List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1542522/publications.pdf Version: 2024-02-01

		2795	3815
325	35,841	94	178
papers	citations	h-index	g-index
333	333	333	10918
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The 2021 South Sandwich Island <i>M</i> _{<i>w</i>} 8.2 Earthquake: A Slow Event Sandwiched Between Regular Ruptures. Geophysical Research Letters, 2022, 49, .	1.5	10
2	Rupture Model for the 29 July 2021 <i>M</i> _{<i>W</i>} 8.2 Chignik, Alaska Earthquake Constrained by Seismic, Geodetic, and Tsunami Observations. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	11
3	Similarities and Differences in the Rupture Processes of the 1952 and 2003 Tokachiâ€Oki Earthquakes. Journal of Geophysical Research: Solid Earth, 2021, 126, .	1.4	6
4	The 25 March 2020 M 7.5 Paramushir, northern Kuril Islands earthquake and major (Mâ€â‰¥â€7.0) near-trench intraplate compressional faulting. Earth and Planetary Science Letters, 2021, 556, 116728.	1.8	9
5	Responding to Media Inquiries about Earthquake Triggering Interactions. Seismological Research Letters, 2021, 92, 3035-3045.	0.8	1
6	Multifault Opposingâ€Ðip Strikeâ€Slip and Normalâ€Fault Rupture During the 2020 M _w 6.5 Stanley, Idaho Earthquake. Geophysical Research Letters, 2021, 48, e2021GL092510.	1.5	13
7	The 22 July 2020 M 7.8 Shumagin seismic gap earthquake: Partial rupture of a weakly coupled megathrust. Earth and Planetary Science Letters, 2021, 562, 116879.	1.8	28
8	Moment Tensors of Ringâ€Faulting at Active Volcanoes: Insights Into Verticalâ€CLVD Earthquakes at the Sierra Negra Caldera, Galápagos Islands. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB021693.	1.4	14
9	The Normal-Faulting 2020 MwÂ5.8 Lone Pine, Eastern California, Earthquake Sequence. Seismological Research Letters, 2021, 92, 679-698.	0.8	11
10	Anomalously low aftershock productivity of the 2019 M 8.0 energetic intermediate-depth faulting beneath Peru. Earth and Planetary Science Letters, 2020, 549, 116528.	1.8	19
11	Macrofracturing of Oceanic Lithosphere in Complex Large Earthquake Sequences. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB020137.	1.4	4
12	A Database of Digitized and Analog Seismograms of Historical Earthquakes in Japan. Seismological Research Letters, 2020, 91, 1459-1468.	0.8	4
13	Modelling of pulse-like velocity ground motion during the 2018 Mw 6.3 Hualien earthquake, Taiwan. Geophysical Journal International, 2020, 223, 348-365.	1.0	4
14	Estimation of radiated energy using the KiK-net downhole records—old method for modern data. Geophysical Journal International, 2020, 221, 1029-1042.	1.0	17
15	The 22 December 2018 tsunami from flank collapse of Anak Krakatau volcano during eruption. Science Advances, 2020, 6, eaaz1377.	4.7	58
16	New constraints on the 1922 Atacama, Chile, earthquake from Historical seismograms. Geophysical Journal International, 2019, 219, 645-661.	1.0	12
17	Enhancing Tsunami Warning Using <i>P</i> Wave Coda. Journal of Geophysical Research: Solid Earth, 2019, 124, 10583-10609.	1.4	15
18	Evidence for a large strike-slip component during the 1960 Chilean earthquake. Geophysical Journal International, 2019, 218, 1-32,	1.0	9

#	Article	IF	CITATIONS
19	Reviving <i>m</i> B. Geophysical Journal International, 2019, 216, 1798-1816.	1.0	13
20	Systematic deficiency of aftershocks in areas of high coseismic slip for large subduction zone earthquakes. Science Advances, 2018, 4, eaao3225.	4.7	60
21	Dissipative Intraplate Faulting During the 2016 M _w 6.2 Tottori, Japan Earthquake. Journal of Geophysical Research: Solid Earth, 2018, 123, 1631-1642.	1.4	26
22	Global variations of large megathrust earthquake rupture characteristics. Science Advances, 2018, 4, eaao4915.	4.7	37
