List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1545331/publications.pdf Version: 2024-02-01

	7561	8852
26,545	77	145
citations	h-index	g-index
325	325	19977
docs citations	times ranked	citing authors
	citations 325	citations h-index 325 325

7нн Нг

#	Article	IF	CITATIONS
1	Molecular ecological network analyses. BMC Bioinformatics, 2012, 13, 113.	1.2	1,917
2	The interconnected rhizosphere: High network complexity dominates rhizosphere assemblages. Ecology Letters, 2016, 19, 926-936.	3.0	803
3	Phylogenetic Molecular Ecological Network of Soil Microbial Communities in Response to Elevated CO ₂ . MBio, 2011, 2, .	1.8	771
4	Functional Molecular Ecological Networks. MBio, 2010, 1, .	1.8	717
5	Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E836-45.	3.3	595
6	GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME Journal, 2007, 1, 67-77.	4.4	554
7	Microbial mediation of carbon-cycle feedbacks to climate warming. Nature Climate Change, 2012, 2, 106-110.	8.1	502
8	Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nature Microbiology, 2019, 4, 1183-1195.	5.9	491
9	Temperature mediates continental-scale diversity of microbes in forest soils. Nature Communications, 2016, 7, 12083.	5.8	419
10	Reproducibility and quantitation of amplicon sequencing-based detection. ISME Journal, 2011, 5, 1303-1313.	4.4	412
11	High-Throughput Metagenomic Technologies for Complex Microbial Community Analysis: Open and Closed Formats. MBio, 2015, 6, .	1.8	357
12	Network succession reveals the importance of competition in response to emulsified vegetable oil amendment for uranium bioremediation. Environmental Microbiology, 2016, 18, 205-218.	1.8	339
13	Metagenomic insights into evolution of a heavy metal-contaminated groundwater microbial community. ISME Journal, 2010, 4, 660-672.	4.4	332
14	GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structure and functional activity. ISME Journal, 2010, 4, 1167-1179.	4.4	300
15	Biodiversity and species competition regulate the resilience of microbial biofilm community. Molecular Ecology, 2017, 26, 6170-6182.	2.0	299
16	Stochastic Assembly Leads to Alternative Communities with Distinct Functions in a Bioreactor Microbial Community. MBio, 2013, 4, .	1.8	293
17	Environmental filtering decreases with fish development for the assembly of gut microbiota. Environmental Microbiology, 2016, 18, 4739-4754.	1.8	267
18	Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming. Nature Climate Change, 2016, 6, 595-600.	8.1	260

#	Article	IF	CITATIONS
19	Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO ₂ . Ecology Letters, 2010, 13, 564-575.	3.0	252
20	The microbial gene diversity along an elevation gradient of the Tibetan grassland. ISME Journal, 2014, 8, 430-440.	4.4	249
21	Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume. ISME Journal, 2012, 6, 451-460.	4.4	240
22	An integrated insight into the response of sedimentary microbial communities to heavy metal contamination. Scientific Reports, 2015, 5, 14266.	1.6	235
23	Functional microarray analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect. ISME Journal, 2007, 1, 163-179.	4.4	232
24	Loss of microbial diversity in soils is coincident with reductions in some specialized functions. Environmental Microbiology, 2014, 16, 2408-2420.	1.8	232
25	Successional Trajectories of Rhizosphere Bacterial Communities over Consecutive Seasons. MBio, 2015, 6, e00746.	1.8	232
26	Responses of the functional structure of soil microbial community to livestock grazing in the <scp>T</scp> ibetan alpine grassland. Global Change Biology, 2013, 19, 637-648.	4.2	216
27	Climate warming leads to divergent succession of grassland microbial communities. Nature Climate Change, 2018, 8, 813-818.	8.1	208
28	Small and mighty: adaptation of superphylum Patescibacteria to groundwater environment drives their genome simplicity. Microbiome, 2020, 8, 51.	4.9	205
29	Efficient Genome Editing in Clostridium cellulolyticum via CRISPR-Cas9 Nickase. Applied and Environmental Microbiology, 2015, 81, 4423-4431.	1.4	195
30	Cultivation of seaweed Gracilaria in Chinese coastal waters and its contribution to environmental improvements. Algal Research, 2015, 9, 236-244.	2.4	190
31	Oral microbiota of periodontal health and disease and their changes after nonsurgical periodontal therapy. ISME Journal, 2018, 12, 1210-1224.	4.4	188
32	GeoChip 4: a functional geneâ€arrayâ€based highâ€throughput environmental technology for microbial community analysis. Molecular Ecology Resources, 2014, 14, 914-928.	2.2	183
33	Functional gene diversity of soil microbial communities from five oil-contaminated fields in China. ISME Journal, 2011, 5, 403-413.	4.4	178
34	Long-term successional dynamics of microbial association networks in anaerobic digestion processes. Water Research, 2016, 104, 1-10.	5.3	177
35	Rate-specific responses of prokaryotic diversity and structure to nitrogen deposition in the Leymus chinensis steppe. Soil Biology and Biochemistry, 2014, 79, 81-90.	4.2	175
36	Natural Bacterial Communities Serve as Quantitative Geochemical Biosensors. MBio, 2015, 6, e00326-15.	1.8	173

#	Article	lF	CITATIONS
37	How sulphate-reducing microorganisms cope with stress: lessons from systems biology. Nature Reviews Microbiology, 2011, 9, 452-466.	13.6	169
38	Microarray Applications in Microbial Ecology Research. Microbial Ecology, 2006, 52, 159-175.	1.4	164
39	Elevated nitrate enriches microbial functional genes for potential bioremediation of complexly contaminated sediments. ISME Journal, 2014, 8, 1932-1944.	4.4	164
40	Huanglongbing alters the structure and functional diversity of microbial communities associated with citrus rhizosphere. ISME Journal, 2012, 6, 363-383.	4.4	162
41	Phylogenetic and functional gene structure shifts of the oral microbiomes in periodontitis patients. ISME Journal, 2014, 8, 1879-1891.	4.4	157
42	Empirical Establishment of Oligonucleotide Probe Design Criteria. Applied and Environmental Microbiology, 2005, 71, 3753-3760.	1.4	155
43	Salt Stress in Desulfovibrio vulgaris Hildenborough: an Integrated Genomics Approach. Journal of Bacteriology, 2006, 188, 4068-4078.	1.0	155
44	GeoChip-based analysis of metabolic diversity of microbial communities at the Juan de Fuca Ridge hydrothermal vent. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4840-4845.	3.3	139
45	Environmental Factors Shape Water Microbial Community Structure and Function in Shrimp Cultural Enclosure Ecosystems. Frontiers in Microbiology, 2017, 8, 2359.	1.5	137
46	Warming enhances old organic carbon decomposition through altering functional microbial communities. ISME Journal, 2017, 11, 1825-1835.	4.4	136
47	Architecture of thermal adaptation in an Exiguobacterium sibiricum strain isolated from 3 million year old permafrost: A genome and transcriptome approach. BMC Genomics, 2008, 9, 547.	1.2	134
48	NCycDB: a curated integrative database for fast and accurate metagenomic profiling of nitrogen cycling genes. Bioinformatics, 2019, 35, 1040-1048.	1.8	134
49	The Electron Transfer System of Syntrophically Grown <i>Desulfovibrio vulgaris</i> . Journal of Bacteriology, 2009, 191, 5793-5801.	1.0	133
50	Soil Microbial Community Responses to a Decade of Warming as Revealed by Comparative Metagenomics. Applied and Environmental Microbiology, 2014, 80, 1777-1786.	1.4	131
51	Predicting taxonomic and functional structure of microbial communities in acid mine drainage. ISME Journal, 2016, 10, 1527-1539.	4.4	130
52	Impacts of the Three Gorges Dam on microbial structure and potential function. Scientific Reports, 2015, 5, 8605.	1.6	129
53	Shifts of tundra bacterial and archaeal communities along a permafrost thaw gradient in <scp>A</scp> laska. Molecular Ecology, 2015, 24, 222-234.	2.0	127
54	Functional Potential of Soil Microbial Communities in the Maize Rhizosphere. PLoS ONE, 2014, 9, e112609.	1.1	127

