Hiroaki Wakimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1545087/publications.pdf

Version: 2024-02-01

199 papers 16,815 citations

25034 57 h-index 120 g-index

206 all docs

206
docs citations

206 times ranked 22181 citing authors

#	Article	IF	CITATIONS
1	Distinct clinical outcome of microcystic meningioma as a WHO grade 1 meningioma subtype. Journal of Neuro-Oncology, 2023, 161, 193-202.	2.9	2
2	Anatomy-oriented stereotactic approach to cerebrospinal fluid collection in mice. Brain Research, 2022, 1774, 147706.	2.2	5
3	Implications of IDH mutations on immunotherapeutic strategies for malignant glioma. Neurosurgical Focus, 2022, 52, E6.	2.3	10
4	Correlation of Intraoperative 5-ALA-Induced Fluorescence Intensity and Preoperative 11C-Methionine PET Uptake in Glioma Surgery. Cancers, 2022, 14, 1449.	3.7	5
5	HSP90 Inhibition Overcomes Resistance to Molecular Targeted Therapy in <i>BRAFV600E</i> mutant High-grade Glioma. Clinical Cancer Research, 2022, 28, 2425-2439.	7.0	17
6	Activity of Adagrasib (MRTX849) in Brain Metastases: Preclinical Models and Clinical Data from Patients with KRASG12C-Mutant Non–Small Cell Lung Cancer. Clinical Cancer Research, 2022, 28, 3318-3328.	7.0	45
7	Target receptor identification and subsequent treatment of resected brain tumors with encapsulated and engineered allogeneic stem cells. Nature Communications, 2022, 13, 2810.	12.8	10
8	Abstract 1841: MRTX849 inhibits P-gp and demonstrates CNS exposure in mouse models and cancer patients and demonstrates antitumor activity in intracranial mouse models of lung cancer brain metastasis. Cancer Research, 2022, 82, 1841-1841.	0.9	0
9	Interferon- \hat{I}^3 resistance and immune evasion in glioma develop via Notch-regulated co-evolution of malignant and immune cells. Developmental Cell, 2022, 57, 1847-1865.e9.	7.0	15
10	Pre-clinical tumor models of primary brain tumors: Challenges and opportunities. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1875, 188458.	7.4	34
11	Sirtuin activation targets IDH-mutant tumors. Neuro-Oncology, 2021, 23, 53-62.	1.2	15
12	Modification of Extracellular Matrix Enhances Oncolytic Adenovirus Immunotherapy in Glioblastoma. Clinical Cancer Research, 2021, 27, 889-902.	7.0	41
13	DDRE-03. IDH1-MUTANT GBM CELLS ARE HIGHLY SENSITIVE TO COMBINATION OF KDM6A/B AND HDAC INHIBITORS. Neuro-Oncology Advances, 2021, 3, i6-i7.	0.7	O
14	Inhibitory CD161 receptor identified in glioma-infiltrating TÂcells by single-cell analysis. Cell, 2021, 184, 1281-1298.e26.	28.9	210
15	Topography of transcriptionally active chromatin in glioblastoma. Science Advances, 2021, 7, .	10.3	19
16	MEF2C silencing downregulates NF2 and E-cadherin and enhances Erastin-induced ferroptosis in meningioma. Neuro-Oncology, 2021, 23, 2014-2027.	1.2	29
17	Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma. Cancer Cell, 2021, 39, 779-792.e11.	16.8	245
18	Oncolytic Herpes Simplex Virus-Based Therapies for Cancer. Cells, 2021, 10, 1541.	4.1	24