23	Constraining the Dip of Shallow, Shallowly Dipping Thrust Events Using Longâ€Period Love Wave Radiation Patterns: Applications to the 25 October 2010 Mentawai, Indonesia, and 4 May 2018 Hawaii Island Earthquakes. Geophysical Research Letters, 2018, 45, 10,342.	1.5	17
24	The 2018 <scp><i>M</i>_{<i>W</i>}</scp> 7.9 Gulf of Alaska Earthquake: Multiple Fault Rupture in the Pacific Plate. Geophysical Research Letters, 2018, 45, 9542-9551.	1.5	51
25	Intraslab rupture triggering megathrust rupture coseismically in the 17 December 2016 Solomon Islands <i>M_w</i> 7.9 earthquake. Geophysical Research Letters, 2017, 44, 1286-1292.	1.5	17
26	Anomalously large complete stress drop during the 2016 <i>M</i> _{<i>w</i>} 5.2 Borrego Springs earthquake inferred by waveform modeling and nearâ€source aftershock deficit. Geophysical Research Letters, 2017, 44, 5994-6001.	1.5	28
27	Experimental evidence that thrust earthquake ruptures might open faults. Nature, 2017, 545, 336-339.	13.7	51
28	Ruptureâ€Depthâ€Varying Seismicity Patterns for Major and Great (<i>M</i> _{<i>w</i>} Â≥Â7.0) Megathrust Earthquakes. Geophysical Research Letters, 2017, 44, 9663-9671.	1.5	15
29	An Mw = 7.7 slow earthquake in 1960 near the Aysén Fjord region, Chile. Geophysical Journal International, 2017, 211, 93-106.	1.0	9
30	Explaining extreme ground motion in Osaka basin during the 2011 Tohoku earthquake. Geophysical Research Letters, 2017, 44, 7239-7244.	1.5	14
31	Rupture Along 400Âkm of the Bering Fracture Zone in the Komandorsky Islands Earthquake (M W 7.8) of 17 July 2017. Geophysical Research Letters, 2017, 44, 12,161.	1.5	12
32	Downtown Los Angeles 52-Story High-Rise and Free-Field Response to an Oil Refinery Explosion. Earthquake Spectra, 2016, 32, 1793-1820.	1.6	13
33	Diverse rupture processes in the 2015 Peru deep earthquake doublet. Science Advances, 2016, 2, e1600581.	4.7	20
34	The 16 April 2016, M7.8 (M7.5) Ecuador earthquake: A quasi-repeat of the 1942 M7.5 earthquake and partial re-rupture of the 1906 M8.6 Colombia–Ecuador earthquake. Earth and Planetary Science Letters, 2016, 454, 248-258.	1.8	99
35	Recurring large deep earthquakes in Hindu Kush driven by a sinking slab. Geophysical Research Letters, 2016, 43, 7433-7441.	1.5	32
36	Rupture characteristics of major and great (<i>M_w</i> ≥ 7.0) megathrust earthqu 1990 to 2015: 1. Source parameter scaling relationships. Journal of Geophysical Research: Solid Earth, 2016, 121, 826-844.	uakes from 1.4	167

#	Article	IF	CITATIONS
37	Rupture characteristics of major and great (<i>M_w</i> ≥ 7.0) megathrust earthquakes f 1990 to 2015: 2. Depth dependence. Journal of Geophysical Research: Solid Earth, 2016, 121, 845-863.	rom 1.4	49
38	Evidence for non-self-similarity of microearthquakes recorded at a Taiwan borehole seismometer array. Geophysical Journal International, 2016, 206, 757-773.	1.0	22
39	The isolated â^1⁄4680 km deep 30 May 2015 MW 7.9 Ogasawara (Bonin) Islands earthquake. Earth and Planetary Science Letters, 2016, 433, 169-179.	1.8	31
40	Supershear rupture in the 24 May 2013 M w 6.7 Okhotsk deep earthquake: Additional evidence from regional seismic stations. Geophysical Research Letters, 2015, 42, 7941-7948.	1.5	7
41	The collapse of Bárðarbunga caldera, Iceland. Geophysical Journal International, 2015, 202, 446-453.	1.0	51
42	A <i>P</i> waveâ€based, onâ€site method for earthquake early warning. Geophysical Research Letters, 2015, 42, 1390-1398.	1.5	44
43	CAPjoint, A Computer Software Package for Joint Inversion of Moderate Earthquake Source Parameters with Local and Teleseismic Waveforms. Seismological Research Letters, 2015, 86, 432-441.	0.8	25
44	Earthquake Hazard Mitigation and Real-Time Warnings of Tsunamis and Earthquakes. Pure and Applied Geophysics, 2015, 172, 2335-2341.	0.8	8