#	Article	IF	CITATIONS
55	Microbial community composition and functions are resilient to metal pollution along two forest soil gradients. FEMS Microbiology Ecology, 2015, 91, 1-11.	1.3	120
56	Selection of optimal oligonucleotide probes for microarrays using multiple criteria, global alignment and parameter estimation. Nucleic Acids Research, 2005, 33, 6114-6123.	6.5	113
57	The phylogenetic composition and structure of soil microbial communities shifts in response to elevated carbon dioxide. ISME Journal, 2012, 6, 259-272.	4.4	110
58	Electron transport chains in organohalide-respiring bacteria and bioremediation implications. Biotechnology Advances, 2018, 36, 1194-1206.	6.0	108
59	Responses of Bacterial Communities to Simulated Climate Changes in Alpine Meadow Soil of the Qinghai-Tibet Plateau. Applied and Environmental Microbiology, 2015, 81, 6070-6077.	1.4	107
60	Global Analysis of Heat Shock Response in Desulfovibrio vulgaris Hildenborough. Journal of Bacteriology, 2006, 188, 1817-1828.	1.0	106
61	Lateral Gene Transfer in a Heavy Metal-Contaminated-Groundwater Microbial Community. MBio, 2016, 7, e02234-15.	1.8	105
62	Microbial community functional structure inÂresponse to antibiotics in pharmaceutical wastewater treatment systems. Water Research, 2013, 47, 6298-6308.	5.3	103
63	Microbial Communities and Functional Genes Associated with Soil Arsenic Contamination and the Rhizosphere of the Arsenic-Hyperaccumulating Plant <i>Pteris vittata</i> L. Applied and Environmental Microbiology, 2010, 76, 7277-7284.	1.4	102
64	Whole-genome sequencing reveals novel insights into sulfur oxidation in the extremophile Acidithiobacillus thiooxidans. BMC Microbiology, 2014, 14, 179.	1.3	102
65	Illumina sequencing-based analysis of free-living bacterial community dynamics during an Akashiwo sanguine bloom in Xiamen sea, China. Scientific Reports, 2015, 5, 8476.	1.6	101
66	Responses of microbial community functional structures to pilot-scale uranium <i>in situ</i> bioremediation. ISME Journal, 2010, 4, 1060-1070.	4.4	98
67	The microbe-mediated mechanisms affecting topsoil carbon stock in Tibetan grasslands. ISME Journal, 2015, 9, 2012-2020.	4.4	98
68	Random Sampling Process Leads to Overestimation of β-Diversity of Microbial Communities. MBio, 2013, 4, e00324-13.	1.8	96
69	GeoChipâ€based analysis of functional microbial communities during the reoxidation of a bioreduced uraniumâ€contaminated aquifer. Environmental Microbiology, 2009, 11, 2611-2626.	1.8	95
70	Ecological stability of microbial communities in Lake Donghu regulated by keystone taxa. Ecological Indicators, 2022, 136, 108695.	2.6	95
71	Elevated Carbon Dioxide Alters the Structure of Soil Microbial Communities. Applied and Environmental Microbiology, 2012, 78, 2991-2995.	1.4	93
72	Energetic Consequences of Nitrite Stress in Desulfovibrio vulgaris Hildenborough, Inferred from Global Transcriptional Analysis. Applied and Environmental Microbiology, 2006, 72, 4370-4381.	1.4	92

#	Article	IF	CITATIONS
73	Impacts of <i>Shewanella oneidensis c</i> â€ŧype cytochromes on aerobic and anaerobic respiration. Microbial Biotechnology, 2010, 3, 455-466.	2.0	91
74	Functional Gene Differences in Soil Microbial Communities from Conventional, Low-Input, and Organic Farmlands. Applied and Environmental Microbiology, 2013, 79, 1284-1292.	1.4	90
75	Genomic and microarray analysis of aromatics degradation in Geobacter metallireducens and comparison to a Geobacter isolate from a contaminated field site. BMC Genomics, 2007, 8, 180.	1.2	87
76	The differentiation of soil bacterial communities along a precipitation and temperature gradient in the eastern Inner Mongolia steppe. Catena, 2017, 152, 47-56.	2.2	87
77	Development of a Common Oligonucleotide Reference Standard for Microarray Data Normalization and Comparison across Different Microbial Communities. Applied and Environmental Microbiology, 2010, 76, 1088-1094.	1.4	83
78	Responses of tundra soil microbial communities to half a decade of experimental warming at two critical depths. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15096-15105.	3.3	83
79	Climate warming accelerates temporal scaling of grassland soil microbial biodiversity. Nature Ecology and Evolution, 2019, 3, 612-619.	3.4	82
80	Empirical Evaluation of a New Method for Calculating Signal-to-Noise Ratio for Microarray Data Analysis. Applied and Environmental Microbiology, 2008, 74, 2957-2966.	1.4	81
81	Sequencing of Multiple Clostridial Genomes Related to Biomass Conversion and Biofuel Production. Journal of Bacteriology, 2010, 192, 6494-6496.	1.0	81
82	Responses of Microbial Communities to Single-Walled Carbon Nanotubes in Phenol Wastewater Treatment Systems. Environmental Science & Technology, 2015, 49, 4627-4635.	4.6	81
83	Functional Gene Array-Based Analysis of Microbial Community Structure in Groundwaters with a Gradient of Contaminant Levels. Environmental Science & Technology, 2009, 43, 3529-3534.	4.6	80
84	Distinct responses of soil microbial communities to elevated CO2 and O3 in a soybean agro-ecosystem. ISME Journal, 2014, 8, 714-726.	4.4	80
85	Microbial sulfur metabolism and environmental implications. Science of the Total Environment, 2021, 778, 146085.	3.9	80
86	Influence of geogenic factors on microbial communities in metallogenic Australian soils. ISME Journal, 2012, 6, 2107-2118.	4.4	79
87	Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Activase Deficiency Delays Senescence of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase but Progressively Impairs Its Catalysis during Tobacco Leaf Development. Plant Physiology, 1997, 115, 1569-1580.	2.3	78
88	Function of Periplasmic Hydrogenases in the Sulfate-Reducing Bacterium Desulfovibrio vulgaris Hildenborough. Journal of Bacteriology, 2007, 189, 6159-6167.	1.0	78
89	GeoChip-Based Analysis of the Functional Gene Diversity and Metabolic Potential of Microbial Communities in Acid Mine Drainage. Applied and Environmental Microbiology, 2011, 77, 991-999.	1.4	78
90	Comparative metagenomics reveals impact of contaminants on groundwater microbiomes. Frontiers in Microbiology, 2015, 6, 1205.	1.5	77

