Lea Ann Dailey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1542844/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermal Lens Spectrometry Reveals Thermo-Optical Property Tuning of Conjugated Polymer Nanoparticles Prepared by Microfluidics. ACS Applied Polymer Materials, 2022, 4, 6219-6228.	4.4	2
2	Supported polymer/lipid hybrid bilayers formation resembles a lipid-like dynamic by reducing the molecular weight of the polymer. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183472.	2.6	2
3	Different PEGâ€PLGA Matrices Influence In Vivo Optical/Photoacoustic Imaging Performance and Biodistribution of NIRâ€Emitting <i>Ï€</i> â€Conjugated Polymer Contrast Agents. Advanced Healthcare Materials, 2021, 10, e2001089.	7.6	9
4	Investigating conjugated polymer nanoparticle formulations for lateral flow immunoassays. RSC Advances, 2021, 11, 29816-29825.	3.6	2
5	Drug reformulation for a neglected disease. The NANOHAT project to develop a safer more effective sleeping sickness drug. PLoS Neglected Tropical Diseases, 2021, 15, e0009276.	3.0	2
6	Theranostic Near-Infrared-Active Conjugated Polymer Nanoparticles. ACS Nano, 2021, 15, 8790-8802.	14.6	19
7	Poly(lactide- <i>co</i> -glycolide) Nanoparticles Mediate Sustained Gene Silencing and Improved Biocompatibility of siRNA Delivery Systems in Mouse Lungs after Pulmonary Administration. ACS Applied Materials & Interfaces, 2021, 13, 3722-3737.	8.0	12
8	Conjugated polymers as nanoparticle probes for fluorescence and photoacoustic imaging. Journal of Materials Chemistry B, 2020, 8, 592-606.	5.8	59
9	Development of new in vitro models of lung protease activity for investigating stability of inhaled biological therapies and drug delivery systems. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 146, 64-72.	4.3	17
10	Tuberculosis Treatment Facilitated by Lipid Nanocarriers: Can Inhalation Improve the Regimen?. Assay and Drug Development Technologies, 2020, 18, 298-307.	1.2	5
11	In vitro and in vivo antitubercular activity of benzothiazinone-loaded human serum albumin nanocarriers designed for inhalation. Journal of Controlled Release, 2020, 328, 339-349.	9.9	21
12	Synthesis and in vivo evaluation of PEG-BP–BaYbF5 nanoparticles for computed tomography imaging and their toxicity. Journal of Materials Chemistry B, 2020, 8, 7723-7732.	5.8	8
13	Enhanced optical imaging properties of lipid nanocapsules as vehicles for fluorescent conjugated polymers. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 154, 297-308.	4.3	8
14	Synchrotron Photothermal Infrared Nanospectroscopy of Drug-Induced Phospholipidosis in Macrophages. Analytical Chemistry, 2020, 92, 8097-8107.	6.5	10
15	Comparison of Oral, Intranasal and Aerosol Administration of Amiodarone in Rats as a Model of Pulmonary Phospholipidosis. Pharmaceutics, 2019, 11, 345.	4.5	11
16	Low molecular weight PEG–PLGA polymers provide a superior matrix for conjugated polymer nanoparticles in terms of physicochemical properties, biocompatibility and optical/photoacoustic performance. Journal of Materials Chemistry B, 2019, 7, 5115-5124.	5.8	33
17	Imaging drugs, metabolites and biomarkers in rodent lung: a DESI MS strategy for the evaluation of drug-induced lipidosis. Analytical and Bioanalytical Chemistry, 2019, 411, 8023-8032.	3.7	24
18	In Vivo Optical Performance of a New Class of Near-Infrared-Emitting Conjugated Polymers: Borylated PF8-BT. ACS Applied Materials & Interfaces, 2019, 11, 46525-46535.	8.0	15