45	Model Space Exploration for Determining Landslide Source History from Long-Period Seismic Data. Pure and Applied Geophysics, 2015, 172, 389-413.	0.8	29
46	Active Pacific North America Plate boundary tectonics as evidenced by seismicity in the oceanic lithosphere offshore Baja California, Mexico. Geophysical Journal International, 2014, 196, 1619-1630.	1.0	6
47	Rupture complexity of the 1994 Bolivia and 2013 Sea of Okhotsk deep earthquakes. Earth and Planetary Science Letters, 2014, 385, 89-96.	1.8	96
48	Diagnosing Source Geometrical Complexity of Large Earthquakes. Pure and Applied Geophysics, 2014, 171, 2819-2840.	0.8	10
49	The Diversity of Large Earthquakes and Its Implications for Hazard Mitigation. Annual Review of Earth and Planetary Sciences, 2014, 42, 7-26.	4.6	27
50	Falling in Love with Waves. Annual Review of Earth and Planetary Sciences, 2014, 42, 1-6.	4.6	0
51	Slip-Weakening Models of the 2011 Tohoku-Oki Earthquake and Constraints on Stress Drop and Fracture Energy. Pure and Applied Geophysics, 2014, 171, 2555-2568.	0.8	34
52	Supershear rupture in a <i>M</i> _w 6.7 aftershock of the 2013 Sea of Okhotsk earthquake. Science, 2014, 345, 204-207.	6.0	54
53	Reproducing the supershear portion of the 2002 Denali earthquake rupture in laboratory. Earth and Planetary Science Letters, 2014, 387, 89-96.	1.8	25
54	Seismological analyses of the 2010 March 11, Pichilemu, Chile Mw 7.0 and Mw 6.9 coastal intraplate earthquakes. Geophysical Journal International, 2014, 197, 414-434.	1.0	14

#	Article	IF	CITATIONS
55	The 23 June 2014 <i>M_w</i> 7.9 Rat Islands archipelago, Alaska, intermediate depth earthquake. Geophysical Research Letters, 2014, 41, 6389-6395.	1.5	13
56	The October 28, 2012 Mw 7.8 Haida Gwaii underthrusting earthquake and tsunami: Slip partitioning along the Queen Charlotte Fault transpressional plate boundary. Earth and Planetary Science Letters, 2013, 375, 57-70.	1.8	100
57	Energy Release of the 2013 <i>M</i> _w 8.3 Sea of Okhotsk Earthquake and Deep Slab Stress Heterogeneity. Science, 2013, 341, 1380-1384.	6.0	107
58	The February 6, 2013 Mw 8.0 Santa Cruz Islands earthquake and tsunami. Tectonophysics, 2013, 608, 1109-1121.	0.9	42
59	Using centroid time-delays to characterize source durations and identify earthquakes with unique characteristics. Earth and Planetary Science Letters, 2013, 374, 92-100.	1.8	78
60	Large earthquake rupture process variations on the Middle America megathrust. Earth and Planetary Science Letters, 2013, 381, 147-155.	1.8	35
61	The December 7, 2012 Japan Trench intraplate doublet (Mw 7.2, 7.1) and interactions between near-trench intraplate thrust and normal faulting. Physics of the Earth and Planetary Interiors, 2013, 220, 73-78.	0.7	44
62	Report on the August 2012 Brawley Earthquake Swarm in Imperial Valley, Southern California. Seismological Research Letters, 2013, 84, 177-189.	0.8	48
63	Comparison of average stress drop measures for ruptures with heterogeneous stress change and implications for earthquake physics. Geophysical Journal International, 2013, 193, 1691-1712.	1.0	133
64	Ground Shaking and Seismic Source Spectra for Large Earthquakes around the Megathrust Fault Offshore of Northeastern Honshu, Japan. Bulletin of the Seismological Society of America, 2013, 103, 1221-1241.	1.1	32
65	Estimating the effect of Earth elasticity and variable water density on tsunami speeds. Geophysical Research Letters, 2013, 40, 492-496.	1.5	81
66	Realâ€ŧime forecasting of the April 11, 2012 Sumatra tsunami. Geophysical Research Letters, 2012, 39, .	1.5	44
67	The 2012 Sumatra great earthquake sequence. Earth and Planetary Science Letters, 2012, 351-352, 247-257.	1.8	99
68	The 1909 Taipei earthquake-implication for seismic hazard in Taipei. Geophysical Journal International, 2012, 191, 126-146.	1.0	17
