K Jimmy Hsia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/154716/publications.pdf

Version: 2024-02-01

101543 128289 4,064 104 36 60 citations h-index g-index papers 111 111 111 4989 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Bio-inspired soft robotics: Material selection, actuation, and design. Extreme Mechanics Letters, 2018, 22, 51-59.	4.1	247
2	Stamp Collapse in Soft Lithography. Langmuir, 2005, 21, 8058-8068.	3.5	201
3	Two- and three-dimensional folding of thin film single-crystalline silicon for photovoltaic power applications. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20149-20154.	7.1	198
4	Measurement of adherent cell mass and growth. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20691-20696.	7.1	186
5	Organ-on-e-chip: Three-dimensional self-rolled biosensor array for electrical interrogations of human electrogenic spheroids. Science Advances, 2019, 5, eaax0729.	10.3	132
6	Geometry Effect on the Strain-Induced Self-Rolling of Semiconductor Membranes. Nano Letters, 2010, 10, 3927-3932.	9.1	119
7	Mechanically and Chemically Robust Sandwich-Structured C@Si@C Nanotube Array Li-lon Battery Anodes. ACS Nano, 2015, 9, 1985-1994.	14.6	119
8	Formation and size distribution of self-assembled vesicles. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2910-2915.	7.1	113
9	Collapse of stamps for soft lithography due to interfacial adhesion. Applied Physics Letters, 2005, 86, 154106.	3.3	101
10	A study of microbend test by strain gradient plasticity. International Journal of Plasticity, 2003, 19, 365-382.	8.8	97
11	Thermal dissipation and variability in electrical breakdown of carbon nanotube devices. Physical Review B, 2010, 82, .	3.2	89
12	Bond coat surface rumpling in thermal barrier coatings. Acta Materialia, 2003, 51, 239-249.	7.9	87
13	Cleavage due to dislocation confinement in layered materials. Journal of the Mechanics and Physics of Solids, 1994, 42, 877-896.	4.8	83
14	A Yield Surface Approach to the Estimation of Notch Strains for Proportional and Nonproportional Cyclic Loading. Journal of Engineering Materials and Technology, Transactions of the ASME, 1994, 116, 173-180.	1.4	80
15	Transition states and minimum energy pathways for the collapse of carbon nanotubes. Physical Review B, 2006, 73, .	3.2	73
16	Differential growth and shape formation in plant organs. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12359-12364.	7.1	68
17	Effect of native Al2O3 on the elastic response of nanoscale Al films. Acta Materialia, 2002, 50, 2779-2786.	7.9	64
18	"Living―Microvascular Stamp for Patterning of Functional Neovessels; Orchestrated Control of Matrix Property and Geometry. Advanced Materials, 2012, 24, 58-63.	21.0	62