LEA ANN DAILEY

#	Article	IF	CITATIONS
19	Cellular imaging using emission-tuneable conjugated polymer nanoparticles. RSC Advances, 2019, 9, 37971-37976.	3.6	3
20	Influence of the Surfactant Structure on Photoluminescent π-Conjugated Polymer Nanoparticles: Interfacial Properties and Protein Binding. Langmuir, 2018, 34, 6125-6137.	3.5	14
21	Insights on animal models to investigate inhalation therapy: Relevance for biotherapeutics. International Journal of Pharmaceutics, 2018, 536, 116-126.	5.2	34
22	Pharmaceutical quality by design in academic nanomedicine research: stifling innovation or creativity through constraint?. Journal of Interdisciplinary Nanomedicine, 2018, 3, 175-182.	3.6	3
23	l-Phenylalanine Restores Vascular Function in Spontaneously Hypertensive Rats Through Activation of the GCH1-GFRP Complex. JACC Basic To Translational Science, 2018, 3, 366-377.	4.1	18
24	Bright conjugated polymer nanoparticles containing a biodegradable shell produced at high yields and with tuneable optical properties by a scalable microfluidic device. Nanoscale, 2017, 9, 2009-2019.	5.6	29
25	Silica passivated conjugated polymer nanoparticles for biological imaging applications. Proceedings of SPIE, 2017, , .	0.8	1
26	Morphometric Characterization of Rat and Human Alveolar Macrophage Cell Models and their Response to Amiodarone using High Content Image Analysis. Pharmaceutical Research, 2017, 34, 2466-2476.	3.5	14
27	Bright, near infrared emitting PLGA–PEG dye-doped CN-PPV nanoparticles for imaging applications. RSC Advances, 2017, 7, 15255-15264.	3.6	23
28	Post-polymerization C–H Borylation of Donor–Acceptor Materials Gives Highly Efficient Solid State Near-Infrared Emitters for Near-IR-OLEDs and Effective Biological Imaging. ACS Applied Materials & Interfaces, 2017, 9, 28243-28249.	8.0	53
29	Differences in the coronal proteome acquired by particles depositing in the lungs of asthmatic versus healthy humans. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2517-2521.	3.3	12
30	InÂvivo pharmacological activity and biodistribution of S-nitrosophytochelatins after intravenous and intranasal administration in mice. Nitric Oxide - Biology and Chemistry, 2016, 59, 1-9.	2.7	6
31	Synthesis, characterization and evaluation of in vitro toxicity in hepatocytes of linear polyesters with varied aromatic and aliphatic co-monomers. Journal of Controlled Release, 2016, 244, 214-228.	9.9	4
32	Lung inflammation does not affect the clearance kinetics of lipid nanocapsules following pulmonary administration. Journal of Controlled Release, 2016, 235, 24-33.	9.9	15
33	Enrichment of immunoregulatory proteins in the biomolecular corona of nanoparticles within human respiratory tract lining fluid. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1033-1043.	3.3	54
34	Hydrophobin-Encapsulated Quantum Dots. ACS Applied Materials & Interfaces, 2016, 8, 4887-4893.	8.0	15
35	In vivo biocompatibility, clearance, and biodistribution of albumin vehicles for pulmonary drug delivery. Journal of Controlled Release, 2015, 210, 1-9.	9.9	69
36	Surface Chemistry of Photoluminescent F8BT Conjugated Polymer Nanoparticles Determines Protein Corona Formation and Internalization by Phagocytic Cells. Biomacromolecules, 2015, 16, 733-742.	5.4	36