69	Intraplate and interplate faulting interactions during the August 31, 2012, Philippine Trench earthquake (M w 7.6) sequence. Geophysical Research Letters, 2012, 39, .	1.5	22
70	Test of a Threshold-Based Earthquake Early-Warning Method Using Japanese Data. Bulletin of the Seismological Society of America, 2012, 102, 1266-1275.	1.1	40
71	Putting seismic research to most effective use. Nature, 2012, 483, 147-148.	13.7	16
72	Depthâ€varying rupture properties of subduction zone megathrust faults. Journal of Geophysical Research, 2012, 117, .	3.3	442

#	Article	IF	CITATIONS
73	The 2011 Tohoku Earthquake. Elements, 2012, 8, 183-188.	0.5	10
74	W phase source inversion for moderate to large earthquakes (1990-2010). Geophysical Journal International, 2012, 189, 1125-1147.	1.0	177
75	Uncertainty estimations for seismic source inversions. Geophysical Journal International, 2012, 190, 1243-1256.	1.0	76
76	The 25 October 2010 Mentawai tsunami earthquake (M _w 7.8) and the tsunami hazard presented by shallow megathrust ruptures. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	75
77	Modeling near-field tsunami observations to improve finite-fault slip models for the 11 March 2011 Tohoku earthquake. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	95
78	Initiation of the great Mw 9.0 Tohoku–Oki earthquake. Earth and Planetary Science Letters, 2011, 308, 277-283.	1.8	56
79	Insights from the great 2011 Japan earthquake. Physics Today, 2011, 64, 33-39.	0.3	163
80	The 2010 M w 7.2 El Mayor-Cucapah Earthquake Sequence, Baja California, Mexico and Southernmost California, USA: Active Seismotectonics along the Mexican Pacific Margin. Pure and Applied Geophysics, 2011, 168, 1255-1277.	0.8	109
81	Earthquake early warning: Concepts, methods and physical grounds. Soil Dynamics and Earthquake Engineering, 2011, 31, 106-118.	1.9	145
82	The 2011 Magnitude 9.0 Tohoku-Oki Earthquake: Mosaicking the Megathrust from Seconds to Centuries. Science, 2011, 332, 1421-1425.	6.0	648
83	Outer trench-slope faulting and the 2011 M w 9.0 off the Pacific coast of Tohoku Earthquake. Earth, Planets and Space, 2011, 63, 713-718.	0.9	73
84	Frequency-dependent rupture process of the 2011 M w 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models. Earth, Planets and Space, 2011, 63, 599-602.	0.9	192
85	The 2011 M w 9.0 off the Pacific coast of Tohoku Earthquake: Comparison of deep-water tsunami signals with finite-fault rupture model predictions. Earth, Planets and Space, 2011, 63, 797-801.	0.9	61
86	Real-time W phase inversion during the 2011 off the Pacific coast of Tohoku Earthquake. Earth, Planets and Space, 2011, 63, 535-539.	0.9	92
87	Possible large near-trench slip during the 2011 M w 9.0 off the Pacific coast of Tohoku Earthquake. Earth, Planets and Space, 2011, 63, 687-692.	0.9	250
88	Call for Papers: Special Issue of Earth, Planets and Space (EPS) "First Results of the 2011 Off the Pacific Coast of Tohoku Earthquake― Earth, Planets and Space, 2011, 63, 397-397.	0.9	1
89	A rupture model of the 2011 off the Pacific coast of Tohoku Earthquake. Earth, Planets and Space, 2011, 63, 693-696.	0.9	212
90	Effects of Kinematic Constraints on Teleseismic Finite-Source Rupture Inversions: Great Peruvian Earthquakes of 23 June 2001 and 15 August 2007. Bulletin of the Seismological Society of America, 2010, 100, 969-994.	1.1	83

#	Article	IF	CITATIONS
91	Historical seismograms for unravelling a mysterious earthquake: The 1907 Sumatra Earthquake. Geophysical Journal International, 2010, 183, 358-374.	1.0	66
92	A threshold-based earthquake early warning using dense accelerometer networks. Geophysical Journal International, 2010, 183, 963-974.	1.0	143
