFâ€Î± and ILâ€1α Stimulate Neuropeptide Gene Expression in Adrenochromaffin Cells. Annals of the New York Academy of Sciences, 2002, 971, 45-48.	3.8	3
43	Pituitary Adenylate Cyclaseâ€Activating Polypeptide Regulates Neuroendocrine Markers and Transcription Factors in Differentiating Pheochromocytoma Cells. Annals of the New York Academy of Sciences, 2002, 971, 467-470.	3.8	2
44	Pituitary Adenylate Cyclaseâ€Activating Polypeptide Stimulates Secretoneurin Release and Secretogranin II Gene Transcription in Bovine Adrenochromaffin Cells. Annals of the New York Academy of Sciences, 2002, 971, 471-473.	3.8	2
45	Novel Splice Variants of Type I Pituitary Adenylate Cyclase-Activating Polypeptide Receptor in Frog Exhibit Altered Adenylate Cyclase Stimulation and Differential Relative Abundance. Endocrinology, 2002, 143, 2680-2692.	2.8	20
46	Pituitary Adenylate Cyclase-Activating Polypeptide Stimulates Secretoneurin Release and Secretogranin II Gene Transcription in Bovine Adrenochromaffin Cells through Multiple Signaling Pathways and Increased Binding of Pre-Existing Activator Protein-1-Like Transcription Factors. Molecular Pharmacology, 2001, 60, 42-52.	2.3	44
47	Pharmacological and Molecular Characterization of 5-Hydroxytryptamine ₇ Receptors in the Rat Adrenal Gland. Molecular Pharmacology, 1999, 56, 552-561.	2.3	40
48	Pharmacological profile of serotonergic receptors in the adrenal gland. Endocrine Research, 1998, 24, 687-694.	1.2	10
49	Clinical, biochemical, genetic and histological features of composite pheochromocytoma/ganglioneuroma adrenal tumors: a series of seven cases from two French academic centres. Endocrine Abstracts, 0, , .	0.0	0