#	Article	IF	Citations
19	OMRT-14. Small molecule circadian clock compounds exhibit potential as a novel therapy paradigm for glioblastoma. Neuro-Oncology Advances, 2021, 3, ii9-ii9.	0.7	0
20	Abstract 2123: Chromatin profiling of glioblastoma tissues identifies core oncogenic dependency and therapeutic opportunities., 2021,,.		0
21	OTME-7. Cancer - immune cell interactions drive transitions to mesenchymal-like state in glioblastoma. Neuro-Oncology Advances, 2021, 3, ii14-ii15.	0.7	0
22	Defining phenotypic and functional heterogeneity of glioblastoma stem cells by mass cytometry. JCI Insight, 2021, 6, .	5.0	10
23	Mesenchymal stem cell immunomodulation: In pursuit of controlling COVID-19 related cytokine storm. Stem Cells, 2021, 39, 707-722.	3.2	42
24	Extracellular matrix in glioblastoma: opportunities for emerging therapeutic approaches. American Journal of Cancer Research, 2021, 11, 3742-3754.	1.4	6
25	PATH-37. DISTINCT GENOMIC SUBCLASSES OF HIGH-GRADE/PROGRESSIVE MENINGIOMAS: NF2-ASSOCIATED, NF2-EXCLUSIVE, AND NF2-AGNOSTIC. Neuro-Oncology, 2021, 23, vi123-vi123.	1.2	0
26	EXTH-54. PHOTODYNAMIC ONCOLYTIC VIROTHERAPY INCORPORATING GENETICALLY ENGINEERED PHOTOSENSITIZER KILLERRED FOR THE TREATMENT OF CENTRAL NERVOUS SYSTEM MALIGNANCIES. Neuro-Oncology, 2021, 23, vi175-vi175.	1.2	0
27	TAMI-12. CANCER-IMMUNE CELL INTERACTIONS DRIVE TRANSITIONS TO MESENCHYMAL-LIKE STATES IN GLIOBLASTOMA. Neuro-Oncology, 2021, 23, vi200-vi200.	1.2	0
28	EXTH-73. PROTEASOME INHIBITION EXPOSES SELECTIVE VULNERABILITY IN CENTRAL NERVOUS SYSTEM LYMPHOMA. Neuro-Oncology, 2021, 23, vi180-vi180.	1.2	0
29	Restoration of Temozolomide Sensitivity by PARP Inhibitors in Mismatch Repair Deficient Glioblastoma is Independent of Base Excision Repair. Clinical Cancer Research, 2020, 26, 1690-1699.	7.0	76
30	High Tumor Mitochondrial DNA Content Correlates With an Improved Patient's Outcome in WHO Grade III Meningioma. Frontiers in Oncology, 2020, 10, 542294.	2.8	2
31	A Hyperactive RelA/p65-Hexokinase 2 Signaling Axis Drives Primary Central Nervous System Lymphoma. Cancer Research, 2020, 80, 5330-5343.	0.9	19
32	Distinct genomic subclasses of high-grade/progressive meningiomas: NF2-associated, NF2-exclusive, and NF2-agnostic. Acta Neuropathologica Communications, 2020, 8, 171.	5.2	58
33	Prognostic Model That Predicts Benefits of Adjuvant Radiotherapy in Patients With High Grade Meningioma. Frontiers in Oncology, 2020, 10, 568079.	2.8	6
34	IDH-mutant gliomas harbor fewer regulatory T cells in humans and mice. Oncolmmunology, 2020, 9, 1806662.	4.6	26
35	Characterization and oncolytic virus targeting of FAP-expressing tumor-associated pericytes in glioblastoma. Acta Neuropathologica Communications, 2020, 8, 221.	5.2	26
36	Frequent inactivating mutations of the PBAF complex gene PBRM1 in meningioma with papillary features. Acta Neuropathologica, 2020, 140, 89-93.	7.7	32

#	Article	IF	CITATIONS
37	Exploring Predictors of Response to Dacomitinib in <i>EGFR</i> -Amplified Recurrent Glioblastoma. JCO Precision Oncology, 2020, 4, 593-613.	3.0	21
38	Poly(ADP-ribose) Glycohydrolase Inhibition Sequesters NAD+ to Potentiate the Metabolic Lethality of Alkylating Chemotherapy in IDH-Mutant Tumor Cells. Cancer Discovery, 2020, 10, 1672-1689.	9.4	30
39	Long-term outcomes of multimodality management for parasagittal meningiomas. Journal of Neuro-Oncology, 2020, 147, 441-450.	2.9	11
40	Therapeutic Application of PARP Inhibitors in Neuro-Oncology. Trends in Cancer, 2020, 6, 147-159.	7.4	9
41	Bidirectional Regulation between NDRG1 and GSK3β Controls Tumor Growth and Is Targeted by Differentiation Inducing Factor-1 in Glioblastoma. Cancer Research, 2020, 80, 234-248.	0.9	20
42	Local Targeting of NAD+ Salvage Pathway Alters the Immune Tumor Microenvironment and Enhances Checkpoint Immunotherapy in Glioblastoma. Cancer Research, 2020, 80, 5024-5034.	0.9	28
43	Corrigendum to: Recycling drug screen repurposes hydroxyurea as a sensitizer of glioblastomas to temozolomide targeting de novo DNA synthesis, irrespective of molecular subtype. Neuro-Oncology, 2020, 22, 1894-1894.	1.2	O
44	TAMI-30. LOCAL TARGETING OF NAD+ SALVAGE PATHWAY ALTERS THE IMMUNE TUMOR MICROENVIRONMENT AND ENHANCES CHECKPOINT IMMUNOTHERAPY IN GLIOBLASTOMA. Neuro-Oncology, 2020, 22, ii219-ii219.	1.2	0
45	CBMS-04 Novel xenograft model to clarify tumor progressive mechanism and therapeutic target in primary central nervous system lymphoma. Neuro-Oncology Advances, 2020, 2, ii4-ii4.	0.7	О
46	EXTH-10. COMBINATION OF EPIGENETIC ENZYME INHIBITORS, GSK-J4 AND BELINOSTAT, REVEALS HIGH EFFICACY IN IDH1 MUTANT GLIOMAS. Neuro-Oncology, 2020, 22, ii88-ii89.	1.2	0
47	TAMI-36. CONNEXIN 43 BLOCKADE INHIBITS PROLIFERATION IN IDH1-MUTANT GLIOMA CELLS. Neuro-Oncology, 2020, 22, ii220-ii221.	1.2	О
48	TAMI-20. POLY(ADP-RIBOSE) GLYCOHYDROLASE INHIBITION SEQUESTERS NAD+ TO POTENTIATE THE METABOLIC LETHALITY OF ALKYLATING CHEMOTHERAPY IN IDH MUTANT TUMOR CELLS. Neuro-Oncology, 2020, 22, ii217-ii217.	1.2	0
49	IMP dehydrogenase-2 drives aberrant nucleolar activity and promotes tumorigenesis in glioblastoma. Nature Cell Biology, 2019, 21, 1003-1014.	10.3	107
50	Glioblastoma: State of the Art and Future Perspectives. Cancers, 2019, 11, 1091.	3.7	7
51	An Integrative Model of Cellular States, Plasticity, and Genetics for Glioblastoma. Cell, 2019, 178, 835-849.e21.	28.9	1,408
52	A Monoclonal Antibody Against \hat{I}^21 Integrin Inhibits Proliferation and Increases Survival in an Orthotopic Model of High-Grade Meningioma. Targeted Oncology, 2019, 14, 479-489.	3.6	12
53	CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nature Biotechnology, 2019, 37, 1049-1058.	17.5	347
54	Myc targeted CDK18 promotes ATR and homologous recombination to mediate PARP inhibitor resistance in glioblastoma. Nature Communications, 2019, 10, 2910.	12.8	77

