
Bin Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1542550/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Facile synthesis of <i>N</i> -aryl phenothiazines and phenoxazines <i>via</i> BrÂ̈,nsted acid catalyzed C–H amination of arenes. Chemical Communications, 2022, 58, 1613-1616.	4.1	3
2	Direct arylation of N-heterocycles enabled by photoredox catalysis. Chemical Communications, 2022, 58, 4392-4395.	4.1	2
3	Axially chiral alkenes: Atroposelective synthesis and applications. , 2022, 1, 100009.		46
4	Asymmetric synthesis of binaphthyls through photocatalytic cross-coupling and organocatalytic kinetic resolution. Science China Chemistry, 2022, 65, 1142-1148.	8.2	6
5	Recent Advances in Catalytic Asymmetric Construction of Atropisomers. Chemical Reviews, 2021, 121, 4805-4902.	47.7	499
6	Metal-free oxidative cross-coupling enabled practical synthesis of atropisomeric QUINOL and its derivatives. Nature Communications, 2021, 12, 2384.	12.8	32
7	Asymmetric Pnictogen-Bonding Catalysis: Transfer Hydrogenation by a Chiral Antimony(V) Cation/Anion Pair. Journal of the American Chemical Society, 2021, 143, 6382-6387.	13.7	46
8	Chiral Phosphoric Acid Catalyzed Asymmetric Synthesis of Axially Chiral Compounds ^{â€} . Chinese Journal of Chemistry, 2021, 39, 1787-1796.	4.9	111
9	Copper-Catalyzed Synthesis of Axially Chiral Biaryls with Diaryliodonium Salts as Arylation Reagents. Molecules, 2021, 26, 3223.	3.8	4
10	Synthesis of structurally diversified BINOLs and NOBINs via palladium-catalyzed C-H arylation with diazoquinones. Science China Chemistry, 2021, 64, 1515-1521.	8.2	15
11	Chiral Phosphoric Acid-Catalyzed Remote Control of Axial Chirality at Boron–Carbon Bond. Journal of the American Chemical Society, 2021, 143, 12924-12929.	13.7	51
12	Organocatalyst-controlled site-selective arene C–H functionalization. Nature Chemistry, 2021, 13, 982-991.	13.6	52
13	Urea group-directed organocatalytic asymmetric versatile dihalogenation of alkenes and alkynes. Nature Catalysis, 2021, 4, 692-702.	34.4	40
14	Nitrosobenzeneâ€Enabled Chiral Phosphoric Acid Catalyzed Enantioselective Construction of Atropisomeric <i>N</i> â€Arylbenzimidazoles. Angewandte Chemie - International Edition, 2021, 60, 24888-24893.	13.8	43
15	Electrochemical phenothiazination of naphthylamines and its application in photocatalysis. Chemical Communications, 2021, 57, 8512-8515.	4.1	10
16	Catalytic Asymmetric Borylation to Construct Axially Chiral Arylborons. Chinese Journal of Organic Chemistry, 2021, 41, 3742.	1.3	0
17	Enantioselective three-component Ugi reaction catalyzed by chiral phosphoric acid. Science China Chemistry, 2020, 63, 47-54.	8.2	32
18	Chiral Phosphoric Acid Creates Promising Opportunities for Enantioselective Photoredox Catalysis. Chinese Journal of Chemistry, 2020, 38, 213-214.	4.9	48

#	Article	IF	CITATIONS
19	Direct Construction of <scp>NOBINs</scp> <i>via</i> Domino Arylation and Sigmatropic Rearrangement Reactions. Chinese Journal of Chemistry, 2020, 38, 1503-1514.	4.9	14
20	Advances in asymmetric organocatalysis over the last 10 years. Nature Communications, 2020, 11, 3786.	12.8	135
21	Design and Atroposelective Construction of IAN analogues by Organocatalytic Asymmetric Heteroannulation of Alkynes. Angewandte Chemie - International Edition, 2020, 59, 23077-23082.	13.8	55
22	Design and Atroposelective Construction of IAN analogues by Organocatalytic Asymmetric Heteroannulation of Alkynes. Angewandte Chemie, 2020, 132, 23277-23282.	2.0	16
23	DFT-Guided Phosphoric-Acid-Catalyzed Atroposelective Arene Functionalization of Nitrosonaphthalene. CheM, 2020, 6, 2046-2059.	11.7	83
24	Chiral Phosphoric Acid Catalyzed Atroposelective Câ^'H Amination of Arenes. Angewandte Chemie, 2020, 132, 6841-6845.	2.0	39