#	Article	lF	CITATIONS
91	Geochip-Based Functional Gene Analysis of Anodophilic Communities in Microbial Electrolysis Cells under Different Operational Modes. Environmental Science & Technology, 2010, 44, 7729-7735.	4.6	76
92	Biogeographic patterns of soil diazotrophic communities across six forests in the North America. Molecular Ecology, 2016, 25, 2937-2948.	2.0	76
93	Nearly a decadeâ€long repeatable seasonal diversity patterns of bacterioplankton communities in the eutrophic Lake Donghu (Wuhan, China). Molecular Ecology, 2017, 26, 3839-3850.	2.0	76
94	Microbial Mechanisms Mediating Increased Soil C Storage under Elevated Atmospheric N Deposition. Applied and Environmental Microbiology, 2013, 79, 1191-1199.	1.4	75
95	Responses of soil microbial functional genes to global changes are indirectly influenced by aboveground plant biomass variation. Soil Biology and Biochemistry, 2017, 104, 18-29.	4.2	75
96	Warming-induced permafrost thaw exacerbates tundra soil carbon decomposition mediated by microbial community. Microbiome, 2020, 8, 3.	4.9	75
97	Development of an Efficient Genome Editing Tool in Bacillus licheniformis Using CRISPR-Cas9 Nickase. Applied and Environmental Microbiology, 2018, 84, .	1.4	74
98	Development of functional gene microarrays for microbial community analysis. Current Opinion in Biotechnology, 2012, 23, 49-55.	3.3	73
99	Strain/species identification in metagenomes using genome-specific markers. Nucleic Acids Research, 2014, 42, e67-e67.	6.5	72
100	Responses of Aromatic-Degrading Microbial Communities to Elevated Nitrate in Sediments. Environmental Science & Technology, 2015, 49, 12422-12431.	4.6	72
101	Effects of Bacillus amyloliquefaciens ZM9 on bacterial wilt and rhizosphere microbial communities of tobacco. Applied Soil Ecology, 2016, 103, 1-12.	2.1	71
102	Analysis of a Ferric Uptake Regulator (Fur) Mutant of <i>Desulfovibrio vulgaris</i> Hildenborough. Applied and Environmental Microbiology, 2007, 73, 5389-5400.	1.4	70
103	Microarray-based analysis of microbial functional diversity along an oil contamination gradient in oil field. FEMS Microbiology Ecology, 2009, 70, 324-333.	1.3	70
104	Microbial functional trait of rRNA operon copy numbers increases with organic levels in anaerobic digesters. ISME Journal, 2017, 11, 2874-2878.	4.4	70
105	Improvement of Oligonucleotide Probe Design Criteria for Functional Gene Microarrays in Environmental Applications. Applied and Environmental Microbiology, 2006, 72, 1688-1691.	1.4	68
106	Diversity, function and assembly of mangrove root-associated microbial communities at a continuous fine-scale. Npj Biofilms and Microbiomes, 2020, 6, 52.	2.9	68
107	Biogeographic patterns of microbial co-occurrence ecological networks in six American forests. Soil Biology and Biochemistry, 2020, 148, 107897.	4.2	68
108	Impact of elevated nitrate on sulfate-reducing bacteria: a comparative Study of <i>Desulfovibrio vulgaris</i> . ISME Journal, 2010, 4, 1386-1397.	4.4	67

#	Article	IF	CITATIONS
109	Transcriptomic and proteomic analyses of Desulfovibrio vulgaris biofilms: Carbon and energy flow contribute to the distinct biofilm growth state. BMC Genomics, 2012, 13, 138.	1.2	67
110	Gene-informed decomposition model predicts lower soil carbon loss due to persistent microbial adaptation to warming. Nature Communications, 2020, 11, 4897.	5.8	67
111	Mechanisms of enhanced cellulosic bioethanol fermentation by co-cultivation of Clostridium and Thermoanaerobacter spp Bioresource Technology, 2011, 102, 9586-9592.	4.8	66
112	Functional responses of methanogenic archaea to syntrophic growth. ISME Journal, 2012, 6, 2045-2055.	4.4	66
113	GeoChip-based analysis of the functional gene diversity and metabolic potential of soil microbial communities of mangroves. Applied Microbiology and Biotechnology, 2013, 97, 7035-7048.	1.7	66
114	Metagenomics Reveals Pervasive Bacterial Populations and Reduced Community Diversity across the Alaska Tundra Ecosystem. Frontiers in Microbiology, 2016, 7, 579.	1.5	66
115	Mangrove Sediment Microbiome: Adaptive Microbial Assemblages and Their Routed Biogeochemical Processes in Yunxiao Mangrove National Nature Reserve, China. Microbial Ecology, 2019, 78, 57-69.	1.4	66
116	Bacteria-driven phthalic acid ester biodegradation: Current status and emerging opportunities. Environment International, 2021, 154, 106560.	4.8	66
117	Global Transcriptional, Physiological, and Metabolite Analyses of the Responses of <i>Desulfovibrio vulgaris</i> Hildenborough to Salt Adaptation. Applied and Environmental Microbiology, 2010, 76, 1574-1586.	1.4	64
118	GeoChip-Based Analysis of Microbial Functional Gene Diversity in a Landfill Leachate-Contaminated Aquifer. Environmental Science & Technology, 2012, 46, 5824-5833.	4.6	64
119	Interconnection of Key Microbial Functional Genes for Enhanced Benzo[<i>a</i>]pyrene Biodegradation in Sediments by Microbial Electrochemistry. Environmental Science & Technology, 2017, 51, 8519-8529.	4.6	64
120	Interdomain ecological networks between plants and microbes. Molecular Ecology Resources, 2019, 19, 1565-1577.	2.2	64
121	Host development overwhelms environmental dispersal in governing the ecological succession of zebrafish gut microbiota. Npj Biofilms and Microbiomes, 2021, 7, 5.	2.9	64
122	Microbial taxa and functional genes shift in degraded soil with bacterial wilt. Scientific Reports, 2017, 7, 39911.	1.6	63
123	Metagenomic reconstruction of nitrogen cycling pathways in a CO2-enriched grassland ecosystem. Soil Biology and Biochemistry, 2017, 106, 99-108.	4.2	63
124	Response of <i>Desulfovibrio vulgaris</i> to Alkaline Stress. Journal of Bacteriology, 2007, 189, 8944-8952.	1.0	62
125	Distinct mechanisms shape soil bacterial and fungal co-occurrence networks in a mountain ecosystem. FEMS Microbiology Ecology, 2020, 96, .	1.3	62
126	Organohalide-Respiring Bacteria in Polluted Urban Rivers Employ Novel Bifunctional Reductive Dehalogenases to Dechlorinate Polychlorinated Biphenyls and Tetrachloroethene. Environmental Science & Technology, 2020, 54, 8791-8800.	4.6	61