#	Article	IF	Citations
19	Stress generation mechanisms in carbon thin films grown by ion-beam deposition. Acta Materialia, 2003, 51, 5211-5222.	7.9	61
20	Impedance sensing and molecular modeling of an olfactory biosensor based on chemosensory proteins of honeybee. Biosensors and Bioelectronics, 2013, 40, 174-179.	10.1	61
21	3D hierarchical architectures based on self-rolled-up silicon nitride membranes. Nanotechnology, 2013, 24, 475301.	2.6	56
22	Precision Structural Engineering of Self-Rolled-up 3D Nanomembranes Guided by Transient Quasi-Static FEM Modeling. Nano Letters, 2014, 14, 6293-6297.	9.1	55
23	Selfâ€Folded Gripperâ€Like Architectures from Stimuliâ€Responsive Bilayers. Advanced Materials, 2018, 30, e1801669.	21.0	53
24	Evolution of surface waviness in thin films via volume and surface diffusion. Journal of Applied Physics, 2005, 97, 013521.	2.5	52
25	Effect of Carbon Nanotube (CNT) Loading on the Thermomechanical Properties and the Machinability of CNT-Reinforced Polymer Composites. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2009, 131, .	2.2	46
26	Effects of grain boundary sliding on creep-constrained boundary cavitation and creep deformation. Mechanics of Materials, 1991, 11, 43-62.	3.2	44
27	Experimental study of the mechanisms of brittle-to-ductile transition of cleavage fracture in Si single crystals. Materials Science & Degineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 176, 111-119.	5.6	44
28	Fracture and domain switching by indentation in barium titanate single crystals. Scripta Materialia, 2001, 44, 207-212.	5.2	44
29	<i>In Situ</i> Xâ€Ray Diffraction Study of Electricâ€Fieldâ€Induced Domain Switching and Phase Transition in PZTâ€5H. Journal of the American Ceramic Society, 2005, 88, 210-215.	3.8	44
30	Finite element implementation of virtual internal bond model for simulating crack behavior. Engineering Fracture Mechanics, 2004, 71, 401-423.	4.3	44
31	Brittle crack propagation in silicon single crystals. Journal of Applied Physics, 1991, 70, 758-771.	2.5	43
32	Interfacial cracks between piezoelectric and elastic materials under in-plane electric loading. Journal of the Mechanics and Physics of Solids, 2003, 51, 921-944.	4.8	43
33	Bioelectronic tongue of taste buds on microelectrode array for salt sensing. Biosensors and Bioelectronics, 2013, 40, 115-120.	10.1	42
34	Influence of surface morphology on the adhesion strength of epoxy–aluminum interfaces. Journal of Adhesion Science and Technology, 2003, 17, 1685-1711.	2.6	40
35	Locking of electric-field-induced non- $180 \hat{A}^{\circ}$ domain switching and phase transition in ferroelectric materials upon cyclic electric fatigue. Applied Physics Letters, 2003, 83, 3978-3980.	3.3	38
36	Biosensor recording of extracellular potentials in the taste epithelium for bitter detection. Sensors and Actuators B: Chemical, 2013, 176, 497-504.	7.8	37

#	Article	IF	Citations
37	Extracellular potentials recording in intact taste epithelium by microelectrode array for a taste sensor. Biosensors and Bioelectronics, 2013, 43, 186-192.	10.1	36
38	How do slender mineral crystals resist buckling in biological materials?. Philosophical Magazine Letters, 2004, 84, 631-641.	1.2	35
39	Vertical p–i–n Polysilicon Diode With Antifuse for Stackable Field-Programmable ROM. IEEE Electron Device Letters, 2004, 25, 271-273.	3.9	35
40	Modelling of dislocation mobility controlled brittle-to-ductile transition. Materials Science & Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 176, 155-164.	5.6	33
41	Experimental Investigation of the Machinability of Polycarbonate Reinforced With Multiwalled Carbon Nanotubes. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2006, 128, 465-473.	2.2	33
42	Capillary induced self-assembly of thin foils into 3Dstructures. Journal of the Mechanics and Physics of Solids, 2010, 58, 2033-2042.	4.8	33
43	Chemomechanics control of tearing paths in graphene. Physical Review B, 2012, 85, .	3.2	33
44	Bistable characteristics of thick-walled axisymmetric domes. International Journal of Solids and Structures, 2014, 51, 2590-2597.	2.7	33
45	A divide and conquer real space finite-element Hartree–Fock method. Journal of Chemical Physics, 2010, 132, 034101.	3.0	29
46	Cell migration and organization in threeâ€dimensional in vitro culture driven by stiffness gradient. Biotechnology and Bioengineering, 2016, 113, 2496-2506.	3.3	29
47	Programmable shape transformation of elastic spherical domes. Soft Matter, 2016, 12, 6184-6195.	2.7	28
48	Effects of notches on the deformation behavior of submicron sized metallic glasses: Insights from in situ experiments. Acta Materialia, 2018, 154, 172-181.	7.9	28
49	Kirigamiâ€Inspired Selfâ€Assembly of 3D Structures. Advanced Functional Materials, 2020, 30, 1909888.	14.9	28
50	Ferroptosis induces membrane blebbing in placental trophoblasts. Journal of Cell Science, 2022, 135, .	2.0	28
51	Modeling of creep damage evolution around blunt notches and sharp cracks. Mechanics of Materials, 1991, 11, 19-42.	3.2	26
52	Fracture Simulation Using an Elasto-Viscoplastic Virtual Internal Bond Model With Finite Elements. Journal of Applied Mechanics, Transactions ASME, 2004, 71, 796-804.	2.2	26
53	Experimental investigation of the bond-coat rumpling instability under isothermal and cyclic thermal histories in thermal barrier systems. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2004, 460, 1957-1979.	2.1	26
54	Rumpling instability in thermal barrier systems under isothermal conditions in vacuum. Philosophical Magazine, 2005, 85, 45-64.	1.6	26

