
David S Trossman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1543894/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	A Prototype for Remote Monitoring of Ocean Heat Content Anomalies. Journal of Atmospheric and Oceanic Technology, 2022, 39, 667-688.	1.3	1
2	An Algorithm to Bias-Correct and Transform Arctic SMAP-Derived Skin Salinities into Bulk Surface Salinities. Remote Sensing, 2022, 14, 1418.	4.0	1
3	Tracer and observationally derived constraints on diapycnal diffusivities in an ocean state estimate. Ocean Science, 2022, 18, 729-759.	3.4	3
4	Changing Ocean Currents. Global Perspectives on Health Geography, 2021, , 11-26.	0.3	2
5	Understanding of Contemporary Regional Seaâ€Level Change and the Implications for the Future. Reviews of Geophysics, 2020, 58, e2019RG000672.	23.0	74
6	Predictability of Ocean Heat Content From Electrical Conductance. Journal of Geophysical Research: Oceans, 2019, 124, 667-679.	2.6	8
7	Putting It All Together: Adding Value to the Global Ocean and Climate Observing Systems With Complete Self-Consistent Ocean State and Parameter Estimates. Frontiers in Marine Science, 2019, 6, .	2.5	23
8	Reduced CaCO 3 Flux to the Seafloor and Weaker Bottom Current Speeds Curtail Benthic CaCO 3 Dissolution Over the 21st Century. Global Biogeochemical Cycles, 2019, 33, 1654-1673.	4.9	1
9	FLEAT: A Multiscale Observational and Modeling Program to Understand How Topography Affects Flows in the Western North Pacific. Oceanography, 2019, 32, 10-21.	1.0	17
10	Connecting Process Models of Topographic Wave Drag to Global Eddying General Circulation Models. Oceanography, 2019, 32, 146-155.	1.0	8
11	The Sensitivity of Future Ocean Oxygen to Changes in Ocean Circulation. Global Biogeochemical Cycles, 2018, 32, 738-751.	4.9	20
12	Current CaCO ₃ dissolution at the seafloor caused by anthropogenic CO ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11700-11705.	7.1	83
13	The Role of Rough Topography in Mediating Impacts of Bottom Drag in Eddying Ocean Circulation Models. Journal of Physical Oceanography, 2017, 47, 1941-1959.	1.7	15
14	Climate Process Team on Internal Wave–Driven Ocean Mixing. Bulletin of the American Meteorological Society, 2017, 98, 2429-2454.	3.3	235
15	The Global Mesoscale Eddy Available Potential Energy Field in Models and Observations. Journal of Geophysical Research: Oceans, 2017, 122, 9126-9143.	2.6	26
16	Variability of the directly observed, middepth subpolar North Atlantic circulation. Geophysical Research Letters, 2016, 43, 2700-2708.	4.0	16
17	Largeâ€scale ocean circulationâ€cloud interactions reduce the pace of transient climate change. Geophysical Research Letters, 2016, 43, 3935-3943.	4.0	58
18	Impact of topographic internal lee wave drag on an eddying global ocean model. Ocean Modelling, 2016, 97, 109-128	2.4	43

DAVID S TROSSMAN

#	Article	IF	CITATIONS
19	Internal lee wave closures: Parameter sensitivity and comparison to observations. Journal of Geophysical Research: Oceans, 2015, 120, 7997-8019.	2.6	26
20	Evaluation of oceanic transport parameters using transient tracers from observations and model output. Ocean Modelling, 2014, 74, 1-21.	2.4	8
21	Impact of parameterized lee wave drag on the energy budget of an eddying global ocean model. Ocean Modelling, 2013, 72, 119-142.	2.4	36
22	On the formation, ventilation, and erosion of mode waters in the North Atlantic and Southern Oceans. Journal of Geophysical Research, 2012, 117, .	3.3	11
23	Application of Thin-Plate Splines in Two Dimensions to Oceanographic Tracer Data. Journal of Atmospheric and Oceanic Technology, 2011, 28, 1522-1538.	1.3	15
24	Estimates of North Atlantic Ventilation and Mode Water Formation for Winters 2002–06. Journal of Physical Oceanography, 2009, 39, 2600-2617.	1.7	14
25	Zoonotic orthopoxviruses encode a high-affinity antagonist of NKG2D. Journal of Experimental Medicine, 2007, 204, 1311-1317.	8.5	90