25	Organocatalytic Enantioselective Synthesis of Atropisomeric Aryl―p â€Quinones: Platform Molecules for Diversityâ€Oriented Synthesis of Biaryldiols. Angewandte Chemie, 2020, 132, 11470-11474.	2.0	23
26	Organocatalytic Enantioselective Synthesis of Atropisomeric Arylâ€∢i>pâ€Quinones: Platform Molecules for Diversityâ€Oriented Synthesis of Biaryldiols. Angewandte Chemie - International Edition, 2020, 59, 11374-11378.	13.8	85
27	Michael Reaction Inspired Atroposelective Construction of Axially Chiral Biaryls. Journal of the American Chemical Society, 2020, 142, 7322-7327.	13.7	57
28	Chiral Phosphoric Acid Catalyzed Atroposelective Câ^'H Amination of Arenes. Angewandte Chemie - International Edition, 2020, 59, 6775-6779.	13.8	139
29	Asymmetric Construction of Axially Chiral 2â€Arylpyrroles by Chirality Transfer of Atropisomeric Alkenes. Angewandte Chemie - International Edition, 2019, 58, 13443-13447.	13.8	75
30	Atroposelective Construction of Arylindoles by Chiral Phosphoric Acid-Catalyzed Cross-Coupling of Indoles and Quinones. Organic Letters, 2019, 21, 6000-6004.	4.6	49
31	Asymmetric Construction of Axially Chiral 2â€Arylpyrroles by Chirality Transfer of Atropisomeric Alkenes. Angewandte Chemie, 2019, 131, 13577-13581.	2.0	30
32	Organocatalytic atroposelective construction of axially chiral arylquinones. Nature Communications, 2019, 10, 4268.	12.8	92
33	Rational design, enantioselective synthesis and catalytic applications of axially chiral EBINOLs. Nature Catalysis, 2019, 2, 504-513.	34.4	145
34	Asymmetric construction of atropisomeric biaryls via a redox neutral cross-coupling strategy. Nature Catalysis, 2019, 2, 314-323.	34.4	112
35	Phosphoric acid-catalyzed atroposelective construction of axially chiral arylpyrroles. Nature Communications, 2019, 10, 566.	12.8	89
36	Organocatalytic double arylation of 3-isothiocyanato oxindoles: Stereocontrolled synthesis of complex spirooxindoles. Tetrahedron, 2019, 75, 1689-1696.	1.9	7

#	Article	IF	CITATIONS
37	Construction of Axially Chiral Compounds via Asymmetric Organocatalysis. Accounts of Chemical Research, 2018, 51, 534-547.	15.6	586
38	Organocatalytic enantioselective transformations involving quinone derivatives as reaction partners. Tetrahedron Letters, 2018, 59, 473-486.	1.4	40
39	Organocatalytic asymmetric arylation of indoles enabled by azo groups. Nature Chemistry, 2018, 10, 58-64.	13.6	296
40	Stereoselective Construction of Complex Spirooxindoles via Bisthiourea Catalyzed Threeâ€Component Reactions. Chinese Journal of Chemistry, 2018, 36, 1182-1186.	4.9	14
41	Remote Control of Axial Chirality: Synthesis of Spirooxindole–Urazoles via Desymmetrization of ATAD. Organic Letters, 2018, 20, 6022-6026.	4.6	43
42	Asymmetric phosphoric acidâ \in "catalyzed four-component Ugi reaction. Science, 2018, 361, .	12.6	150
43	Highly Atroposelective Synthesis of Ary pyrroles by Catalytic Asymmetric Paal–Knorr Reaction. Journal of the American Chemical Society, 2017, 139, 1714-1717.	13.7	255
44	Organocatalytic atroposelective synthesis of axially chiral styrenes. Nature Communications, 2017, 8, 15238.	12.8	128
45	BrÃ,nsted acid-catalysed enantioselective construction of axially chiral arylquinazolinones. Nature Communications, 2017, 8, 15489.	12.8	115
46	Organocatalytic Atroposelective Arylation of 2â€Naphthylamines as a Practical Approach to Axially Chiral Biaryl Amino Alcohols. Angewandte Chemie - International Edition, 2017, 56, 16308-16312.	13.8	127
47	Organocatalytic Atroposelective Arylation of 2â€Naphthylamines as a Practical Approach to Axially Chiral Biaryl Amino Alcohols. Angewandte Chemie, 2017, 129, 16526-16530.	2.0	58
48	Phosphoric Acid-Catalyzed Asymmetric Synthesis of SPINOL Derivatives. Journal of the American Chemical Society, 2016, 138, 16561-16566.	13.7	88