93	The 2009 Samoa–Tonga great earthquake triggered doublet. Nature, 2010, 466, 964-968.	13.7	184
94	Identifying the unique ground motion signatures of supershear earthquakes: Theory and experiments. Tectonophysics, 2010, 493, 297-326.	0.9	57
95	Source Inversion of the W-Phase: Real-time Implementation and Extension to Low Magnitudes. Seismological Research Letters, 2009, 80, 817-822.	0.8	100
96	The 2006–2007 Kuril Islands great earthquake sequence. Journal of Geophysical Research, 2009, 114, .	3.3	112
97	Modeling 3â€Ð wave propagation and finite slip for the 1998 Balleny Islands earthquake. Journal of Geophysical Research, 2009, 114, .	3.3	32
98	A New Trigger Criterion for Improved Real-Time Performance of Onsite Earthquake Early Warning in Southern California. Bulletin of the Seismological Society of America, 2009, 99, 897-905.	1.1	60
99	A great earthquake doublet and seismic stress transfer cycle in the central Kuril islands. Nature, 2008, 451, 561-565.	13.7	173
100	Earthquake physics and real-time seismology. Nature, 2008, 451, 271-273.	13.7	19
101	Source inversion of W phase: speeding up seismic tsunami warning. Geophysical Journal International, 2008, 175, 222-238.	1.0	279
102	Water flow to the mantle transition zone inferred from a receiver function image of the Pacific slab. Earth and Planetary Science Letters, 2008, 274, 346-354.	1.8	289
103	Exploring the feasibility of on-site earthquake early warning using close-in records of the 2007 Noto Hanto earthquake. Earth, Planets and Space, 2008, 60, 155-160.	0.9	61
104	Preliminary Report on the 29 July 2008 Mw 5.4 Chino Hills, Eastern Los Angeles Basin, California, Earthquake Sequence. Seismological Research Letters, 2008, 79, 855-866.	0.8	31
105	Development of an Earthquake Early Warning System Using Real-Time Strong Motion Signals. Sensors, 2008, 8, 1-9.	2.1	174
106	Determination of earthquake early warning parameters, τcandPd, for southern California. Geophysical Journal International, 2007, 170, 711-717.	1.0	143
107	Energy partitioning during an earthquake. Geophysical Monograph Series, 2006, , 3-13.	0.1	141
108	The missing sinks: Slip localization in faults, damage zones, and the seismic energy budget. Geophysical Monograph Series, 2006, , 217-222.	0.1	30

#	Article	IF	CITATIONS
109	The 17 July 2006 Java tsunami earthquake. Geophysical Research Letters, 2006, 33, .	1.5	161
110	Investigation of the earthquake sequence off Miyagi prefecture with historical seismograms. Earth, Planets and Space, 2006, 58, 1533-1541.	0.9	71
111	Experiment on an Onsite Early Warning Method for the Taiwan Early Warning System. Bulletin of the Seismological Society of America, 2005, 95, 347-353.	1.1	227
112	Estimate of differential stress in the upper crust from variations in topography and strike along the San Andreas fault. Geophysical Journal International, 2005, 160, 527-532.	1.0	41
113	Ionospheric detection of gravity waves induced by tsunamis. Geophysical Journal International, 2005, 160, 840-848.	1.0	266
114	Representations of the radiated energy in earthquakes. Geophysical Journal International, 2005, 162, 148-155.	1.0	52
115	Energy radiation from the Sumatra earthquake. Nature, 2005, 434, 582-582.	13.7	136
116	SUPERSHEAR AND SUBRAYLEIGH TO SUPERSHEAR TRANSITION OBSERVED IN LABORATORY EARTHQUAKE EXPERIMENTS. Experimental Techniques, 2005, 29, 63-66.	0.9	18
117	Earth's Free Oscillations Excited by the 26 December 2004 Sumatra-Andaman Earthquake. Science, 2005, 308, 1139-1144.	6.0	231
118	The Great Sumatra-Andaman Earthquake of 26 December 2004. Science, 2005, 308, 1127-1133.	6.0	981
119	Rupture Process of the 2004 Sumatra-Andaman Earthquake. Science, 2005, 308, 1133-1139.	6.0	637
