## **Ganeshsingh** Thakur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1546730/publications.pdf Version: 2024-02-01



| # | Article                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1 | Positive Allosteric Modulation of Cannabinoid Receptor Type 1 Suppresses Pathological Pain Without Producing Tolerance or Dependence. Biological Psychiatry, 2018, 84, 722-733.                                                                                          | 1.3 | 101       |
| 2 | Ligand-Binding Architecture of Human CB2 Cannabinoid Receptor: Evidence for Receptor<br>Subtype-Specific Binding Motif and Modeling GPCR Activation. Chemistry and Biology, 2008, 15,<br>1207-1219.                                                                      | 6.0 | 88        |
| 3 | (-)-7′-Isothiocyanato-11-hydroxy-1′,1′-dimethylheptylhexahydrocannabinol (AM841), a High-Affinity<br>Electrophilic Ligand, Interacts Covalently with a Cysteine in Helix Six and Activates the CB1<br>Cannabinoid Receptor. Molecular Pharmacology, 2005, 68, 1623-1635. | 2.3 | 86        |
| 4 | Cannabilactones: A Novel Class of CB2 Selective Agonists with Peripheral Analgesic Activity. Journal of Medicinal Chemistry, 2007, 50, 6493-6500.                                                                                                                        | 6.4 | 86        |
| 5 | Latest advances in cannabinoid receptor agonists. Expert Opinion on Therapeutic Patents, 2009, 19, 1647-1673.                                                                                                                                                            | 5.0 | 79        |
| 6 | Enantiospecific Allosteric Modulation of Cannabinoid 1 Receptor. ACS Chemical Neuroscience, 2017, 8, 1188-1203.                                                                                                                                                          | 3.5 | 78        |
| 7 | CB1 Cannabinoid Receptor Ligands. Mini-Reviews in Medicinal Chemistry, 2005, 5, 631-640.                                                                                                                                                                                 | 2.4 | 72        |
| 8 | The α7 nicotinic receptor dual allosteric agonist and positive allosteric modulator GAT107 reverses nociception in mouse models of inflammatory and neuropathic pain. British Journal of Pharmacology, 2016, 173, 2506-2520.                                             | 5.4 | 64        |
|   | Expeditious Synthesis, Enantiomeric Resolution, and Enantiomer Functional Characterization of                                                                                                                                                                            |     |           |

| #  | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The Activity of GAT107, an Allosteric Activator and Positive Modulator of α7 Nicotinic Acetylcholine<br>Receptors (nAChR), Is Regulated by Aromatic Amino Acids That Span the Subunit Interface. Journal of<br>Biological Chemistry, 2014, 289, 4515-4531.        | 3.4 | 36        |
| 20 | Mass Spectrometry-based Proteomics of Human Cannabinoid Receptor 2: Covalent Cysteine<br>6.47(257)-Ligand Interaction Affording Megagonist Receptor Activation. Journal of Proteome Research,<br>2011, 10, 4789-4798.                                             | 3.7 | 35        |
| 21 | Microwave-assisted expeditious and efficient synthesis of cyclopentene ring-fused<br>tetrahydroquinoline derivatives using three-component Povarov reaction. Tetrahedron Letters, 2013,<br>54, 6592-6595.                                                         | 1.4 | 34        |
| 22 | Persistent activation of $\hat{I}\pm7$ nicotinic ACh receptors associated with stable induction of different desensitized states. British Journal of Pharmacology, 2018, 175, 1838-1854.                                                                          | 5.4 | 31        |
| 23 | Mapping Cannabinoid 1 Receptor Allosteric Site(s): Critical Molecular Determinant and Signaling<br>Profile of GAT100, a Novel, Potent, and Irreversibly Binding Probe. ACS Chemical Neuroscience, 2016, 7,<br>776-798.                                            | 3.5 | 30        |
| 24 | Controlled-Deactivation Cannabinergic Ligands. Journal of Medicinal Chemistry, 2013, 56, 10142-10157.                                                                                                                                                             | 6.4 | 26        |
| 25 | Probing the Carboxyester Side Chain in Controlled Deactivation<br>(â~')-Δ <sup>8</sup> -Tetrahydrocannabinols. Journal of Medicinal Chemistry, 2015, 58, 665-681.                                                                                                 | 6.4 | 26        |
| 26 | Allosteric Cannabinoid Receptor 1 (CB1) Ligands Reduce Ocular Pain and Inflammation. Molecules, 2020, 25, 417.                                                                                                                                                    | 3.8 | 26        |