#	Article	IF	Citations
55	Programming matter through strain. Extreme Mechanics Letters, 2015, 3, 8-16.	4.1	25
56	Colloidal Particles that Rapidly Change Shape via Elastic Instabilities. Small, 2015, 11, 6051-6057.	10.0	24
57	Simulation of the brittle-ductile transition in silicon single crystals using dislocation mechanics. Acta Materialia, 1997, 45, 1747-1759.	7.9	23
58	Controlled molecular self-assembly of complex three-dimensional structures in soft materials. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 70-74.	7.1	23
59	Coordinated buckling of thick multi-walled carbon nanotubes under uniaxial compression. Nano Research, 2010, 3, 32-42.	10.4	22
60	Oscillatory crack growth in glass. Scripta Materialia, 1999, 41, 275-281.	5.2	21
61	Quantitative Characterization of the Fracture Surface of Si Single Crystals by Confocal Microscopy. Journal of the American Ceramic Society, 1995, 78, 3201-3208.	3.8	20
62	Modeling the Fracture of a Sandwich Structure due to Cavitation in a Ductile Adhesive Layer. Journal of Applied Mechanics, Transactions ASME, 2001, 68, 93-100.	2.2	19
63	Myoblast alignment on 2D wavy patterns: Dependence on feature characteristics and cellâ \in cell interaction. Biotechnology and Bioengineering, 2014, 111, 1617-1626.	3.3	19
64	Site-specific peroxidation modulates lipid bilayer mechanics. Extreme Mechanics Letters, 2021, 42, 101148.	4.1	18
65	Molecular dynamics simulations of ion-irradiation induced deflection of 2D graphene films. International Journal of Solids and Structures, 2008, 45, 3908-3917.	2.7	17
66	Olfactory epithelium biosensor: odor discrimination of receptor neurons from a bio-hybrid sensing system. Biomedical Microdevices, 2012, 14, 1055-1061.	2.8	17
67	Mismatch strain programmed shape transformation of curved bilayer-flexible support assembly. Extreme Mechanics Letters, 2016, 7, 34-41.	4.1	17
68	A technique to generate straight through thickness surface cracks and its application to studying dislocation nucleation in Si. Acta Materialia, 1996, 44, 845-853.	7.9	16
69	Piezoelectric actuation of crack growth along polymer–metal interfaces in adhesive bonds. Journal of Materials Research, 2001, 16, 2885-2892.	2.6	16
70	Effects of tip-nanotube interactions on atomic force microscopy imaging of carbon nanotubes. Nano Research, 2012, 5, 235-247.	10.4	15
71	Cell alignment modulated by surface nano-topography – Roles of cell-matrix and cell-cell interactions. Acta Biomaterialia, 2022, 142, 149-159.	8.3	15
72	Leaf morphogenesis: The multifaceted roles of mechanics. Molecular Plant, 2022, 15, 1098-1119.	8.3	15