49	Radical aryl migration enables diversity-oriented synthesis of structurally diverse medium/macro- or bridged-rings. Nature Communications, 2016, 7, 13852.	12.8	155
50	Construction of Tropane Derivatives by the Organocatalytic Asymmetric Dearomatization of Isoquinolines. Angewandte Chemie, 2016, 128, 12013-12018.	2.0	19
51	Construction of Tropane Derivatives by the Organocatalytic Asymmetric Dearomatization of Isoquinolines. Angewandte Chemie - International Edition, 2016, 55, 11834-11839.	13.8	84
52	Counteranion-Controlled Unprecedented Diastereo- and Enantioselective Tandem Formal Povarov Reaction for Construction of Bioactive Octahydro-Dipyrroloquinolines. ACS Catalysis, 2016, 6, 6182-6190.	11.2	39
53	A Dual-Catalytic Strategy To Direct Asymmetric Radical Aminotrifluoromethylation of Alkenes. Journal of the American Chemical Society, 2016, 138, 9357-9360.	13.7	250
54	Discovery and enantiocontrol of axially chiral urazoles via organocatalytic tyrosine click reaction. Nature Communications, 2016, 7, 10677.	12.8	121

#	Article	IF	CITATIONS
55	Organic base-catalysed solvent-tuned chemoselective carbotrifluoromethylation and oxytrifluoromethylation of unactivated alkenes. Chemical Communications, 2016, 52, 9052-9055.	4.1	73
56	Gold-catalyzed tandem synthesis of bioactive spiro-dipyrroloquinolines and its application in the one-step synthesis of incargranine B aglycone and seneciobipyrrolidine (I). Organic Chemistry Frontiers, 2016, 3, 324-329.	4.5	21
57	Rücktitelbild: Phosphine-Catalyzed Remote β-CH Functionalization of Amines Triggered by Trifluoromethylation of Alkenes: One-Pot Synthesis of Bistrifluoromethylated Enamides and Oxazoles (Angew. Chem. 13/2015). Angewandte Chemie, 2015, 127, 4198-4198.	2.0	0
58	BrÃ,nsted Acid Catalyzed Asymmetric Hydroamination of Alkenes: Synthesis of Pyrrolidines Bearing a Tetrasubstituted Carbon Stereocenter. Angewandte Chemie, 2015, 127, 7958-7962.	2.0	18
59	BrÃ,nsted Acid Catalyzed Asymmetric Hydroamination of Alkenes: Synthesis of Pyrrolidines Bearing a Tetrasubstituted Carbon Stereocenter. Angewandte Chemie - International Edition, 2015, 54, 7847-7851.	13.8	66
60	Asymmetric Synthesis of Axially Chiral Isoquinolones: Nickelâ€Catalyzed Denitrogenative Transannulation. Angewandte Chemie - International Edition, 2015, 54, 9528-9532.	13.8	83
61	Asymmetric Construction of Spirooxindoles by Organocatalytic Multicomponent Reactions Using Diazooxindoles. Angewandte Chemie - International Edition, 2015, 54, 9409-9413.	13.8	88
62	Metal-Free Direct 1,6- and 1,2-Difunctionalization Triggered by Radical Trifluoromethylation of Alkenes. Organic Letters, 2015, 17, 1589-1592.	4.6	77
63	Phosphine atalyzed Remote β H Functionalization of Amines Triggered by Trifluoromethylation of Alkenes: Oneâ€Pot Synthesis of Bistrifluoromethylated Enamides and Oxazoles. Angewandte Chemie - International Edition, 2015, 54, 4041-4045.	13.8	114
64	Platinum atalyzed Tandem Cyclization Reaction to Multiply Substituted Indolines under Microwaveâ€Assisted Conditions. Advanced Synthesis and Catalysis, 2015, 357, 569-575.	4.3	7
65	Trifluoromethylationâ€Initiated Remote Crossâ€Coupling of Carbonyl Compounds to Form Carbon–Heteroatom/Carbon Bonds. Chemistry - A European Journal, 2015, 21, 6718-6722.	3.3	39
66	Alkene Trifluoromethylation-Initiated Remote α-Azidation of Carbonyl Compounds toward Trifluoromethyl γ-Lactam and Spirobenzofuranone-Lactam. ACS Catalysis, 2015, 5, 2826-2831.	11.2	96
67	Phosphoric Acid-Catalyzed Asymmetric Classic Passerini Reaction. Journal of the American Chemical Society, 2015, 137, 14039-14042.	13.7	74