#	Article	IF	CITATIONS
55	Bispecific T-Cell Engager -Armored Chimeric Antigen Receptor T Cells Overcome Antigen Escape From EGFRvIII-Targeted Therapy For Glioblastoma. Neurosurgery, 2019, 66, 310-154.	1.1	O
56	Construction of Oncolytic Herpes Simplex Virus with Therapeutic Genes of Interest. Methods in Molecular Biology, 2019, 1937, 177-188.	0.9	6
57	Targeting the PI3K/Akt/mTOR pathway with the pan-Akt inhibitor GDC-0068 in PIK3CA-mutant breast cancer brain metastases. Neuro-Oncology, 2019, 21, 1401-1411.	1.2	70
58	Oncolytic Herpes Simplex Virus and PI3K Inhibitor BKM120 Synergize to Promote Killing of Prostate Cancer Stem-like Cells. Molecular Therapy - Oncolytics, 2019, 13, 58-66.	4.4	20
59	Oncolytic herpes simplex virus therapy for malignant glioma: current approaches to successful clinical application. Expert Opinion on Biological Therapy, 2019, 19, 845-854.	3.1	17
60	PI3K/AKT/mTOR Pathway Alterations Promote Malignant Progression and Xenograft Formation in Oligodendroglial Tumors. Clinical Cancer Research, 2019, 25, 4375-4387.	7.0	26
61	The Dual PI3K/mTOR Pathway Inhibitor GDC-0084 Achieves Antitumor Activity in <i>PIK3CA</i> Breast Cancer Brain Metastases. Clinical Cancer Research, 2019, 25, 3374-3383.	7.0	57
62	CBMT-47. MODULATION OF NAD PATHWAYS AS A THERAPEUTIC STRATEGY FOR TARGETING IDH MUTANT GLIOMA. Neuro-Oncology, 2019, 21, vi43-vi43.	1.2	0
63	DRES-05. PREDICTORS OF SENSITIVITY TO COMBINED TEMOZOLOMIDE AND PARP INHIBITOR IN GLIOMA. Neuro-Oncology, 2019, 21, vi72-vi72.	1.2	O
64	SPDR-05 PARP INHIBITORS RESTORE TEMOZOLOMIDE SENSITIVITY IN MSH6-DEFICIENT TEMOZOLOMIDE-RESISTANT GLIOBLASTOMA CELLS. Neuro-Oncology Advances, 2019, 1, ii7-ii7.	0.7	0
65	TB-02 NF-KB CANONICAL PATHWAY ACTIVATION DRIVES GLYCOLYSIS AND TUMOR PROGRESSION IN PRIMARY CENTRAL NERVOUS SYSTEM LYMPHOMA. Neuro-Oncology Advances, 2019, 1, ii10-ii10.	0.7	O
66	EXTH-49. THERAPEUTIC EFFICACY OF ENGINEERED, HYDROGEL ENCAPSULATED BIMODAL MSC IN GLIOBLASTOMA STRATIFIED ON CELL SURFACE RECEPTOR EXPRESSION. Neuro-Oncology, 2019, 21, vi93-vi93.	1.2	0
67	<p>Preclinical And Clinical Development Of Oncolytic Adenovirus For The Treatment Of Malignant Glioma</p> . Oncolytic Virotherapy, 2019, Volume 8, 27-37.	6.0	54
68	Identification of SERPINE1 as a Regulator of Glioblastoma Cell Dispersal with Transcriptome Profiling. Cancers, 2019, 11, 1651.	3.7	43
69	TMIC-25. MODIFICATION OF EXTRACELLULAR MATRIX ENHANCES ONCOLYTIC ADENOVIRUS IMMUNOTHERAPY IN GLIOBLASTOMA. Neuro-Oncology, 2019, 21, vi252-vi253.	1.2	O
70	Cell Surface Notch Ligand DLL3 is a Therapeutic Target in Isocitrate Dehydrogenase–mutant Glioma. Clinical Cancer Research, 2019, 25, 1261-1271.	7.0	50
71	Genetically distinct glioma stem-like cell xenografts established from paired glioblastoma samples harvested before and after molecularly targeted therapy. Scientific Reports, 2019, 9, 139.	3.3	9
72	Deubiquitinating ALDH1A3 key to maintaining the culprit of aggressive brain cancer. Journal of Clinical Investigation, 2019, 129, 1833-1835.	8.2	1