#	Article	IF	Citations
73	Modeling static and cyclic fatigue in ceramics containing a viscous grain boundary phase. Acta Metallurgica Et Materialia, 1995, 43, 2163-2175.	1.8	14
74	Bifurcation of self-folded polygonal bilayers. Applied Physics Letters, 2017, 111, .	3.3	13
75	Curvature-regulated lipid membrane softening of nano-vesicles. Extreme Mechanics Letters, 2021, 43, 101174.	4.1	13
76	The influence of multiple slip systems on the brittle–ductile transition in silicon. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 272, 422-430.	5 . 6	12
77	Chloroplast membrane lipid remodeling protects against dehydration by limiting membrane fusion and distortion. Plant Physiology, 2022, 188, 526-539.	4.8	12
78	The effects of grain size distribution on cavity nucleation and creep deformation in ceramics containing viscous grain boundary phase. Acta Materialia, 1997, 45, 4117-4129.	7.9	9
79	Effect of Microstructural Parameters on the Machinability of Aligned Carbon Nanotube Composites. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2010, 132, .	2.2	9
80	Thin film wrinkling by strain mismatch on 3D surfaces. Extreme Mechanics Letters, 2016, 8, 107-113.	4.1	9
81	Tensile Creep Behavior of a Vitreous-Bonded Aluminum Oxide under Static and Cyclic Loading. Journal of the American Ceramic Society, 1996, 79, 2353-2363.	3.8	8
82	A Numerical Solution of a Surface Crack Under Cyclic Hydraulic Pressure Loading. Journal of Tribology, 1997, 119, 637-645.	1.9	8
83	Potential flow model of cavitation-induced interfacial fracture in a confined ductile layer. Journal of the Mechanics and Physics of Solids, 2002, 50, 549-569.	4.8	8
84	Fabricating Tissues In Situ with the Controlled Cellular Alignments. Advanced Healthcare Materials, 2022, 11, e2100934.	7.6	8
85	Role of Membrane Stretch in Adsorption of Antiviral Peptides onto Lipid Membranes and Membrane Pore Formation. Langmuir, 2021, 37, 13390-13398.	3 . 5	8
86	The mathematical framework and an approximate solution of surface crack propagation under hydraulic pressure loading. International Journal of Fracture, 1996, 78, 363-378.	2.2	7
87	Separating Beads and Cells in Multi-channel Microfluidic Devices Using Dielectrophoresis and Laminar Flow. Journal of Visualized Experiments, $2011, , .$	0.3	7
88	Numerical simulation of semi-crystalline nylon 6: elastic constants of crystalline and amorphous parts. Journal of Materials Science, 1994, 29, 1601-1611.	3.7	5
89	Microelectrode recording of tissue neural oscillations for a bionic olfactory biosensor. Journal of Bionic Engineering, 2012, 9, 494-500.	5.0	5
90	Thermodynamic Modeling of Solvent-Assisted Lipid Bilayer Formation Process. Micromachines, 2022, 13, 134.	2.9	5

#	Article	IF	CITATIONS
91	Driving Forces for Interfacial Fatigue Crack Growth by Piezoelectric Actuator. Journal of Intelligent Material Systems and Structures, 2005, 16, 557-566.	2.5	3
92	Cells into Systems. Mechanical Engineering, 2010, 132, 30-34.	0.1	3
93	Dominant Creep Failure Process in Tensile Components. Journal of Engineering Materials and Technology, Transactions of the ASME, 1992, 114, 255-264.	1.4	2
94	On the spacing between dislocation nucleation sources at crack tips. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 317, 257-263.	5.6	2
95	Fast Spreading of Liquid SnPb Solder on Gold-coated Copper Wheel Pattern. Journal of Materials Science and Technology, 2010, 26, 1143-1147.	10.7	2
96	Assessing hypoxic damage to placental trophoblasts by measuring membrane viscosity of extracellular vesicles. Placenta, 2022, 121, 14-22.	1.5	2
97	Effects of grain boundary sliding … Mech. Mater. 11, 43–62 and Modeling of creep damage evolution … Mech. Mater. 11, 19–42. Mechanics of Materials, 1993, 14, 313-315.	3.2	1
98	DISCUSSION ON THE "COMMENT ON THE â€~SIMULATION OF THE BRITTLE-DUCTILE TRANSITION IN SILICON SINGLE CRYSTALS USING DISLOCATION MECHANICS'― Scripta Materialia, 1997, 37, 1905-1907.	5.2	1
99	Effect of Carbon Nanotube (CNT) Loading on the Thermo-Mechanical Properties and the Machinability of CNT-Reinforced Polymer Composites. , 2008, , .		1
100	Effect of Microstructural Parameters on the Machinability of Aligned Carbon Nanotube Composites. , 2009, , .		0
101	Strain-Induced Self-rolling of Semiconductor Membranes: Effect of Geometry, Energetics, and Kinetics. , 2011 , , .		0
102	Future Trends of Micro/Nano Cell and Molecule-Based Biosensors. , 2016, , 229-240.		0
103	Cell Alignment Modulated by Surface Nano-Topography–ÂRoles of Cell-Matrix and Cell-Cell Interactions. SSRN Electronic Journal, 0, , .	0.4	0
104	Experimental Investigation of the Machinabilty of Polycarbonate Reinforced With Multiwalled Carbon Nanotubes. , 2005, , .		0