68	Atroposelective Synthesis of Axially Chiral Biaryldiols via Organocatalytic Arylation of 2-Naphthols. Journal of the American Chemical Society, 2015, 137, 15062-15065.	13.7	242
69	Highly Enantioselective Kinetic Resolution of Axially Chiral BINAM Derivatives Catalyzed by a BrÃ,nsted Acid. Angewandte Chemie - International Edition, 2014, 53, 3684-3687.	13.8	114
70	Organocatalytic Asymmetric Assembly Reactions: Synthesis of Spirooxindoles via Organocascade Strategies. ACS Catalysis, 2014, 4, 743-762.	11.2	735
71	Metal-Free Direct Intramolecular Carbotrifluoromethylation of Alkenes to Functionalized Trifluoromethyl Azaheterocycles. Organic Letters, 2014, 16, 504-507.	4.6	168
72	Efficient Copperâ€Catalyzed Direct Intramolecular Aminotrifluoromethylation of Unactivated Alkenes with Diverse Nitrogenâ€Based Nucleophiles. Chemistry - A European Journal, 2014, 20, 1332-1340.	3.3	103

#	Article	IF	CITATIONS
73	Amide Groups Switch Selectivity: C–H Trifluoromethylation of α,β-Unsaturated Amides and Subsequent Asymmetric Transformation. Organic Letters, 2014, 16, 6032-6035.	4.6	42
74	Enantioselective CH Bond Functionalization Triggered by Radical Trifluoromethylation of Unactivated Alkene. Angewandte Chemie - International Edition, 2014, 53, 11890-11894.	13.8	167
75	Direct Access to α-Trifluoromethyl Enones via Efficient Copper-Catalyzed Trifluoromethylation of Meyer–Schuster Rearrangement. Organic Letters, 2014, 16, 1000-1003.	4.6	98
76	Copper-Catalyzed Aminotrifluoromethylation of Unactivated Alkenes with (TMS)CF ₃ : Construction of Trifluoromethylated Azaheterocycles. Journal of Organic Chemistry, 2014, 79, 7084-7092.	3.2	54
77	In Situ Generation of Electrophilic Trifluoromethylthio Reagents for Enantioselective Trifluoromethylthiolation of Oxindoles. Organic Letters, 2014, 16, 2192-2195.	4.6	143
78	Protecting-group directed stereospecific organocatalytic [3+2] cycloadditions: a facile access to chiral spirocyclic oxindoles. Arkivoc, 2014, 2014, 124-142.	0.5	9
79	Coreâ€6tructureâ€Motivated Design of Iminium–Enolate Organocascade Reactions: Enantioselective Syntheses of 5,6â€Dihydroindolizines. Angewandte Chemie - International Edition, 2013, 52, 9261-9265.	13.8	23
80	Asymmetric Construction of Spirocyclopentenebenzofuranone Core Structures via Highly Selective Phosphine-Catalyzed [3 + 2] Cycloaddition Reactions. Organic Letters, 2013, 15, 2958-2961.	4.6	47
81	Organocatalytic Amidation and Esterification of Aldehydes with Activating Reagents by a Crossâ€Coupling Strategy. Angewandte Chemie - International Edition, 2012, 51, 12538-12541.	13.8	179
82	Assembly of Spirooxindole Derivatives Containing Four Consecutive Stereocenters via Organocatalytic Michael–Henry Cascade Reactions. Organic Letters, 2012, 14, 1834-1837.	4.6	135
83	Organocatalysis as a Safe Practical Method for the Stereospecific Dibromination of Unsaturated Compounds. Organic Letters, 2012, 14, 1858-1861.	4.6	43
84	Rationally Designed Amide Donors for Organocatalytic Asymmetric Michael Reactions. Angewandte Chemie - International Edition, 2012, 51, 5381-5385.	13.8	56
85	Core Structureâ€Based Design of Organocatalytic [3+2] ycloaddition Reactions: Highly Efficient and Stereocontrolled Syntheses of 3,3′â€Pyrrolidonyl Spirooxindoles. Chemistry - A European Journal, 2012, 18, 63-67.	3.3	104
86	Core-Structure-Motivated Design of a Phosphine-Catalyzed [3 + 2] Cycloaddition Reaction: Enantioselective Syntheses of Spirocyclopenteneoxindoles. Journal of the American Chemical Society, 2011, 133, 4672-4675.	13.7	409
87	Highly Efficient Hydrogen-Bonding Catalysis of the Diels–Alder Reaction of 3-Vinylindoles and Methyleneindolinones Provides Carbazolespirooxindole Skeletons. Journal of the American Chemical Society, 2011, 133, 12354-12357.	13.7	346