| 27 | Identification of CB1 Receptor Allosteric Sites Using Force-Biased MMC Simulated Annealing and<br>Validation by Structure–Activity Relationship Studies. ACS Medicinal Chemistry Letters, 2019, 10,<br>1216-1221.                                                 | 2.8 | 25        |
| 28 | Allosteric Agonism of α7 Nicotinic Acetylcholine Receptors: Receptor Modulation Outside the<br>Orthosteric Site. Molecular Pharmacology, 2019, 95, 606-614.                                                                                                       | 2.3 | 24        |
| 29 | The interaction between alpha 7 nicotinic acetylcholine receptor and nuclear peroxisome proliferator-activated receptor-l± represents a new antinociceptive signaling pathway in mice. Experimental Neurology, 2017, 295, 194-201.                                | 4.1 | 23        |
| 30 | Enantiomer-specific positive allosteric modulation of CB1 signaling in autaptic hippocampal neurons.<br>Pharmacological Research, 2018, 129, 475-481.                                                                                                             | 7.1 | 23        |
| 31 | Positive allosteric modulation of type 1 cannabinoid receptors reduces spike-and-wave discharges in<br>Genetic Absence Epilepsy Rats from Strasbourg. Neuropharmacology, 2021, 190, 108553.                                                                       | 4.1 | 22        |
| 32 | The <i>In Vivo</i> Effects of the CB <sub>1</sub> -Positive Allosteric Modulator GAT229 on Intraocular<br>Pressure in Ocular Normotensive and Hypertensive Mice. Journal of Ocular Pharmacology and<br>Therapeutics, 2017, 33, 582-590.                           | 1.4 | 21        |
| 33 | Macroscopic and Microscopic Activation of <i><math>\hat{I}</math>±</i> 7 Nicotinic Acetylcholine Receptors by the Structurally Unrelated Allosteric Agonist-Positive Allosteric Modulators (ago-PAMs) B-973B and GAT107. Molecular Pharmacology, 2019, 95, 43-61. | 2.3 | 21        |
| 34 | A concise methodology for the synthesis of (â^')-Δ9-tetrahydrocannabinol and<br>(â^')-Δ9-tetrahydrocannabivarin metabolites and their regiospecifically deuterated analogs. Tetrahedron,<br>2007, 63, 8112-8123.                                                  | 1.9 | 20        |
| 35 | The small molecule GAT1508 activates brain-specific GIRK1/2 channel heteromers and facilitates conditioned fear extinction in rodents. Journal of Biological Chemistry, 2020, 295, 3614-3634.                                                                     | 3.4 | 20        |
| 36 | Discovery of a Biased Allosteric Modulator for Cannabinoid 1 Receptor: Preclinical Anti-Glaucoma<br>Efficacy. Journal of Medicinal Chemistry, 2021, 64, 8104-8126.                                                                                                | 6.4 | 18        |

| #  | Article                                                                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Leveraging allostery to improve G protein-coupled receptor (GPCR)-directed therapeutics: cannabinoid receptor 1 as discovery target. Expert Opinion on Drug Discovery, 2016, 11, 1223-1237.                                                                                                                            | 5.0 | 17        |
| 38 | Enantiomeric resolution of a novel chiral cannabinoid receptor ligand. Journal of Proteomics, 2002, 54, 415-422.                                                                                                                                                                                                       | 2.4 | 16        |
| 39 | Hydrogen sulfide inhibits Kir2 and Kir3 channels by decreasing sensitivity to the phospholipid<br>phosphatidylinositol 4,5-bisphosphate (PIP2). Journal of Biological Chemistry, 2018, 293, 3546-3561.                                                                                                                 | 3.4 | 15        |
| 40 | B-973, a Novel α7 nAChR Ago-PAM: Racemic and Asymmetric Synthesis, Electrophysiological Studies, and <i>in Vivo</i> Evaluation. ACS Medicinal Chemistry Letters, 2018, 9, 1144-1148.                                                                                                                                   | 2.8 | 14        |
| 41 | Microwaveâ€accelerated Conjugate Addition of 2â€Arylindoles to Substituted βâ€Nitrostyrenes in the<br>Presence of Ammonium Trifluoroacetate: An Efficient Approach for the Synthesis of a Novel Class of<br>CB1 Cannabinoid Receptor Allosteric Modulators. Journal of Heterocyclic Chemistry, 2017, 54,<br>2079-2084. | 2.6 | 13        |
| 42 | Design and Synthesis of Cannabinoid 1 Receptor (CB1R) Allosteric Modulators: Drug Discovery Applications. Methods in Enzymology, 2017, 593, 281-315.                                                                                                                                                                   | 1.0 | 12        |