120	REAL-TIME SEISMOLOGY AND EARTHQUAKE DAMAGE MITIGATION. Annual Review of Earth and Planetary Sciences, 2005, 33, 195-214.	4.6	361
121	Laboratory Earthquakes: The Sub-Rayleigh-to-Supershear Rupture Transition. Science, 2004, 303, 1859-1861.	6.0	315
122	Geotechnical Characterization of TriNet Sites: A Status Report. Seismological Research Letters, 2004, 75, 505-514.	0.8	11
123	Some fluid-mechanical problems in geophysics—waves in the atmosphere and fault lubrication. Fluid Dynamics Research, 2004, 34, 1-19.	0.6	18
124	The physics of earthquakes. Reports on Progress in Physics, 2004, 67, 1429-1496.	8.1	634
125	Static and Dynamic Scaling Relations for Earthquakes and Their Implications for Rupture Speed and Stress Drop. Bulletin of the Seismological Society of America, 2004, 94, 314-319.	1.1	169
126	The diversity of the physics of earthquakes. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2004, 80, 297-316.	1.6	42

#	Article	IF	CITATIONS
127	The Potential for Earthquake Early Warning in Southern California. Science, 2003, 300, 786-789.	6.0	478
128	Anisotropy beneath California: shear wave splitting measurements using a dense broadband array. Geophysical Journal International, 2002, 149, 313-327.	1.0	78
129	Scale-dependence of seismic energy-to-moment ratio for strike-slip earthquakes in Japan. Geophysical Research Letters, 2001, 28, 4007-4010.	1.5	110
130	Southern California Seismic Network: Caltech/USGS Element of TriNet 1997-2001. Seismological Research Letters, 2001, 72, 690-704.	0.8	40
131	Shallow subduction zone earthquakes and their tsunamigenic potential. Geophysical Journal International, 2000, 142, 684-702.	1.0	221
132	A new observation of dynamically triggered regional seismicity: Earthquakes in Greece following the August 1999 Izmit, Turkey earthquake. Geophysical Research Letters, 2000, 27, 2741-2744.	1.5	167
133	Mechanism of the 1975 Kalapana, Hawaii, earthquake inferred from tsunami data. Journal of Geophysical Research, 1999, 104, 13153-13167.	3.3	45
134	Relationships between Peak Ground Acceleration, Peak Ground Velocity, and Modified Mercalli Intensity in California. Earthquake Spectra, 1999, 15, 557-564.	1.6	651
135	TriNet "ShakeMaps― Rapid Generation of Peak Ground Motion and Intensity Maps for Earthquakes in Southern California. Earthquake Spectra, 1999, 15, 537-555.	1.6	518
136	Beginning of earthquakes modeled with the Griffith's fracture criterion. Bulletin of the Seismological Society of America, 1999, 89, 80-93.	1.1	21
137	Computation of seismograms and atmospheric oscillations by normal-mode summation for a spherical earth model with realistic atmosphere. Geophysical Journal International, 1998, 135, 388-406.	1.0	159
138	Viscoelastic Flow in the Lower Crust after the 1992 Landers, California, Earthquake. , 1998, 282, 1689-1692.		171
139	Frictional Melting During the Rupture of the 1994 Bolivian Earthquake. Science, 1998, 279, 839-842.	6.0	233
140	SEISMOLOGY: Enhanced: Shaking Without Quaking. Science, 1998, 279, 2063-2064.	6.0	11
141	State of stress before and after the 1994 Northridge Earthquake. Geophysical Research Letters, 1997, 24, 519-522.	1.5	54
142	Real-time seismology and earthquake hazard mitigation. Nature, 1997, 390, 461-464.	13.7	147
143	Simulation of long-period ground motion near a large earthquake. Bulletin of the Seismological Society of America, 1997, 87, 140-156.	1.1	16
144	Upper-mantle shear velocities beneath southern California determined from long-period surface waves. Bulletin of the Seismological Society of America, 1997, 87, 200-209.	1.1	22

#	Article	IF	CITATIONS
145	Simultaneous inversion of local and teleseismic data for the crust and mantle structure of southern California. Physics of the Earth and Planetary Interiors, 1996, 93, 191-214.	0.7	45
