
## Victor J Yuste

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/154417/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Sequential Activation of Poly(ADP-Ribose) Polymerase 1, Calpains, and Bax Is Essential in<br>Apoptosis-Inducing Factor-Mediated Programmed Necrosis. Molecular and Cellular Biology, 2007, 27,<br>4844-4862.                                                 | 2.3  | 298       |
| 2  | AIF promotes chromatinolysis and caspase-independent programmed necrosis by interacting with histone H2AX. EMBO Journal, 2010, 29, 1585-1599.                                                                                                                | 7.8  | 197       |
| 3  | Cysteine protease inhibition prevents mitochondrial apoptosis-inducing factor (AIF) release. Cell<br>Death and Differentiation, 2005, 12, 1445-1448.                                                                                                         | 11.2 | 119       |
| 4  | Drp1 Mediates Caspase-Independent Type III Cell Death in Normal and Leukemic Cells. Molecular and Cellular Biology, 2007, 27, 7073-7088.                                                                                                                     | 2.3  | 98        |
| 5  | Characterization of the Cell Death Process Induced by Staurosporine in Human Neuroblastoma Cell<br>Lines. Neuropharmacology, 1997, 36, 811-821.                                                                                                              | 4.1  | 81        |
| 6  | The Contribution of Apoptosis-inducing Factor, Caspase-activated DNase, and Inhibitor of<br>Caspase-activated DNase to the Nuclear Phenotype and DNA Degradation during Apoptosis. Journal of<br>Biological Chemistry, 2005, 280, 35670-35683.               | 3.4  | 80        |
| 7  | The Long Form of Fas Apoptotic Inhibitory Molecule Is Expressed Specifically in Neurons and Protects<br>Them against Death Receptor-Triggered Apoptosis. Journal of Neuroscience, 2007, 27, 11228-11241.                                                     | 3.6  | 73        |
| 8  | AIFsh, a Novel Apoptosis-inducing Factor (AIF) Pro-apoptotic Isoform with Potential Pathological<br>Relevance in Human Cancer. Journal of Biological Chemistry, 2006, 281, 6413-6427.                                                                        | 3.4  | 71        |
| 9  | TNFα induces survival through the FLIP-L-dependent activation of the MAPK/ERK pathway. Cell Death and Disease, 2013, 4, e493-e493.                                                                                                                           | 6.3  | 71        |
| 10 | The Absence of Oligonucleosomal DNA Fragmentation during Apoptosis of IMR-5 Neuroblastoma Cells.<br>Journal of Biological Chemistry, 2001, 276, 22323-22331.                                                                                                 | 3.4  | 63        |
| 11 | The prevention of the staurosporine-induced apoptosis by Bcl-XL, but not by Bcl-2 or caspase inhibitors, allows the extensive differentiation of human neuroblastoma cells. Journal of Neurochemistry, 2002, 80, 126-139.                                    | 3.9  | 60        |
| 12 | Development of Survival Responsiveness to Brain-Derived Neurotrophic Factor, Neurotrophin 3 and<br>Neurotrophin 4/5, But Not to Nerve Growth Factor, in Cultured Motoneurons from Chick Embryo<br>Spinal Cord. Journal of Neuroscience, 1998, 18, 7903-7911. | 3.6  | 58        |
| 13 | Malonate induces cell death via mitochondrial potential collapse and delayed swelling through an ROS-dependent pathway. British Journal of Pharmacology, 2005, 144, 528-537.                                                                                 | 5.4  | 58        |
| 14 | Regulation of apoptosis/necrosis execution in cadmium-treated human promonocytic cells under<br>different forms of oxidative stress. Apoptosis: an International Journal on Programmed Cell Death,<br>2006, 11, 673-686.                                     | 4.9  | 54        |
| 15 | Neuronal survival induced by neurotrophins requires calmodulin. Journal of Cell Biology, 2001, 154, 585-598.                                                                                                                                                 | 5.2  | 53        |
| 16 | A Dual Role of IFN-α in the Balance between Proliferation and Death of Human CD4+ T Lymphocytes<br>during Primary Response. Journal of Immunology, 2004, 173, 3740-3747.                                                                                     | 0.8  | 51        |
| 17 | Identification and Characterization of AIFsh2, a Mitochondrial Apoptosis-inducing Factor (AIF)<br>Isoform with NADH Oxidase Activity. Journal of Biological Chemistry, 2006, 281, 18507-18518.                                                               | 3.4  | 51        |
| 18 | Mitochondrial dysfunction in CD47-mediated caspase-independent cell death: ROS production in the absence of cytochrome c and AIF release. Biochimie, 2003, 85, 741-746.                                                                                      | 2.6  | 48        |