#	Article	lF	Citations
73	Recycling drug screen repurposes hydroxyurea as a sensitizer of glioblastomas to temozolomide targeting de novo DNA synthesis, irrespective of molecular subtype. Neuro-Oncology, 2018, 20, 642-654.	1.2	39
74	Combinatorial Effects of VEGFR Kinase Inhibitor Axitinib and Oncolytic Virotherapy in Mouse and Human Glioblastoma Stem-Like Cell Models. Clinical Cancer Research, 2018, 24, 3409-3422.	7.0	44
75	microRNA-7 upregulates death receptor 5 and primes resistant brain tumors to caspase-mediated apoptosis. Neuro-Oncology, 2018, 20, 215-224.	1.2	32
76	MNGI-37. DMD GENOMIC DELETIONS CHARACTERIZE A SUBSET OF PROGRESSIVE/HIGHER-GRADE MENINGIOMAS WITH POOR OUTCOME. Neuro-Oncology, 2018, 20, vi157-vi157.	1.2	0
77	EXTH-20. HISTONE DEACETYLASE INHIBITOR ENHANCES ONCOLYTIC HERPES SIMPLEX VIRUS THERAPY FOR MALIGNANT MENINGIOMA. Neuro-Oncology, 2018, 20, vi89-vi89.	1.2	0
78	CSIG-34. PI3 KINASE PATHWAY ACTIVATION PROMOTES MALIGNANT PROGRESSION IN OLIGODENDROGLIAL TUMORS. Neuro-Oncology, 2018, 20, vi50-vi50.	1.2	0
79	CSIG-29. THE DUAL PI3K/mTOR-PATHWAY INHIBITOR GDC-0084 ACHIEVES ANTITUMOR ACTIVITY IN BREAST CANCER BRAIN METASTASES IN VITRO AND IN VIVO. Neuro-Oncology, 2018, 20, vi49-vi49.	1.2	1
80	PLK1 Inhibition Targets Myc-Activated Malignant Glioma Cells Irrespective of Mismatch Repair Deficiency–Mediated Acquired Resistance to Temozolomide. Molecular Cancer Therapeutics, 2018, 17, 2551-2563.	4.1	28
81	Clinical and prognostic features of spinal meningioma: a thorough analysis from a single neurosurgical center. Journal of Neuro-Oncology, 2018, 140, 639-647.	2.9	35
82	Restriction of Replication of Oncolytic Herpes Simplex Virus with a Deletion of \hat{I}^3 34.5 in Glioblastoma Stem-Like Cells. Journal of Virology, 2018, 92, .	3.4	26
83	Genotype-targeted local therapy of glioma. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8388-E8394.	7.1	40
84	CRISPR-enhanced engineering of therapy-sensitive cancer cells for self-targeting of primary and metastatic tumors. Science Translational Medicine, $2018,10,10$	12.4	39
85	Emerging Medical Treatments for Meningioma in the Molecular Era. Biomedicines, 2018, 6, 86.	3.2	42
86	DMD genomic deletions characterize a subset of progressive/higher-grade meningiomas with poor outcome. Acta Neuropathologica, 2018, 136, 779-792.	7.7	66
87	Dissecting inherent intratumor heterogeneity in patient-derived glioblastoma culture models. Neuro-Oncology, 2017, 19, now253.	1.2	35
88	Rad51 Degradation: Role in Oncolytic Virusâ€"Poly(ADP-Ribose) Polymerase Inhibitor Combination Therapy in Glioblastoma. Journal of the National Cancer Institute, 2017, 109, 1-13.	6.3	35
89	The Alkylating Chemotherapeutic Temozolomide Induces Metabolic Stress in <i>IDH1</i> Hutant Cancers and Potentiates NAD+ Depletion–Mediated Cytotoxicity. Cancer Research, 2017, 77, 4102-4115.	0.9	74
90	Therapeutic targeting of chemoresistant and recurrent glioblastoma stem cells with a proapoptotic variant of oncolytic herpes simplex virus. International Journal of Cancer, 2017, 141, 1671-1681.	5.1	26