146	Initial rupture of earthquakes in the 1995 Ridgecrest, California Sequence. Geophysical Research Letters, 1996, 23, 2437-2440.	1.5	94
147	Tomography of the Source Area of the 1995 Kobe Earthquake: Evidence for Fluids at the Hypocenter?. Science, 1996, 274, 1891-1894.	6.0	328
148	Waves from the Shoemaker-Levy 9 impacts. International Astronomical Union Colloquium, 1996, 156, 329-345.	0.1	0
149	Evidence for possible horizontal faulting in southern California from earthquake mechanisms. Geology, 1996, 24, 123.	2.0	13
150	Initiation process of earthquakes and its implications for seismic hazard reduction strategy Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 3726-3731.	3.3	9
151	The wake of a legendary earthquake. Nature, 1996, 379, 203-204.	13.7	4
152	The origin of harmonic tremor at Old Faithful geyser. Nature, 1996, 379, 708-711.	13.7	86
153	Rupture Process of the Kobe, Japan, Earthquake of Jan. 17, 1995, Determined from Teleseismic Body Waves Journal of Physics of the Earth, 1996, 44, 429-436.	1.4	51
154	Source complexity of the 1994 Northridge earthquake and its relation to aftershock mechanisms. Bulletin of the Seismological Society of America, 1996, 86, S84-S92.	1.1	71
155	Continuous monitoring of seismic energy release associated with the 1994 Northridge earthquake and the 1992 Landers earthquake. Bulletin of the Seismological Society of America, 1996, 86, 255-258.	1.1	2
156	Waves from the collisions of comet Shoemaker–Levy 9 with Jupiter. Nature, 1995, 374, 706-708.	13.7	71
157	Preparing for the Unexpected. Seismological Research Letters, 1995, 66, 7-8.	0.8	4
158	The 1994 Northridge Earthquake: 3-D crustal structure in the rupture zone and its relation to the aftershock locations and mechanisms. Geophysical Research Letters, 1995, 22, 763-766.	1.5	61
159	The Shikotan Earthquake of October 4, 1994: Lithospheric earthquake. Geophysical Research Letters, 1995, 22, 1025-1028.	1.5	73
160	Global positioning system resurvey of Southern California Seismic Network stations. Bulletin of the Seismological Society of America, 1995, 85, 361-374.	1.1	0
161	Mechanics of Earthquakes. Annual Review of Earth and Planetary Sciences, 1994, 22, 207-237.	4.6	210
162	Atmospheric gravity waves from the impact of comet Shoemaker-Levy 9 with Jupiter. Geophysical Research Letters, 1994, 21, 1083-1086.	1.5	31

#	Article	IF	CITATIONS
163	The mechanism of the Deep Bolivia Earthquake of June 9, 1994. Geophysical Research Letters, 1994, 21, 2341-2344.	1.5	93

Broadband waveform observation of the 28 June 1991 Sierra Madre earthquake sequence (<i>ML</i> =) Tj ETQq0 Q Q rgBT /Qverlock 10

165	The 1992 Nicaragua earthquake: a slow tsunami earthquake associated with subducted sediments. Nature, 1993, 361, 714-716.	13.7	355
166	Near-Field Investigations of the Landers Earthquake Sequence, April to July 1992. Science, 1993, 260, 171-176.	6.0	392
167	Seismic radiation by magma injection: An anomalous seismic event near Tori Shima, Japan. Journal of Geophysical Research, 1993, 98, 6511-6522.	3.3	65
168	The 1992 Landers earthquake sequence: Earthquake occurrence and structural heterogeneities. Geophysical Research Letters, 1993, 20, 1083-1086.	1.5	50
169	W phase. Geophysical Research Letters, 1993, 20, 1691-1694.	1.5	86
170	An analysis of nearfield normal mode amplitude anomalies of the Landers Earthquake. Geophysical Research Letters, 1993, 20, 2611-2614.	1.5	2
171	Excitation of Jovian normal modes by an impact source. Geophysical Research Letters, 1993, 20, 2921-2924.	1.5	15
172	Estimation of strong ground motions in Mexico City expected for large earthquakes in the Guerrero seismic gap. Bulletin of the Seismological Society of America, 1993, 83, 811-829.	1.1	22