#	Article	IF	CITATIONS
127	Alkaline phosphatase activity mediates soil organic phosphorus mineralization in a subalpine forest ecosystem. Geoderma, 2021, 404, 115376.	2.3	60
128	Use of Microarrays with Different Probe Sizes for Monitoring Gene Expression. Applied and Environmental Microbiology, 2005, 71, 5154-5162.	1.4	59
129	Shifts of functional gene representation in wheat rhizosphere microbial communities under elevated ozone. ISME Journal, 2013, 7, 660-671.	4.4	59
130	Cas9-Based Tools for Targeted Genome Editing and Transcriptional Control. Applied and Environmental Microbiology, 2014, 80, 1544-1552.	1.4	59
131	Declined soil suppressiveness to Fusarium oxysporum by rhizosphere microflora of cotton in soil sickness. Biology and Fertility of Soils, 2015, 51, 935-946.	2.3	58
132	Temporal Transcriptomic Analysis as Desulfovibrio vulgaris Hildenborough Transitions into Stationary Phase during Electron Donor Depletion. Applied and Environmental Microbiology, 2006, 72, 5578-5588.	1.4	57
133	Characterization of the Central Metabolic Pathways in <i>Thermoanaerobacter</i> sp. Strain X514 via Isotopomer-Assisted Metabolite Analysis. Applied and Environmental Microbiology, 2009, 75, 5001-5008.	1.4	57
134	Functional Biogeography as Evidence of Gene Transfer in Hypersaline Microbial Communities. PLoS ONE, 2010, 5, e12919.	1.1	57
135	Over 150ÂYears of Long-Term Fertilization Alters Spatial Scaling of Microbial Biodiversity. MBio, 2015, 6,	1.8	57
136	Elevated carbon dioxide accelerates the spatial turnover of soil microbial communities. Global Change Biology, 2016, 22, 957-964.	4.2	57
137	Microbial Functional Gene Diversity Predicts Groundwater Contamination and Ecosystem Functioning. MBio, 2018, 9, .	1.8	57
138	Mechanistic insights into organic carbon-driven water blackening and odorization of urban rivers. Journal of Hazardous Materials, 2021, 405, 124663.	6.5	56
139	Pellicle formation in Shewanella oneidensis. BMC Microbiology, 2010, 10, 291.	1.3	55
140	Applications of functional gene microarrays for profiling microbial communities. Current Opinion in Biotechnology, 2012, 23, 460-466.	3.3	55
141	Functional Gene Array-Based Ultrasensitive and Quantitative Detection of Microbial Populations in Complex Communities. MSystems, 2019, 4, .	1.7	54
142	Ecogenomics Reveals Metals and Land-Use Pressures on Microbial Communities in the Waterways of a Megacity. Environmental Science & Technology, 2015, 49, 1462-1471.	4.6	53
143	Genetic Linkage of Soil Carbon Pools and Microbial Functions in Subtropical Freshwater Wetlands in Response to Experimental Warming. Applied and Environmental Microbiology, 2012, 78, 7652-7661.	1.4	52
144	The Diversity and Co-occurrence Patterns of N2-Fixing Communities in a CO2-Enriched Grassland Ecosystem. Microbial Ecology, 2016, 71, 604-615.	1.4	52

#	Article	IF	CITATIONS
145	SCycDB: A curated functional gene database for metagenomic profiling of sulphur cycling pathways. Molecular Ecology Resources, 2021, 21, 924-940.	2.2	52
146	Dynamics of Microbial Community Composition and Function during In Situ Bioremediation of a Uranium-Contaminated Aquifer. Applied and Environmental Microbiology, 2011, 77, 3860-3869.	1.4	51
147	Widespread Distribution of Soluble Di-Iron Monooxygenase (SDIMO) Genes in Arctic Groundwater Impacted by 1,4-Dioxane. Environmental Science & Technology, 2013, 47, 9950-9958.	4.6	51
148	Elevated CO2 and Warming Altered Grassland Microbial Communities in Soil Top-Layers. Frontiers in Microbiology, 2018, 9, 1790.	1.5	51
149	Spatial Distribution, Bioconversion and Ecological Risk of PCBs and PBDEs in the Surface Sediment of Contaminated Urban Rivers: A Nationwide Study in China. Environmental Science & Technology, 2021, 55, 9579-9590.	4.6	50
150	Large-scale seaweed cultivation diverges water and sediment microbial communities in the coast of Nan'ao Island, South China Sea. Science of the Total Environment, 2017, 598, 97-108.	3.9	49
151	Fungal Communities Respond to Long-Term CO ₂ Elevation by Community Reassembly. Applied and Environmental Microbiology, 2015, 81, 2445-2454.	1.4	48
152	Elevated CO2 shifts the functional structure and metabolic potentials of soil microbial communities in a C4 agroecosystem. Scientific Reports, 2015, 5, 9316.	1.6	48
153	The shifts of sediment microbial community phylogenetic and functional structures during chromium (VI) reduction. Ecotoxicology, 2016, 25, 1759-1770.	1.1	48
154	Elevated CO2 influences microbial carbon and nitrogen cycling. BMC Microbiology, 2013, 13, 124.	1.3	47
155	The interactive effects of soil transplant into colder regions and cropping on soil microbiology and biogeochemistry. Environmental Microbiology, 2015, 17, 566-576.	1.8	47
156	Hydrogen peroxideâ€induced oxidative stress responses in <i>Desulfovibrio vulgaris</i> Hildenborough. Environmental Microbiology, 2010, 12, 2645-2657.	1.8	46
157	Characterization of NaCl tolerance in <i>Desulfovibrio vulgaris</i> Hildenborough through experimental evolution. ISME Journal, 2013, 7, 1790-1802.	4.4	46
158	Warming Alters Expressions of Microbial Functional Genes Important to Ecosystem Functioning. Frontiers in Microbiology, 2016, 7, 668.	1.5	46
159	Synergistic interactions of Desulfovibrio and Petrimonas for sulfate-reduction coupling polycyclic aromatic hydrocarbon degradation. Journal of Hazardous Materials, 2021, 407, 124385.	6.5	46
160	A novel method to determine the minimum number of sequences required for reliable microbial community analysis. Journal of Microbiological Methods, 2017, 139, 196-201.	0.7	44
161	Annual Removal of Aboveground Plant Biomass Alters Soil Microbial Responses to Warming. MBio, 2016, 7, .	1.8	43
162	Correlation of Genomic and Physiological Traits of Thermoanaerobacter Species with Biofuel Yields. Applied and Environmental Microbiology, 2011, 77, 7998-8008.	1.4	42