#	Article	IF	Citations
91	Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science, 2017, 355, .	12.6	743
92	Adaptive Chromatin Remodeling Drives Glioblastoma Stem Cell Plasticity and Drug Tolerance. Cell Stem Cell, 2017, 20, 233-246.e7.	11.1	387
93	Coordinated Splicing of Regulatory Detained Introns within Oncogenic Transcripts Creates an Exploitable Vulnerability in Malignant Glioma. Cancer Cell, 2017, 32, 411-426.e11.	16.8	161
94	Blockade of transforming growth factorâ€Î² signaling enhances oncolytic herpes simplex virus efficacy in patientâ€derived recurrent glioblastoma models. International Journal of Cancer, 2017, 141, 2348-2358.	5.1	33
95	Stem cell-released oncolytic herpes simplex virus has therapeutic efficacy in brain metastatic melanomas. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6157-E6165.	7.1	90
96	IDH1 Mutation and World Health Organization 2016 Diagnostic Criteria for Adult Diffuse Gliomas. Neurosurgery, 2017, 64, 134-138.	1.1	27
97	CSIG-33. BETA 1 INTEGRIN INHIBITION IN HIGH-GRADE MENINGIOMA. Neuro-Oncology, 2017, 19, vi56-vi56.	1.2	O
98	151 TERT Promoter Mutations in Progressive Treatment-resistant Meningiomas. Neurosurgery, 2017, 64, 236-237.	1.1	0
99	DRES-16. PARP INHIBITORS RESTORE TEMOZOLOMIDE SENSITIVITY IN MSH6-DEFICIENT TEMOZOLOMIDE-RESISTANT GLIOMA MODELS. Neuro-Oncology, 2017, 19, vi67-vi67.	1.2	O
100	EXTH-14. THE ALKYLATING CHEMOTHERAPEUTIC TEMOZOLOMIDE INDUCES METABOLIC STRESS AND POTENTIATES NAD+ DEPLETION-MEDIATED CELL DEATH IN IDH1 MUTANT CANCERS. Neuro-Oncology, 2017, 19, vi75-vi75.	1.2	0
101	EXTH-42. H3 K27M MUTANT GLIOMAS ARE SELECTIVELY KILLED BY ONC201, AÂSMALL MOLECULE INHIBITOR OF DOPAMINE RECEPTOR D2. Neuro-Oncology, 2017, 19, vi81-vi81.	1.2	12
102	EXTH-60. PLK1 INHIBITOR TARGETS MISMATCH REPAIR DEFICIENT TEMOZOLOMIDE RESISTANT GLIOMA. Neuro-Oncology, 2017, 19, vi86-vi86.	1.2	0
103	CBIO-12. GTP METABOLIC SWITCH LEADS TO NUCLEOLAR TRANSFORMATION AND MALIGNANT GROWTH OF GLIOBLASTOMA. Neuro-Oncology, 2017, 19, vi35-vi35.	1.2	O
104	Abstract 1122: ATR inhibitors synergize with PARP inhibitors in killing glioblastoma stem cells and treating glioblastoma. , 2017, , .		3
105	Intratumoral heterogeneity and <i>TERT</i> promoter mutations in progressive/higher-grade meningiomas. Oncotarget, 2017, 8, 109228-109237.	1.8	89
106	<i>>TERT</i> promoter mutations in progressive treatment-resistant meningiomas Journal of Clinical Oncology, 2017, 35, 2047-2047.	1.6	2
107	Abstract LB-301: PLK1 inhibitor targets mismatch repair-deficient temozolomide-resistant tumors. , 2017,		O
108	Abstract LB-334: xCT promotes malignant phenotypes in EGFR-expressing glioma. , 2017, , .		0

#	Article	IF	CITATIONS
109	107. Tracking Target Cell Fate After Oncolytic Herpes Simplex Virus Infection. Molecular Therapy, 2016, 24, S46.	8.2	O
110	Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4476-4481.	7.1	287
111	Myc-Driven Glycolysis Is a Therapeutic Target in Glioblastoma. Clinical Cancer Research, 2016, 22, 4452-4465.	7.0	112
112	Oncolytic herpes simplex virus interactions with the host immune system. Current Opinion in Virology, 2016, 21, 26-34.	5.4	44
113	The EGF Receptor Promotes the Malignant Potential of Glioma by Regulating Amino Acid Transport System xc(â€"). Cancer Research, 2016, 76, 2954-2963.	0.9	84
114	A new patient-derived orthotopic malignant meningioma model treated with oncolytic herpes simplex virus. Neuro-Oncology, 2016, 18, 1278-1287.	1.2	25
115	At the Crossroads of Cancer Stem Cells, Radiation Biology, and Radiation Oncology. Cancer Research, 2016, 76, 994-998.	0.9	24
116	Abstract LB-347: Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival. , 2016, , .		2
117	Transient fasting enhances replication of oncolytic herpes simplex virus in glioblastoma. American Journal of Cancer Research, 2016, 6, 300-11.	1.4	7
118	ATPS-852-HYDROXYGLUTARATE DEPLETION IS NOT SUFFICIENT TO INHIBIT GROWTH OF SEVERAL PROGRESSIVE IDH1 MUTANT SOLID CANCER TYPES. Neuro-Oncology, 2015, 17, v37.2-v37.	1.2	2
119	Extreme Vulnerability of IDH1 Mutant Cancers to NAD+ Depletion. Cancer Cell, 2015, 28, 773-784.	16.8	327
120	Targeting Hypoxia-Inducible Factor $1\hat{l}_{\pm}$ in a New Orthotopic Model of Glioblastoma Recapitulating the Hypoxic Tumor Microenvironment. Journal of Neuropathology and Experimental Neurology, 2015, 74, 710-722.	1.7	32
121	Alternative lengthening of telomeres renders cancer cells hypersensitive to ATR inhibitors. Science, 2015, 347, 273-277.	12.6	407
122	Single agent efficacy of the VEGFR kinase inhibitor axitinib in preclinical models of glioblastoma. Journal of Neuro-Oncology, 2015, 121, 91-100.	2.9	30
123	In vitro screening of clinical drugs identifies sensitizers of oncolytic viral therapy in glioblastoma stem-like cells. Gene Therapy, 2015, 22, 947-959.	4.5	12
124	The Cancer Genome Atlas Analysis Predicts MicroRNA for Targeting Cancer Growth and Vascularization in Glioblastoma. Molecular Therapy, 2015, 23, 1234-1247.	8.2	62
125	Encapsulated Stem Cells Loaded With Hyaluronidase-expressing Oncolytic Virus for Brain Tumor Therapy. Molecular Therapy, 2015, 23, 108-118.	8.2	97
126	Abstract 4227: PARP inhibitors sensitize glioblastoma stem cells to oncolytic herpes simplex virus therapy. , 2015, , .		0