VICTOR J YUSTE

| #  | Article                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Use of Penetrating Peptides Interacting with PP1/PP2A Proteins As a General Approach for a Drug Phosphatase Technology. Molecular Pharmacology, 2006, 69, 1115-1124.                                                                                            | 2.3  | 46        |
| 20 | Isolation of AmphiCASP-3/7, an ancestral caspase from amphioxus (Branchiostoma floridae).<br>Evolutionary considerations for vertebrate caspases. Cell Death and Differentiation, 2002, 9,<br>1078-1089.                                                        | 11.2 | 39        |
| 21 | Expression of dengue ApoptoM sequence results in disruption of mitochondrial potential and caspase activation. Biochimie, 2003, 85, 789-793.                                                                                                                    | 2.6  | 38        |
| 22 | Chromatin Collapse during Caspase-dependent Apoptotic Cell Death Requires DNA Fragmentation<br>Factor, 40-kDa Subunit-/Caspase-activated Deoxyribonuclease-mediated 3â€2-OH Single-strand DNA Breaks.<br>Journal of Biological Chemistry, 2013, 288, 9200-9215. | 3.4  | 38        |
| 23 | BCL-XL regulates TNF-α-mediated cell death independently of NF-κB, FLIP and IAPs. Cell Research, 2008, 18, 1020-1036.                                                                                                                                           | 12.0 | 37        |
| 24 | Cisplatin-induced peripheral neuropathy is associated with neuronal senescence-like response.<br>Neuro-Oncology, 2021, 23, 88-99.                                                                                                                               | 1.2  | 36        |
| 25 | High level of Bcl-2 counteracts apoptosis mediated by a live rabies virus vaccine strain and induces long-term infection. Virology, 2003, 314, 549-561.                                                                                                         | 2.4  | 34        |
| 26 | Reducing the Levels of Akt Activation by PDK1 Knock-in Mutation Protects Neuronal Cultures against<br>Synthetic Amyloid-Beta Peptides. Frontiers in Aging Neuroscience, 2017, 9, 435.                                                                           | 3.4  | 29        |
| 27 | Apoptotic DNA Degradation into Oligonucleosomal Fragments, but Not Apoptotic Nuclear<br>Morphology, Relies on a Cytosolic Pool of DFF40/CAD Endonuclease. Journal of Biological Chemistry,<br>2012, 287, 7766-7779.                                             | 3.4  | 28        |
| 28 | Serum Deprivation and Protein Synthesis Inhibition Induce Two Different Apoptotic Processes in N18<br>Neuroblastoma Cells. Experimental Cell Research, 1998, 238, 422-429.                                                                                      | 2.6  | 27        |
| 29 | FAIM-L Is an IAP-Binding Protein That Inhibits XIAP Ubiquitinylation and Protects from Fas-Induced Apoptosis. Journal of Neuroscience, 2013, 33, 19262-19275.                                                                                                   | 3.6  | 27        |
| 30 | Caspase-independent type III programmed cell death in chronic lymphocytic leukemia: the key role of<br>the F-actin cytoskeleton. Haematologica, 2009, 94, 507-517.                                                                                              | 3.5  | 26        |
| 31 | Different contribution of BH3-only proteins and caspases to doxorubicin-induced apoptosis in p53-deficient leukemia cells. Biochemical Pharmacology, 2010, 79, 1746-1758.                                                                                       | 4.4  | 26        |
| 32 | Apoptosis Inversely Correlates with Rabies Virus Neurotropism. Annals of the New York Academy of Sciences, 2003, 1010, 598-603.                                                                                                                                 | 3.8  | 25        |
| 33 | Cell Death Triggered by the Autophagy Inhibitory Drug 3-Methyladenine in Growing Conditions<br>Proceeds With DNA Damage. Frontiers in Pharmacology, 2020, 11, 580343.                                                                                           | 3.5  | 24        |
| 34 | 7-Bromoindirubin-3′-oxime uncovers a serine protease-mediated paradigm of necrotic cell death.<br>Biochemical Pharmacology, 2008, 76, 39-52.                                                                                                                    | 4.4  | 22        |
| 35 | Methadone induces CAD degradation and AIF-mediated necrotic-like cell death in neuroblastoma cells.<br>Pharmacological Research, 2011, 63, 352-360.                                                                                                             | 7.1  | 18        |
| 36 | Autophagy exacerbates caspase-dependent apoptotic cell death after short times of starvation.<br>Biochemical Pharmacology, 2015, 98, 573-586.                                                                                                                   | 4.4  | 18        |