LEA ANN DAILEY

#	Article	IF	CITATIONS
37	Adenosine monophosphate is elevated in the bronchoalveolar lavage fluid of mice with acute respiratory toxicity induced by nanoparticles with high surface hydrophobicity. Nanotoxicology, 2015, 9, 106-115.	3.0	16
38	In Vitro Multiparameter Assay Development Strategy toward Differentiating Macrophage Responses to Inhaled Medicines. Molecular Pharmaceutics, 2015, 12, 2675-2687.	4.6	15
39	Interactions of stealth conjugated polymer nanoparticles with human whole blood. Journal of Materials Chemistry B, 2015, 3, 2463-2471.	5.8	19
40	What are the biological and therapeutic implications of biomolecule corona formation on the surface of inhaled nanomedicines?. Nanomedicine, 2015, 10, 343-345.	3.3	8
41	Lost in translation: what is stopping inhaled nanomedicines from realizing their potential?. Therapeutic Delivery, 2014, 5, 757-761.	2.2	15
42	Challenges for inhaled drug discovery and development: Induced alveolar macrophage responses. Advanced Drug Delivery Reviews, 2014, 71, 15-33.	13.7	72
43	Gd-containing conjugated polymer nanoparticles: bimodal nanoparticles for fluorescence and MRI imaging. Nanoscale, 2014, 6, 8376-8386.	5.6	48
44	Quantitative assessment of nanoparticle surface hydrophobicity and its influence on pulmonary biocompatibility. Journal of Controlled Release, 2014, 183, 94-104.	9.9	73
45	Dynamics of aerosol size during inhalation: Hygroscopic growth of commercial nebulizer formulations. International Journal of Pharmaceutics, 2014, 463, 50-61.	5.2	41
46	Evaluation of a rapid lateral flow immunoassay for Staphylococcus aureus detection in respiratory samples. Diagnostic Microbiology and Infectious Disease, 2013, 75, 28-36.	1.8	35
47	The delivered dose: Applying particokinetics to in vitro investigations of nanoparticle internalization by macrophages. Journal of Controlled Release, 2012, 162, 259-266.	9.9	66
48	S-Nitrosophytochelatins: Investigation of the Bioactivity of an Oligopeptide Nitric Oxide Delivery System. Biomacromolecules, 2011, 12, 2103-2113.	5.4	14
49	Challenges in inhaled product development and opportunities for open innovation. Advanced Drug Delivery Reviews, 2011, 63, 69-87.	13.7	95
50	Enhanced gene expression and reduced toxicity in mice using polyplexes of low-molecular-weight poly(ethylene imine) for pulmonary gene delivery. Journal of Drug Targeting, 2009, 17, 638-651.	4.4	21
51	Sparing methylation of \hat{l}^2 -cyclodextrin mitigates cytotoxicity and permeability induction in respiratory epithelial cell layers in vitro. Journal of Controlled Release, 2009, 136, 110-116.	9.9	60
52	Inflammatory Response and Barrier Properties of a New Alveolar Type 1-Like Cell Line (TT1). Pharmaceutical Research, 2009, 26, 1172-1180.	3.5	29
53	Characterisation of the decomposition behaviour of S-nitrosoglutathione and a new class of analogues: S-Nitrosophytochelatins. Nitric Oxide - Biology and Chemistry, 2009, 20, 157-165.	2.7	42
54	A poly(vinyl alcohol) nanoparticle platform for kinetic studies of inhaled particles. Inhalation Toxicology, 2009, 21, 631-640.	1.6	11

LEA ANN DAILEY

#	Article	IF	CITATIONS
55	Chitosan nanoparticles are compatible with respiratory epithelial cells in vitro. European Journal of Pharmaceutical Sciences, 2007, 31, 73-84.	4.0	200
56	Investigation of the proinflammatory potential of biodegradable nanoparticle drug delivery systems in the lung. Toxicology and Applied Pharmacology, 2006, 215, 100-108.	2.8	203
57	The role of branched polyesters and their modifications in the development of modern drug delivery vehicles. Journal of Controlled Release, 2005, 101, 137-149.	9.9	96
58	New poly(lactic-co-glycolic acid) derivatives: Modular polymers with tailored properties. Drug Discovery Today: Technologies, 2005, 2, 7-13.	4.0	33
59	Modified polyethylenimines as non viral gene delivery systems for aerosol therapy: effects of nebulization on cellular uptake and transfection efficiency. Journal of Controlled Release, 2004, 100, 425-436.	9.9	38
60	Modified polyethylenimines as non-viral gene delivery systems for aerosol gene therapy: investigations of the complex structure and stability during air-jet and ultrasonic nebulization. Journal of Controlled Release, 2004, 100, 437-450.	9.9	54
61	Nebulization of biodegradable nanoparticles: impact of nebulizer technology and nanoparticle characteristics on aerosol features. Journal of Controlled Release, 2003, 86, 131-144.	9.9	151
62	Considerations for the Design of Toxicity Studies of Inhaled Nanomedicines. , 0, , 41-60.		3