#	Article	IF	CITATIONS
127	Oncolytic herpes simplex virus-based strategies: toward a breakthrough in glioblastoma therapy. Frontiers in Microbiology, 2014, 5, 303.	3.5	44
128	Locally-Delivered T-Cell-Derived Cellular Vehicles Efficiently Track and Deliver Adenovirus Delta24-RGD to Infiltrating Glioma. Viruses, 2014, 6, 3080-3096.	3.3	13
129	ET-17 * TRANSIENT FASTING ENHANCES REPLICATION AND THERAPEUTIC ACTIVITY OF ONCOLYTIC HSV IN GLIOBLASTOMA THERAPY. Neuro-Oncology, 2014, 16, v82-v83.	1.2	0
130	Immunovirotherapy for glioblastoma. Cell Cycle, 2014, 13, 175-176.	2.6	9
131	Stem Cells Loaded With Multimechanistic Oncolytic Herpes Simplex Virus Variants for Brain Tumor Therapy. Journal of the National Cancer Institute, 2014, 106, dju090.	6.3	102
132	Targetable Signaling Pathway Mutations Are Associated with Malignant Phenotype in <i>IDH</i> -Mutant Gliomas. Clinical Cancer Research, 2014, 20, 2898-2909.	7.0	146
133	Reconstructing and Reprogramming the Tumor-Propagating Potential of Glioblastoma Stem-like Cells. Cell, 2014, 157, 580-594.	28.9	751
134	Brain Tumor Cells in Circulation Are Enriched for Mesenchymal Gene Expression. Cancer Discovery, 2014, 4, 1299-1309.	9.4	207
135	Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science, 2014, 344, 1396-1401.	12.6	3,648
136	Targetable signaling pathway mutations and progression of <i>IDH</i> -mutant glioma Journal of Clinical Oncology, 2014, 32, 2061-2061.	1.6	0
137	ONC201, a small molecule Foxo3a activator, activity against patient-derived glioblastoma tumor-initiating cells Journal of Clinical Oncology, 2014, 32, e13022-e13022.	1.6	0
138	Abstract 4004: Molecular characterization of circulating glioblastoma cells identifies a mesenchymal-like tumor cell subpopulation. , 2014, , .		1
139	Combination of Oncolytic Herpes Simplex Viruses Armed with Angiostatin and IL-12 Enhances Antitumor Efficacy in Human Glioblastoma Models. Neoplasia, 2013, 15, 591-599.	5.3	65
140	An Aberrant Transcription Factor Network Essential for Wnt Signaling and Stem Cell Maintenance in Glioblastoma. Cell Reports, 2013, 3, 1567-1579.	6.4	236
141	Multifaceted oncolytic virus therapy for glioblastoma in an immunocompetent cancer stem cell model. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12006-12011.	7.1	180
142	Multimechanistic Tumor Targeted Oncolytic Virus Overcomes Resistance in Brain Tumors. Molecular Therapy, 2013, 21, 68-77.	8.2	46
143	Expansion of CD133-positive glioma cells in recurrent de novo glioblastomas after radiotherapy and chemotherapy. Journal of Neurosurgery, 2013, 119, 1145-1155.	1.6	78
144	Oncolytic Virus-Mediated Manipulation of DNA Damage Responses: Synergy With Chemotherapy in Killing Glioblastoma Stem Cells. Journal of the National Cancer Institute, 2012, 104, 42-55.	6.3	103