88	Construction of bispirooxindoles containing three quaternary stereocentres in a cascade using a single multifunctional organocatalyst. Nature Chemistry, 2011, 3, 473-477.	13.6	448
89	Chiral BrÃ,nsted Acid Catalyzed Enantioselective Addition of α-Isocyanoacetamides to Aldehydes. Organic Letters, 2010, 12, 2414-2417.	4.6	50
90	Water—More Than Just a Green Solvent: A Stereoselective Oneâ€Pot Access to Allâ€Chiral Tetrahydronaphthalenes in Aqueous Media. Chemistry - A European Journal, 2010, 16, 3842-3848.	3.3	47

#	Article	IF	CITATIONS
91	Facile Domino Access to Chiral Bicyclo[3.2.1]octanes and Discovery of a New Catalytic Activation Mode. Organic Letters, 2010, 12, 2682-2685.	4.6	123
92	Catalytic Asymmetric Formal [4 + 1] Annulation Leading to Optically Active <i>cis</i> -lsoxazoline <i>N</i> -Oxides. Organic Letters, 2010, 12, 5402-5405.	4.6	59
93	Diastereoselective HOTf-catalyzed three-component one-pot 1,3-dipolar cycloaddition of α-diazo ester, nitrosobenzene and electron-deficient alkene. Chemical Communications, 2010, 46, 2504.	4.1	43
94	Highly stereoselective synthesis of indanes with four stereogenic centers via sequential Michael reaction and [3+2] cycloaddition. Chemical Communications, 2010, 46, 7611.	4.1	30
95	Unusual Domino Michael/Aldol Condensation Reactions Employing Oximes as Nâ€Selective Nucleophiles: Synthesis of <i>N</i> â€Hydroxypyrroles. Angewandte Chemie - International Edition, 2009, 48, 758-761.	13.8	51
96	l-Prolinol as a highly enantioselective catalyst for Michael addition of cyclohexanone to nitroolefins. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3915-3918.	2.2	22
97	Chiral BrÃ,nsted Acid-Catalyzed Enantioselective α-Hydroxylation of β-Dicarbonyl Compounds. Journal of the American Chemical Society, 2009, 131, 4562-4563.	13.7	166
98	An Unexpected N-Heterocyclic Carbene-Catalyzed Annulation of Enals and Nitroso Compounds. Journal of Organic Chemistry, 2009, 74, 1744-1746.	3.2	72
99	Highly enantioselective l-thiaproline catalyzed α-aminoxylation of aldehydes in aqueous media. Green Chemistry, 2009, 11, 543.	9.0	29
100	Rational Design of Organocatalyst: Highly Stereoselective Michael Addition of Cyclic Ketones to Nitroolefins. Organic Letters, 2009, 11, 1927-1930.	4.6	111
101	Recyclable organocatalysis: highly enantioselective Michael addition of 1,3-diaryl-1,3-propanedione to nitroolefins. Chemical Communications, 2009, , 779-781.	4.1	58
102	Organocatalytic Asymmetric αâ€Aminoxylation/Azaâ€Michael Reactions for the Synthesis of Functionalized Tetrahydroâ€1,2â€oxazines. Angewandte Chemie - International Edition, 2008, 47, 10187-10191.	13.8	145
103	Organocatalytic Asymmetric αâ€Aminoxylation/Azaâ€Michael Reactions for the Synthesis of Functionalized Tetrahydroâ€1,2â€oxazines. Angewandte Chemie - International Edition, 2008, 47, 10013-10013.	13.8	4
104	Control of Four Stereocenters in an Organocatalytic Domino Double Michael Reaction: Efficient Synthesis of Multisubstituted Cyclopentanes. Organic Letters, 2008, 10, 3425-3428.	4.6	132
105	A Highly Diastereo- and Enantioselective Synthesis of Multisubstituted Cyclopentanes with Four Chiral Carbons by the Organocatalytic Domino Michaelâ ^{°,} 'Henry Reaction. Organic Letters, 2008, 10, 3489-3492.	4.6	112
106	A Highly Stereoselective Organocatalytic Tandem Aminoxylation/Aza-Michael Reaction for the Synthesis of Tetrahydro-1,2-Oxazines. Organic Letters, 2008, 10, 4585-4588.	4.6	76
107	Organocatalytic Asymmetric Tandem Michaelâ~'Henry Reactions: A Highly Stereoselective Synthesis of Multifunctionalized Cyclohexanes with Two Quaternary Stereocenters. Organic Letters, 2008, 10, 2437-2440.	4.6	153
108	Nitrosobenzeneâ€Enabled Chiral Phosphoric Acid Catalyzed Enantioselective Construction of Atropisomeric Nâ€Arylbenzimidazoles. Angewandte Chemie, 0, , .	2.0	9