#	Article	IF	CITATIONS
163	Microbial Functional Gene Diversity with a Shift of Subsurface Redox Conditions during <i>In Situ</i> Uranium Reduction. Applied and Environmental Microbiology, 2012, 78, 2966-2972.	1.4	42
164	Sonneratia apetala introduction alters methane cycling microbial communities and increases methane emissions in mangrove ecosystems. Soil Biology and Biochemistry, 2020, 144, 107775.	4.2	42
165	The Ecology and Evolution of Amoeba-Bacterium Interactions. Applied and Environmental Microbiology, 2021, 87, .	1.4	42
166	Synergistic effects of antimony and arsenic contaminations on bacterial, archaeal and fungal communities in the rhizosphere of Miscanthus sinensis: Insights for nitrification and carbon mineralization. Journal of Hazardous Materials, 2021, 411, 125094.	6.5	42
167	Functional Gene Composition, Diversity and Redundancy in Microbial Stream Biofilm Communities. PLoS ONE, 2015, 10, e0123179.	1.1	41
168	Development and applications of functional gene microarrays in the analysis of the functional diversity, composition, and structure of microbial communities. Frontiers of Environmental Science and Engineering in China, 2011, 5, 1-20.	0.8	40
169	Bacterial community and arsenic functional genes diversity in arsenic contaminated soils from different geographic locations. PLoS ONE, 2017, 12, e0176696.	1.1	40
170	Bacterial community responses to tourism development in the Xixi National Wetland Park, China. Science of the Total Environment, 2020, 720, 137570.	3.9	40
171	Functional gene array-based analysis of microbial communities in heavy metals-contaminated lake sediments. FEMS Microbiology Ecology, 2013, 86, 200-214.	1.3	39
172	Microbially-driven sulfur cycling microbial communities in different mangrove sediments. Chemosphere, 2021, 273, 128597.	4.2	39
173	Towards a molecular understanding of N cycling in northern hardwood forests under future rates of N deposition. Soil Biology and Biochemistry, 2013, 66, 130-138.	4.2	38
174	Dramatic Increases of Soil Microbial Functional Gene Diversity at the Treeline Ecotone of Changbai Mountain. Frontiers in Microbiology, 2016, 7, 1184.	1.5	38
175	Coexistence between antibiotic resistance genes and metal resistance genes in manure-fertilized soils. Geoderma, 2021, 382, 114760.	2.3	38
176	The Thermoanaerobacter Glycobiome Reveals Mechanisms of Pentose and Hexose Co-Utilization in Bacteria. PLoS Genetics, 2011, 7, e1002318.	1.5	37
177	Assessing the Microbial Community and Functional Genes in a Vertical Soil Profile with Long-Term Arsenic Contamination. PLoS ONE, 2012, 7, e50507.	1.1	37
178	Functional gene arrays-based analysis of fecal microbiomes in patients with liver cirrhosis. BMC Genomics, 2014, 15, 753.	1.2	36
179	Toward a theory for diversity gradients: the abundance–adaptation hypothesis. Ecography, 2018, 41, 255-264.	2.1	36
180	Ultrasound-Mediated DNA Transformation in Thermophilic Gram-Positive Anaerobes. PLoS ONE, 2010, 5, e12582.	1.1	36

#	Article	IF	CITATIONS
181	Cultivation of seaweed <i>Gracilaria lemaneiformis</i> enhanced biodiversity in a eukaryotic plankton community as revealed via metagenomic analyses. Molecular Ecology, 2018, 27, 1081-1093.	2.0	35
182	Plant roots alter microbial functional genes supporting root litter decomposition. Soil Biology and Biochemistry, 2018, 127, 90-99.	4.2	35
183	Revealing structure and assembly for rhizophyte-endophyte diazotrophic community in mangrove ecosystem after introduced Sonneratia apetala and Laguncularia racemosa. Science of the Total Environment, 2020, 721, 137807.	3.9	35
184	Continental scale structuring of forest and soil diversity via functional traits. Nature Ecology and Evolution, 2019, 3, 1298-1308.	3.4	34
185	Co-symbiosis of arbuscular mycorrhizal fungi (AMF) and diazotrophs promote biological nitrogen fixation in mangrove ecosystems. Soil Biology and Biochemistry, 2021, 161, 108382.	4.2	34
186	Stimulation of soil respiration by elevated CO ₂ is enhanced under nitrogen limitation in a decade-long grassland study. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33317-33324.	3.3	34
187	Alpine soil carbon is vulnerable to rapid microbial decomposition under climate cooling. ISME Journal, 2017, 11, 2102-2111.	4.4	33
188	Soil microbial beta-diversity is linked with compositional variation in aboveground plant biomass in a semi-arid grassland. Plant and Soil, 2018, 423, 465-480.	1.8	33
189	Keystone taxa of water microbiome respond to environmental quality and predict water contamination. Environmental Research, 2020, 187, 109666.	3.7	33
190	Functional Characterization of Crp/Fnr-Type Global Transcriptional Regulators in Desulfovibrio vulgaris Hildenborough. Applied and Environmental Microbiology, 2012, 78, 1168-1177.	1.4	32
191	The PathoChip, a functional gene array for assessing pathogenic properties of diverse microbial communities. ISME Journal, 2013, 7, 1974-1984.	4.4	32
192	Divergent Responses of Forest Soil Microbial Communities under Elevated CO 2 in Different Depths of Upper Soil Layers. Applied and Environmental Microbiology, 2018, 84, .	1.4	31
193	Microbial genetic and enzymatic responses to an anthropogenic phosphorus gradient within a subtropical peatland. Geoderma, 2016, 268, 119-127.	2.3	30
194	Host–microbiota interactions and responses to grass carp reovirus infection in <i>Ctenopharyngodon idellus</i> . Environmental Microbiology, 2021, 23, 431-447.	1.8	30
195	PCycDB: a comprehensive and accurate database for fast analysis of phosphorus cycling genes. Microbiome, 2022, 10, .	4.9	30
196	Phylogenetic and Functional Diversity of Microbial Communities Associated with Subsurface Sediments of the Sonora Margin, Guaymas Basin. PLoS ONE, 2014, 9, e104427.	1.1	29
197	Geochip-based analysis of microbial communities in alpine meadow soils in the Qinghai-Tibetan plateau. BMC Microbiology, 2013, 13, 72.	1.3	28
198	Shifts in the phylogenetic structure and functional capacity of soil microbial communities follow alteration of native tussock grassland ecosystems. Soil Biology and Biochemistry, 2013, 57, 675-682.	4.2	28