#	Article	IF	CITATIONS
145	Oncolytic Herpes Simplex Virus Counteracts the Hypoxia-Induced Modulation of Glioblastoma Stem-Like Cells. Stem Cells Translational Medicine, 2012, 1, 322-332.	3.3	33
146	Effect of \hat{I}^3 34.5 Deletions on Oncolytic Herpes Simplex Virus Activity in Brain Tumors. Journal of Virology, 2012, 86, 4420-4431.	3 . 4	85
147	Therapeutic stem cells expressing variants of EGFR-specific nanobodies have antitumor effects. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16642-16647.	7.1	70
148	Expression of FMS-like Tyrosine Kinase 3 Ligand by Oncolytic Herpes Simplex Virus Type I Prolongs Survival in Mice Bearing Established Syngeneic Intracranial Malignant Glioma. Neurosurgery, 2012, 71, 741-748.	1.1	35
149	Polo-Like Kinase 1 Inhibition Kills Glioblastoma Multiforme Brain Tumor Cells in Part Through Loss of SOX2 and Delays Tumor Progression in Mice. Stem Cells, 2012, 30, 1064-1075.	3.2	66
150	Maintenance of primary tumor phenotype and genotype in glioblastoma stem cells. Neuro-Oncology, 2012, 14, 132-144.	1.2	185
151	Glioblastoma-Derived Cancer Stem Cells: Treatment with Oncolytic Viruses. , 2012, , 121-128.		0
152	Enhanced Antitumor Efficacy of Low-Dose Etoposide with Oncolytic Herpes Simplex Virus in Human Glioblastoma Stem Cell Xenografts. Clinical Cancer Research, 2011, 17, 7383-7393.	7.0	73
153	YB-1 Bridges Neural Stem Cells and Brain Tumor–Initiating Cells via Its Roles in Differentiation and Cell Growth. Cancer Research, 2011, 71, 5569-5578.	0.9	74
154	A Novel Oncolytic Herpes Simplex Virus that Synergizes with Phosphoinositide 3-kinase/Akt Pathway Inhibitors to Target Glioblastoma Stem Cells. Clinical Cancer Research, 2011, 17, 3686-3696.	7.0	73
155	A Dual PI3K/mTOR Inhibitor, PI-103, Cooperates with Stem Cell–Delivered TRAIL in Experimental Glioma Models. Cancer Research, 2011, 71, 154-163.	0.9	94
156	Abstract LB-101: Y-box binding protein-1 (YB-1) inhibition triggers differentiation of normal and cancer stem cells from the brain. , 2011 , , .		0
157	Abstract 5389: Oncolytic herpes simplex virus expressing interleukin-12 for treating glioma stem cells. , 2011, , .		0
158	Directed evolution of adeno-associated virus for glioma cell transduction. Journal of Neuro-Oncology, 2010, 96, 337-347.	2.9	43
159	Identification of the ENT1 Antagonists Dipyridamole and Dilazep as Amplifiers of Oncolytic Herpes Simplex Virus-1 Replication. Cancer Research, 2010, 70, 3890-3895.	0.9	28
160	Oncolytic herpes simplex virus vectors and chemotherapy: are combinatorial strategies more effective for cancer?. Future Oncology, 2010, 6, 619-634.	2.4	52
161	Accumulation of CD133-positive glioma cells after high-dose irradiation by Gamma Knife surgery plus external beam radiation. Journal of Neurosurgery, 2010, 113, 310-318.	1.6	113
162	TWIST1 promotes invasion through mesenchymal change in human glioblastoma. Molecular Cancer, 2010, 9, 194.	19.2	239

#	Article	lF	CITATIONS
163	Human Glioblastoma–Derived Cancer Stem Cells: Establishment of Invasive Glioma Models and Treatment with Oncolytic Herpes Simplex Virus Vectors. Cancer Research, 2009, 69, 3472-3481.	0.9	303
164	Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4822-4827.	7.1	425
165	Abstract C176: Combining oncolytic herpes simplex virus and chemotherapy: G47 and temozolomide synergize in killing glioma stem cells. , 2009, , .		O
166	Herpes Simplex Virus Us3(â^') Mutant as Oncolytic Strategy and Synergizes with Phosphatidylinositol 3-Kinase-Akt–Targeting Molecular Therapeutics. Clinical Cancer Research, 2007, 13, 5897-5902.	7.0	32
167	Development of a rapid method to generate multiple oncolytic HSV vectors and their in vivo evaluation using syngeneic mouse tumor models. Gene Therapy, 2006, 13, 705-714.	4.5	104
168	Malignant transformation eight years after removal of a benign epidermoid cyst: a caseâ£report. Journal of Neuro-Oncology, 2006, 79, 67-72.	2.9	61
169	Usefulness of <scp> </scp> -[methyl- ¹¹ C] methionineâ€"positron emission tomography as a biological monitoring tool in the treatment of glioma. Journal of Neurosurgery, 2005, 103, 498-507.	1.6	167
170	Impairment of Both Apoptotic and Cytoprotective Signalings in Glioma Cells Resistant to the Combined Use of Cisplatin and Tumor Necrosis Factor α. Clinical Cancer Research, 2004, 10, 234-243.	7.0	16
171	Altered expression of antiviral cytokine mRNAs associated with cyclophosphamide's enhancement of viral oncolysis. Gene Therapy, 2004, 11, 214-223.	4.5	108
172	The Combination of Adenoviral HSV TK Gene Therapy and Radiation is Effective in Athymic Mouse Glioblastoma Xenografts without Increasing Toxic Side Effects. Journal of Neuro-Oncology, 2004, 67, 177-188.	2.9	29
173	Development of a novel non-human primate model for preclinical gene vector safety studies. Determining the effects of intracerebral HSV-1 inoculation in the common marmoset: a comparative study. Gene Therapy, 2003, 10, 1225-1233.	4.5	11
174	Effects of innate immunity on herpes simplex virus and its ability to kill tumor cells. Gene Therapy, 2003, 10, 983-990.	4.5	111
175	PTEN decreases in vivo vascularization of experimental gliomas in spite of proangiogenic stimuli. Cancer Research, 2003, 63, 2300-5.	0.9	50
176	The Complement Response Against an Oncolytic Virus Is Species-Specific in Its Activation Pathways. Molecular Therapy, 2002, 5, 275-282.	8.2	77
177	Adenovirus-mediated tissue-specific cytosine deaminase gene therapy for human hepatocellular carcinoma with different AFP expression levels. Journal of Experimental Therapeutics and Oncology, 2002, 2, 100-106.	0.5	7
178	Intra-arterial delivery of p53-containing adenoviral vector into experimental brain tumors. Cancer Gene Therapy, 2002, 9, 228-235.	4.6	42
179	Involvement of disregulated c-myc but not c-sis/PDGF in atypical and anaplastic meningiomas. Clinical Neurology and Neurosurgery, 2001, 103, 13-18.	1.4	9
180	Complement Depletion Facilitates the Infection of Multiple Brain Tumors by an Intravascular, Replication-Conditional Herpes Simplex Virus Mutant. Journal of Virology, 2000, 74, 4765-4775.	3.4	133