| 43 | Indomethacin Enhances Type 1 Cannabinoid Receptor Signaling. Frontiers in Molecular Neuroscience, 2019, 12, 257.                                                                                                                                                                                                       | 2.9 | 12        |
| 44 | Differing Activity Profiles of the Stereoisomers of 2,3,5,6TMP-TQS, a Putative Silent Allosteric<br>Modulator of <i>α</i> 7 nAChR. Molecular Pharmacology, 2020, 98, 292-302.                                                                                                                                          | 2.3 | 12        |
| 45 | Heteromeric Neuronal Nicotinic Acetylcholine Receptors with Mutant <i>β</i> Subunits Acquire<br>Sensitivity to <i>α</i> 7-Selective Positive Allosteric Modulators. Journal of Pharmacology and<br>Experimental Therapeutics, 2019, 370, 252-268.                                                                      | 2.5 | 10        |
| 46 | Allosterically Potentiated <i>α</i> 7 Nicotinic Acetylcholine Receptors: Reduced Calcium Permeability<br>and Current-Independent Control of Intracellular Calcium. Molecular Pharmacology, 2020, 98,<br>695-709.                                                                                                       | 2.3 | 10        |
| 47 | The endocannabinoid system impacts seizures in a mouse model of Dravet syndrome.<br>Neuropharmacology, 2022, 205, 108897.                                                                                                                                                                                              | 4.1 | 9         |
| 48 | Novel Functionalized Cannabinoid Receptor Probes: Development of Exceptionally Potent Agonists.<br>Journal of Medicinal Chemistry, 2021, 64, 3870-3884.                                                                                                                                                                | 6.4 | 8         |
| 49 | Tolerance to the Diuretic Effects of Cannabinoids and Cross-Tolerance to a Â-Opioid Agonist in<br>THC-Treated Mice. Journal of Pharmacology and Experimental Therapeutics, 2016, 358, 334-341.                                                                                                                         | 2.5 | 7         |
| 50 | Effects of the cannabinoid receptor 1 positive allosteric modulator GAT211 and acute MK-801 on visual attention and impulsivity in rats assessed using the five-choice serial reaction time task. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 109, 110235.                                   | 4.8 | 7         |
| 51 | A benzopyran with antiarrhythmic activity is an inhibitor of Kir3.1-containing potassium channels.<br>Journal of Biological Chemistry, 2021, 296, 100535.                                                                                                                                                              | 3.4 | 7         |
| 52 | Human Cannabinoid Receptor 2 Ligand-Interaction Motif: Transmembrane Helix 2 Cysteine, C2.59(89), as<br>Determinant of Classical Cannabinoid Agonist Activity and Binding Pose. ACS Chemical Neuroscience,<br>2017, 8, 1338-1347.                                                                                      | 3.5 | 6         |
| 53 | Antipsychotic potential of the type 1 cannabinoid receptor positive allosteric modulator GAT211: preclinical in vitro and in vivo studies. Psychopharmacology, 2021, 238, 1087-1098.                                                                                                                                   | 3.1 | 6         |
| 54 | Focused structure-activity relationship profiling around the 2-phenylindole scaffold of a cannabinoid type-1 receptor agonist-positive allosteric modulator: site-III aromatic-ring congeners with enhanced activity and solubility. Bioorganic and Medicinal Chemistry, 2020, 28, 115727.                             | 3.0 | 5         |

| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The type 1 cannabinoid receptor positive allosteric modulators GAT591 and GAT593 reduce<br>spike-and-wave discharges in Genetic Absence Epilepsy Rats from Strasbourg. IBRO Neuroscience<br>Reports, 2022, 12, 121-130.                            | 1.6 | 5         |
| 56 | Stable desensitization of α7 nicotinic acetylcholine receptors by NS6740 requires interaction with S36 in the orthosteric agonist binding site. European Journal of Pharmacology, 2021, 905, 174179.                                               | 3.5 | 4         |
| 57 | Design, synthesis, and pharmacological profiling of cannabinoid 1 receptor allosteric modulators:<br>Preclinical efficacy of C2-group GAT211 congeners for reducing intraocular pressure. Bioorganic and<br>Medicinal Chemistry, 2021, 50, 116421. | 3.0 | 4         |
| 58 | A high efficacy cannabinergic ligand (AM4054) used as a discriminative stimulus: Generalization to<br>other adamantyl analogs and Δ 9 -THC in rats. Pharmacology Biochemistry and Behavior, 2016, 148, 46-52.                                      | 2.9 | 3         |