#	Article	IF	CITATIONS
199	Nitrite and nitrate reduction drive sediment microbial nitrogen cycling in a eutrophic lake. Water Research, 2022, 220, 118637.	5.3	28
200	Prevalence of antibiotic resistance genes and bacterial pathogens along the soil–mangrove root continuum. Journal of Hazardous Materials, 2021, 408, 124985.	6.5	27
201	Substrate-dependent competition and cooperation relationships between <i>Geobacter</i> and <i>Dehalococcoides</i> for their organohalide respiration. ISME Communications, 2021, 1, .	1.7	27
202	The complicated substrates enhance the microbial diversity and zinc leaching efficiency in sphalerite bioleaching system. Applied Microbiology and Biotechnology, 2015, 99, 10311-10322.	1.7	26
203	Impacts of hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor (mesotrione) on photosynthetic processes in Chlamydomonas reinhardtii. Environmental Pollution, 2019, 244, 295-303.	3.7	26
204	Improvement of cellulose catabolism in Clostridium cellulolyticum by sporulation abolishment and carbon alleviation. Biotechnology for Biofuels, 2014, 7, 25.	6.2	25
205	A comprehensive insight into functional profiles of free-living microbial community responses to a toxic Akashiwo sanguinea bloom. Scientific Reports, 2016, 6, 34645.	1.6	25
206	Functional Gene Diversity and Metabolic Potential of the Microbial Community in an Estuary-Shelf Environment. Frontiers in Microbiology, 2017, 8, 1153.	1.5	25
207	Applying GeoChip Analysis to Disparate Microbial Communities. Microbe Magazine, 2010, 5, 60-65.	0.4	25
208	Complex Bilateral Interactions Determine the Fate of Polystyrene Micro- and Nanoplastics and Soil Protists: Implications from a Soil Amoeba. Environmental Science & Technology, 2022, 56, 4936-4949.	4.6	25
209	Dynamic Succession of Groundwater Functional Microbial Communities in Response to Emulsified Vegetable Oil Amendment during Sustained <i>In Situ</i> U(VI) Reduction. Applied and Environmental Microbiology, 2015, 81, 4164-4172.	1.4	24
210	Rapid selective sweep of pre-existing polymorphisms and slow fixation of new mutations in experimental evolution of <i>Desulfovibrio vulgaris</i> . ISME Journal, 2015, 9, 2360-2372.	4.4	24
211	Spatial scaling of forest soil microbial communities across a temperature gradient. Environmental Microbiology, 2018, 20, 3504-3513.	1.8	24
212	Depth-dependent variability of biological nitrogen fixation and diazotrophic communities in mangrove sediments. Microbiome, 2021, 9, 212.	4.9	24
213	Continuous Cellulosic Bioethanol Fermentation by Cyclic Fed-Batch Cocultivation. Applied and Environmental Microbiology, 2013, 79, 1580-1589.	1.4	23
214	Isolation and Characterization of <i>Shigella flexneri</i> G3, Capable of Effective Cellulosic Saccharification under Mesophilic Conditions. Applied and Environmental Microbiology, 2011, 77, 517-523.	1.4	22
215	Combined Genomics and Experimental Analyses of Respiratory Characteristics of Shewanella putrefaciens W3-18-1. Applied and Environmental Microbiology, 2013, 79, 5250-5257.	1.4	22
216	Dynamic Succession of Groundwater Sulfate-Reducing Communities during Prolonged Reduction of Uranium in a Contaminated Aquifer. Environmental Science & Technology, 2017, 51, 3609-3620.	4.6	22

#	Article	IF	CITATIONS
217	Microbial functional diversity covaries with permafrost thawâ€induced environmental heterogeneity in tundra soil. Global Change Biology, 2018, 24, 297-307.	4.2	22
218	Long-Term Warming in Alaska Enlarges the Diazotrophic Community in Deep Soils. MBio, 2019, 10, .	1.8	22
219	Environmental effects of nanoparticles on the ecological succession of gut microbiota across zebrafish development. Science of the Total Environment, 2022, 806, 150963.	3.9	22
220	Design and analysis of mismatch probes for long oligonucleotide microarrays. BMC Genomics, 2008, 9, 491.	1.2	21
221	Use of functional gene arrays for elucidating in situ biodegradation. Frontiers in Microbiology, 2012, 3, 339.	1.5	21
222	Protection of dietary selenium-enriched seaweed Gracilaria lemaneiformis against cadmium toxicity to abalone Haliotis discus hannai. Ecotoxicology and Environmental Safety, 2019, 171, 398-405.	2.9	21
223	Elevated nitrate simplifies microbial community compositions and interactions in sulfide-rich river sediments. Science of the Total Environment, 2021, 750, 141513.	3.9	21
224	Contribution of mobile genetic elements to <i>Desulfovibrio vulgaris</i> genome plasticity. Environmental Microbiology, 2009, 11, 2244-2252.	1.8	20
225	Microarray-Based Evaluation of Whole-Community Genome DNA Amplification Methods. Applied and Environmental Microbiology, 2011, 77, 4241-4245.	1.4	20
226	Deletion of the Desulfovibrio vulgaris Carbon Monoxide Sensor Invokes Global Changes in Transcription. Journal of Bacteriology, 2012, 194, 5783-5793.	1.0	20
227	Microbial functional genes commonly respond to elevated carbon dioxide. Environment International, 2020, 144, 106068.	4.8	20
228	Microbial Electricity Generation Enhances Decabromodiphenyl Ether (BDE-209) Degradation. PLoS ONE, 2013, 8, e70686.	1.1	19
229	Metagenomic-based analysis of biofilm communities for electrohydrogenesis: From wastewater to hydrogen. International Journal of Hydrogen Energy, 2014, 39, 4222-4233.	3.8	19
230	A Slow-Release Substrate Stimulates Groundwater Microbial Communities for Long-Term in Situ Cr(VI) Reduction. Environmental Science & Technology, 2015, 49, 12922-12931.	4.6	19
231	Cas9 Nickase-Assisted RNA Repression Enables Stable and Efficient Manipulation of Essential Metabolic Genes in Clostridium cellulolyticum. Frontiers in Microbiology, 2017, 8, 1744.	1.5	19
232	Temperature determines the diversity and structure of N ₂ Oâ€reducing microbial assemblages. Functional Ecology, 2018, 32, 1867-1878.	1.7	19
233	Effects of Titanium Dioxide Nanoparticles on Photosynthetic and Antioxidative Processes of Scenedesmus obliquus. Plants, 2020, 9, 1748.	1.6	19
234	Sediment resuspension drives protist metacommunity structure and assembly in grass carp (Ctenopharyngodon idella) aquaculture ponds. Science of the Total Environment, 2021, 764, 142840.	3.9	19