#	Article	IF	CITATIONS
181	Oncolytic virus therapy of multiple tumors in the brain requires suppression of innate and elicited antiviral responses. Nature Medicine, 1999, 5, 881-887.	30.7	309
182	P53 Overexpression and Proliferative Potential in Malignant Meningiomas. Acta Neurochirurgica, 1999, 141, 53-61.	1.7	30
183	Recurrence in meningeal hemangiopericytomas. World Neurosurgery, 1998, 50, 586-591.	1.3	14
184	Efficient Retrovirus-mediated Cytokine-gene Transduction of Primary-cultured Human Glioma Cells for Tumor Vaccination Therapy. Japanese Journal of Cancer Research, 1997, 88, 296-305.	1.7	24
185	Modulation of Motility and Proliferation of Glioma Cells by Hepatocyte Growth Factor. Japanese Journal of Cancer Research, 1997, 88, 564-577.	1.7	32
186	DECREASE IN ELASTIN GENE EXPRESSION AND PROTEIN SYNTHESIS IN FIBROBLASTS DERIVED FROM CARDINAL LIGAMENTS OF PATIENTS WITH PROLAPSUS UTERI. Cell Biology International, 1997, 21, 605-611.	3.0	57
187	Tumor-specific gene expression in carcinoembryonic antigen-producing gastric cancer cells using adenovirus vectors. Gastroenterology, 1996, 111, 1241-1251.	1.3	65
188	In VivoAntitumor Effect of Cytotoxic T Lymphocytes Engineered to Produce Interferon- \hat{l}^3 by Adenovirus-Mediated Genetic Transduction. Biochemical and Biophysical Research Communications, 1996, 218, 164-170.	2.1	16
189	Local production of the p40 subunit of interleukin 12 suppresses T-helper 1-mediated immune responses and prevents allogeneic myoblast rejection Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 9085-9089.	7.1	92
190	Gene therapy for ?-fetoprotein-producing human hepatoma cells by adenovirus-mediated transfer of the herpes simplex virus thymidine kinase gene. Hepatology, 1996, 23, 1359-1368.	7.3	128
191	Prognostic significance of Ki-67 labeling indices obtained using MIB-1 monoclonal antibody in patients with supratentorial astrocytomas., 1996, 77, 373-380.		141
192	Augmented Antitumor Effects of Killer Cells Induced by Tumor Necrosis Factor Gene-Transduced Autologous Tumor Cells from Gastrointestinal Cancer Patients. Human Gene Therapy, 1996, 7, 1895-1905.	2.7	12
193	Adoptive Immunotherapy with Cytokine Gene-modified Cytotoxic T Lymphocytes., 1996,, 174-189.		O
194	Immunohistochemical Detection of Progesterone Receptors and the Correlation with Ki-67 Labeling Indices in Paraffin-embedded Sections of Meningiomas. Neurosurgery, 1995, 37, 478-483.	1.1	68
195	Enhancement of retrovirus-mediated gene transduction efficiency by transient overexpression of the amphotropic receptor, GLVR-2. Nucleic Acids Research, 1995, 23, 2080-2081.	14.5	16
196	Cytokine-gene-modified tumor vaccination intensified by a streptococcal preparation OK-432. Cancer Immunology, Immunotherapy, 1995, 41, 82-86.	4.2	10
197	Antitumor effect induced by granulocyte/macrophage-colony-stimulating factor gene-modified tumor vaccination: Comparison of adenovirus- and retrovirus-mediated genetic transduction. Journal of Cancer Research and Clinical Oncology, 1995, 121, 587-592.	2.5	49
198	Immunohistochemical Detection of Ki-67 in Replicative Smooth Muscle Cells of Rabbit Carotid Arteries After Balloon Denudation. Stroke, 1995, 26, 2328-2332.	2.0	24

#	Article	IF	CITATIONS
199	Interferon- \hat{I}^3 Resistance and Immune Evasion in Glioma Develop via Notch-Regulated Co-Evolution of Malignant and Immune Cells. SSRN Electronic Journal, 0, , .	0.4	0