VICTOR J YUSTE

| #  | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Autonomic nervous system and cancer. Clinical Autonomic Research, 2018, 28, 301-314.                                                                                                                                                                     | 2.5  | 18        |
| 38 | An intrinsic DFF40/CAD endonuclease deficiency impairs oligonucleosomal DNA hydrolysis during<br>caspase-dependent cell death: a common trait in human glioblastoma cells. Neuro-Oncology, 2016, 18,<br>950-961.                                         | 1.2  | 17        |
| 39 | An Early and Robust Activation of Caspases Heads Cells for a Regulated Form of Necrotic-like Cell<br>Death. Journal of Biological Chemistry, 2015, 290, 20841-20855.                                                                                     | 3.4  | 15        |
| 40 | The Death Receptor Antagonist FLIP-L Interacts with Trk and Is Necessary for Neurite Outgrowth Induced by Neurotrophins. Journal of Neuroscience, 2010, 30, 6094-6105.                                                                                   | 3.6  | 13        |
| 41 | Characterization of splice variants of human caspase-activated DNase with CIDE-N structure and function. FEBS Letters, 2004, 566, 234-240.                                                                                                               | 2.8  | 10        |
| 42 | NF-κB activation fails to protect cells to TNFα-induced apoptosis in the absence of Bcl-xL, but not Mcl-1,<br>Bcl-2 or Bcl-w. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1085-1095.                                            | 4.1  | 10        |
| 43 | 2-Phenylethynesulfonamide (PES) uncovers a necrotic process regulated by oxidative stress and p53.<br>Biochemical Pharmacology, 2014, 91, 301-311.                                                                                                       | 4.4  | 10        |
| 44 | Caspase-activated DNase Is Necessary and Sufficient for Oligonucleosomal DNA Breakdown, but Not<br>for Chromatin Disassembly during Caspase-dependent Apoptosis of LN-18 Glioblastoma Cells. Journal<br>of Biological Chemistry, 2014, 289, 18752-18769. | 3.4  | 9         |
| 45 | Synthesis and Validation of a Bioinspired Catechol-Functionalized Pt(IV) Prodrug for Preclinical<br>Intranasal Glioblastoma Treatment. Cancers, 2022, 14, 410.                                                                                           | 3.7  | 9         |
| 46 | Successful Partnerships: Exploring the Potential of Immunogenic Signals Triggered by TMZ, CX-4945, and Combined Treatment in GL261 Glioblastoma Cells. International Journal of Molecular Sciences, 2021, 22, 3453.                                      | 4.1  | 7         |
| 47 | Early Apoptotic Reorganization of Spliceosomal Proteins Involves Caspases, <scp>CAD</scp> and Rearrangement of <scp>NuMA</scp> . Traffic, 2012, 13, 257-272.                                                                                             | 2.7  | 5         |
| 48 | Intranasal Administration of Catechol-Based Pt(IV) Coordination Polymer Nanoparticles for<br>Glioblastoma Therapy. Nanomaterials, 2022, 12, 1221.                                                                                                        | 4.1  | 4         |
| 49 | Binding patterns of lectins with GalNAc specificity in the mouse dorsal root ganglia and spinal cord.<br>Journal of Neurocytology, 1999, 28, 75-84.                                                                                                      | 1.5  | 3         |
| 50 | AChE for DNA degradation. Cell Research, 2015, 25, 653-654.                                                                                                                                                                                              | 12.0 | 3         |
| 51 | Gossypol Treatment Restores Insufficient Apoptotic Function of DFF40/CAD in Human Glioblastoma<br>Cells. Cancers, 2021, 13, 5579.                                                                                                                        | 3.7  | 2         |
| 52 | Glioblastoma Cells Counteract PARP Inhibition through Pro-Survival Induction of Lipid Droplets Synthesis and Utilization. Cancers, 2022, 14, 726.                                                                                                        | 3.7  | 1         |
| 53 | Senescence in neurons: an open issue. Aging, 2021, 13, 16902-16903.                                                                                                                                                                                      | 3.1  | 0         |
| 54 | Characterization of splice variants of human caspase-activated DNase with CIDE-N structure and function. FEBS Letters, 2004, 566, 234-240.                                                                                                               | 2.8  | 0         |