#	Article	IF	CITATIONS
235	Toxic and protective mechanisms of cyanobacterium Synechocystis sp. in response to titanium dioxide nanoparticles. Environmental Pollution, 2021, 274, 116508.	3.7	19
236	Metagenomic insights into the effects of submerged plants on functional potential of microbial communities in wetland sediments. Marine Life Science and Technology, 2021, 3, 405-415.	1.8	19
237	Enhanced microbial nitrification-denitrification processes in a subtropical metropolitan river network. Water Research, 2022, 222, 118857.	5.3	19
238	The shift of microbial communities and their roles in sulfur and iron cycling in a copper ore bioleaching system. Scientific Reports, 2016, 6, 34744.	1.6	18
239	Dehalococcoides as a Potential Biomarker Evidence for Uncharacterized Organohalides in Environmental Samples. Frontiers in Microbiology, 2017, 8, 1677.	1.5	18
240	A dormant amoeba species can selectively sense and predate on different soil bacteria. Functional Ecology, 2021, 35, 1708-1721.	1.7	18
241	Development of HuMiChip for Functional Profiling of Human Microbiomes. PLoS ONE, 2014, 9, e90546.	1.1	18
242	Construction and evaluation of a Clostridium thermocellum ATCC 27405 whole-genome oligonucleotide microarray. Applied Biochemistry and Biotechnology, 2007, 137-140, 663-674.	1.4	17
243	Development of highly fluorescent silica nanoparticles chemically doped with organic dye for sensitive DNA microarray detection. Analytical and Bioanalytical Chemistry, 2011, 401, 2003-2011.	1.9	17
244	Microbial biogeochemistry of <scp>B</scp> oiling <scp>S</scp> prings <scp>L</scp> ake: a physically dynamic, oligotrophic, lowâ€p <scp>H</scp> geothermal ecosystem. Geobiology, 2013, 11, 356-376.	1.1	17
245	StressChip as a High-Throughput Tool for Assessing Microbial Community Responses to Environmental Stresses. Environmental Science & amp; Technology, 2013, 47, 9841-9849.	4.6	17
246	Proteogenomic Analyses Revealed Favorable Metabolism Pattern Alterations in Rotifer <i>Brachionus plicatilis</i> Fed with Selenium-rich <i>Chlorella</i> . Journal of Agricultural and Food Chemistry, 2018, 66, 6699-6707.	2.4	17
247	The Impact of Anthropogenic Disturbance on Bacterioplankton Communities During the Construction of Donghu Tunnel (Wuhan, China). Microbial Ecology, 2019, 77, 277-287.	1.4	17
248	Fish growth enhances microbial sulfur cycling in aquaculture pond sediments. Microbial Biotechnology, 2020, 13, 1597-1610.	2.0	17
249	Resistance and Resilience of Fish Gut Microbiota to Silver Nanoparticles. MSystems, 2021, 6, e0063021.	1.7	17
250	Environmental Filtering by pH and Salinity Jointly Drives Prokaryotic Community Assembly in Coastal Wetland Sediments. Frontiers in Marine Science, 2022, 8, .	1.2	17
251	Development and application of functional gene arrays for microbial community analysis. Transactions of Nonferrous Metals Society of China, 2008, 18, 1319-1327.	1.7	16
252	Saliva Microbiota Carry Caries-Specific Functional Gene Signatures. PLoS ONE, 2014, 9, e76458.	1.1	16

#	Article	IF	CITATIONS
253	Redox potential and microbial functional gene diversity in wetland sediments under simulated warming conditions: implications for phosphorus mobilization. Hydrobiologia, 2015, 743, 221-235.	1.0	16
254	Lichenysin production is improved in codY null Bacillus licheniformis by addition of precursor amino acids. Applied Microbiology and Biotechnology, 2017, 101, 6375-6383.	1.7	16
255	HuMiChip2 for strain level identification and functional profiling of human microbiomes. Applied Microbiology and Biotechnology, 2017, 101, 423-435.	1.7	16
256	Unraveling the diversity of sedimentary sulfate-reducing prokaryotes (SRP) across Tibetan saline lakes using epicPCR. Microbiome, 2019, 7, 71.	4.9	16
257	MCycDB: A curated database for comprehensively profiling methane cycling processes of environmental microbiomes. Molecular Ecology Resources, 2022, 22, 1803-1823.	2.2	16
258	Strain/Species-Specific Probe Design for Microbial Identification Microarrays. Applied and Environmental Microbiology, 2013, 79, 5085-5088.	1.4	15
259	Organic fertilizer potentiates the transfer of typical antibiotic resistance gene among special bacterial species. Journal of Hazardous Materials, 2022, 435, 128985.	6.5	15
260	Recovery of temperate Desulfovibrio vulgaris bacteriophage using a novel host strain. Environmental Microbiology, 2006, 8, 1950-1959.	1.8	14
261	Structure and distribution of nitrite-dependent anaerobic methane oxidation bacteria vary with water tables in Zoige peatlands. FEMS Microbiology Ecology, 2020, 96, .	1.3	14
262	Key Metabolites and Mechanistic Changes for Salt Tolerance in an Experimentally Evolved Sulfate-Reducing Bacterium, <i>Desulfovibrio vulgaris</i> . MBio, 2017, 8, .	1.8	13
263	Extracellular proteins of Desulfovibrio vulgaris as adsorbents and redox shuttles promote biomineralization of antimony. Journal of Hazardous Materials, 2022, 426, 127795.	6.5	13
264	Microevolution from shock to adaptation revealed strategies improving ethanol tolerance and production in Thermoanaerobacter. Biotechnology for Biofuels, 2013, 6, 103.	6.2	12
265	Genome-Centric Metagenomic Insights into the Impact of Alkaline/Acid and Thermal Sludge Pretreatment on the Microbiome in Digestion Sludge. Applied and Environmental Microbiology, 2020, 86, .	1.4	12
266	Post-agricultural tropical forest regeneration shifts soil microbial functional potential for carbon and nutrient cycling. Soil Biology and Biochemistry, 2020, 145, 107784.	4.2	12
267	Metabolic and phylogenetic profiles of microbial communities from a mariculture base on the Chinese Guangdong coast. Fisheries Science, 2017, 83, 465-477.	0.7	11
268	Taxonomic and Functional Responses of Soil Microbial Communities to Annual Removal of Aboveground Plant Biomass. Frontiers in Microbiology, 2018, 9, 954.	1.5	11
269	Differential distribution of and similar biochemical responses to different species of arsenic and antimony in Vetiveria zizanioides. Environmental Geochemistry and Health, 2020, 42, 3995-4010.	1.8	11
270	Functional Associations and Resilience in Microbial Communities. Microorganisms, 2020, 8, 951.	1.6	11

#	Article	IF	CITATIONS
271	Interactions and Stability of Gut Microbiota in Zebrafish Increase with Host Development. Microbiology Spectrum, 2022, 10, e0169621.	1.2	11
272	Soil Amoebae Affect Iron and Chromium Reduction through Preferential Predation between Two Metal-Reducing Bacteria. Environmental Science & Technology, 2022, 56, 9052-9062.	4.6	11
273	Design and Use of Functional Gene Microarrays (FGAs) for the Characterization of Microbial Communities. Methods in Microbiology, 2004, 34, 331-368.	0.4	10
274	Floc-size effects of the pathogenic bacteria in a membrane bioreactor plant. Environment International, 2019, 127, 645-652.	4.8	10
275	Protection of Siganus oramin, rabbitfish, from heavy metal toxicity by the selenium-enriched seaweed Gracilaria lemaneiformis. Ecotoxicology and Environmental Safety, 2020, 206, 111183.	2.9	10
276	Experimental evolution reveals nitrate tolerance mechanisms in <i>Desulfovibrio vulgaris</i> . ISME Journal, 2020, 14, 2862-2876.	4.4	10
277	Functional structures of soil microbial community relate to contrasting N2O emission patterns from a highly acidified forest. Science of the Total Environment, 2020, 725, 138504.	3.9	10
278	Stimulation of soil microbial functioning by elevated CO2 may surpass effects mediated by irrigation in a semiarid grassland. Geoderma, 2021, 401, 115162.	2.3	10
279	Biogeography of soil protistan consumer and parasite is contrasting and linked to microbial nutrient mineralization in forest soils at a wide-scale. Soil Biology and Biochemistry, 2022, 165, 108513.	4.2	10
280	Transcriptome analysis of pellicle formation of Shewanella oneidensis. Archives of Microbiology, 2012, 194, 473-482.	1.0	9
281	Enhanced synthesis of poly gamma glutamic acid by increasing the intracellular reactive oxygen species in the Bacillus licheniformis l"1-pyrroline-5-carboxylate dehydrogenase gene ycgN-deficient strain. Applied Microbiology and Biotechnology, 2018, 102, 10127-10137.	1.7	9
282	The Beta-Diversity of Siganus fuscescens-Associated Microbial Communities From Different Habitats Increases With Body Weight. Frontiers in Microbiology, 2020, 11, 1562.	1,5	9
283	Environmental risk characteristics of bacterial antibiotic resistome in Antarctic krill. Ecotoxicology and Environmental Safety, 2022, 232, 113289.	2.9	9
284	More functional genes and convergent overall functional patterns detected by geochip in phenanthrene-spiked soils. FEMS Microbiology Ecology, 2012, 82, 148-156.	1.3	8
285	Water content as a primary parameter determines microbial reductive dechlorination activities in soil. Chemosphere, 2021, 267, 129152.	4.2	8
286	Light modulates the effect of antibiotic norfloxacin on photosynthetic processes of Microcystis aeruginosa. Aquatic Toxicology, 2021, 235, 105826.	1.9	8
287	Pollution alters methanogenic and methanotrophic communities and increases dissolved methane in small ponds. Science of the Total Environment, 2021, 801, 149723.	3.9	8
288	Functional microbial community structures and chemical properties indicated mechanisms and potential risks of urban river eco-remediation. Science of the Total Environment, 2022, 803, 149868.	3.9	8

#	Article	IF	CITATIONS
289	NOVEL INSIGHT INTO EVOLUTIONARY PROCESS FROM AVERAGE GENOME SIZE IN MARINE BACTERIOPLANKTONIC BIOTA. Applied Ecology and Environmental Research, 2016, 14, 65-75.	0.2	8
290	Environmental Water and Sediment Microbial Communities Shape Intestine Microbiota for Host Health: The Central Dogma in an Anthropogenic Aquaculture Ecosystem. Frontiers in Microbiology, 2021, 12, 772149.	1.5	8
291	Microbial Community Dynamics and Activity Link to Indigo Production from Indole in Bioaugmented Activated Sludge Systems. PLoS ONE, 2015, 10, e0138455.	1.1	7
292	Organic carbon and eukaryotic predation synergistically change resistance and resilience of aquatic microbial communities. Science of the Total Environment, 2022, 830, 154386.	3.9	7
293	Symbiont-Induced Phagosome Changes Rather than Extracellular Discrimination Contribute to the Formation of Social Amoeba Farming Symbiosis. Microbiology Spectrum, 2022, , e0172721.	1.2	6
294	Dockerinâ€containing protease inhibitor protects key cellulosomal cellulases from proteolysis in <scp><i>C</i></scp> <i>lostridium cellulolyticum</i> . Molecular Microbiology, 2014, 91, 694-705.	1.2	5
295	GeoChip as a metagenomics tool to analyze the microbial gene diversity along an elevation gradient. Genomics Data, 2014, 2, 132-134.	1.3	5
296	Differential Regulation of the Two Ferrochelatase Paralogues in Shewanella loihica PV-4 in Response to Environmental Stresses. Applied and Environmental Microbiology, 2016, 82, 5077-5088.	1.4	5
297	VB ₁₂ Path for Accurate Metagenomic Profiling of Microbially Driven Cobalamin Synthesis Pathways. MSystems, 2021, 6, e0049721.	1.7	5
298	Evaluation of different primers of the 18S rRNA gene to profile amoeba communities in environmental samples. , 2022, 1, 100057.		5
299	Characterization of cytochrome mutants for pellicle formation in Shewanella onedensis MR-1. Transactions of Nonferrous Metals Society of China, 2009, 19, 700-706.	1.7	4
300	Dynamics of Microbial Community Composition and Function duringIn SituBioremediation of a Uranium-Contaminated Aquifer. Applied and Environmental Microbiology, 2011, 77, 5063-5063.	1.4	4
301	Correspondence: Reply to â€~Analytical flaws in a continental-scale forest soil microbial diversity study'. Nature Communications, 2017, 8, 15583.	5.8	4
302	GeoChip profiling of microbial community in response to global changes simulated by soil transplant and cropping. Genomics Data, 2014, 2, 166-169.	1.3	3
303	Metabolic and phylogenetic profile of bacterial community in Guishan coastal water (Pearl River) Tj ETQq1 1 0.78	4314 rgB ⁻ 0.6	T /gverlock
304	Size-fractioned aggregates within phycosphere define functional bacterial communities related to Microcystis aeruginosa and Euglena sanguinea blooms. Aquatic Ecology, 2020, 54, 609-623.	0.7	3
305	Thermal disruption of soil bacterial assemblages decreases diversity and assemblage similarity. Ecosphere, 2019, 10, e02598.	1.0	2
306	GeoChip-Based Metagenomic Technologies for Analyzing Microbial Community Functional Structure and Activities. , 2013, , 1-13.		2

#	Article	IF	CITATIONS
307	Correction to GeoChip-Based Analysis of Microbial Functional Gene Diversity in a Landfill Leachate-Contaminated Aquifer. Environmental Science & Technology, 2013, 47, 2142-2142.	4.6	1
308	Microbial functional gene diversity in natural secondary forest Ultisols. Acta Oecologica, 2020, 105, 103575.	0.5	1
309	Construction and Evaluation of a Clostridium thermocellum ATCC 27405 Whole-Genome Oligonucleotide Microarray. , 2007, , 663-674.		1
310	Detection and Characterization of Uncultivated Microorganisms Using Microarrays. Microbiology Monographs, 2009, , 35-58.	0.3	1
311	Monitoring Microbial Activity with GeoChip. , 0, , 261-P1.		0
312	Genetic Elucidation of Quorum Sensing and Cobamide Biosynthesis in Divergent Bacterial-Fungal Associations Across the Soil-Mangrove Root Interface. Frontiers in Microbiology, 2021, 12, 698385.	1.5	0
313	Section 7 Update - Selection of oligonucleotide probes for microarrays. , 2008, , 1880-1891.		0
314	Detection and Characterization of Uncultivated Microorganisms Using Microarrays. Microbiology Monographs, 2009, , 179-202.	0.3	0
315	Analysis of Microbial Communities by Functional Gene Arrays. , 2010, , 109-126.		0