173	Locating earthquakes with amplitude: Application to real-time seismology. Bulletin of the Seismological Society of America, 1993, 83, 264-268.	1.1	22
174	Impact of broadband seismology on the understanding of strong motions. Bulletin of the Seismological Society of America, 1993, 83, 830-850.	1.1	16
175	Source study of the 1906 San Francisco earthquake. Bulletin of the Seismological Society of America, 1993, 83, 981-1019.	1.1	87
176	Effect of Cholesterol-loading on Plasma and Tissue Taurine Levels in Rats. Bioscience, Biotechnology and Biochemistry, 1992, 56, 676-677.	0.6	5
177	Harmonic excitation of mantle Rayleigh waves by the 1991 eruption of Mount Pinatubo, Philippines. Geophysical Research Letters, 1992, 19, 721-724.	1.5	97
178	Initial investigation of the Landers, California, Earthquake of 28 June 1992 using TERRAscope. Geophysical Research Letters, 1992, 19, 2267-2270.	1.5	110
179	Pâ€wave image of the crust and uppermost mantle in southern California. Geophysical Research Letters, 1992, 19, 2329-2332.	1.5	32
180	Rupture processes of the 1987–1988 Gulf of Alaska Earthquake Sequence. Journal of Geophysical Research, 1992, 97, 19881-19908.	3.3	25

#	Article	IF	CITATIONS
181	Seismic excitation by space shuttles. Shock Waves, 1992, 2, 89-96.	1.0	26
182	A slow earthquake in the Santa Maria basin, California. Bulletin of the Seismological Society of America, 1992, 82, 2087-2096.	1.1	43
183	The origin of the tsunami excited by the 1989 Loma Prieta Earthquake —Faulting or slumping?. Geophysical Research Letters, 1991, 18, 637-640.	1.5	27
184	Abnormal tsunamis caused by the June 13, 1984, Torishima, Japan, earthquake. Journal of Geophysical Research, 1991, 96, 19933-19939.	3.3	46
185	Seismic excitation by the space shuttle Columbia. Nature, 1991, 349, 781-782.	13.7	86
186	Use of tsunami waveforms for earthquake source study. Natural Hazards, 1991, 4, 193-208.	1.6	43
187	The origin of the tsunami excited by the 1906 San Francisco earthquake. Bulletin of the Seismological Society of America, 1991, 81, 1396-1397.	1.1	6
188	Aftershock sequence of the 3 December 1988 Pasadena earthquake. Bulletin of the Seismological Society of America, 1991, 81, 2310-2319.	1.1	9
189	Inversion of complex body waves—III. Bulletin of the Seismological Society of America, 1991, 81, 2335-2350.	1.1	682
190	Reply to comment by J. Trampert. Geophysical Journal International, 1990, 103, 757-758.	1.0	0
191	Fault parameters and tsunami excitation of the May 23, 1989, MacQuarie Ridge Earthquake. Geophysical Research Letters, 1990, 17, 997-1000.	1.5	27
192	Broadband study of the 1989 Loma Prieta Earthquake. Geophysical Research Letters, 1990, 17, 1179-1182.	1.5	40
193	Earthquake source processes and subduction regime in the Santa Cruz Islands region. Physics of the Earth and Planetary Interiors, 1990, 61, 269-290.	0.7	19
194	Teleseismic source parameters and rupture characteristics of the 24 November 1987, Superstition Hills earthquake. Bulletin of the Seismological Society of America, 1990, 80, 43-56.	1.1	22
195	The 3 December 1988, Pasadena earthquake (<i>ML</i> = 4.9) recorded with the very broadband system in Pasadena. Bulletin of the Seismological Society of America, 1990, 80, 483-487.	1.1	39
196	Comparison of strong-motion spectra with teleseismic spectra for three magnitude 8 subduction-zone earthquakes. Bulletin of the Seismological Society of America, 1990, 80, 913-934.	1.1	11
197	Introduction to subduction zones. Pure and Applied Geophysics, 1989, 129, 1-5.	0.8	0
198	Comparison of Iterative Back-Projection Inversion and Generalized Inversion Without Blocks: Case Studies In Attenuation Tomography. Geophysical Journal International, 1989, 97, 19-29.	1.0	22

#	Article	IF	CITATIONS
199	A slow seismic event recorded in Pasadena. Geophysical Research Letters, 1989, 16, 1411-1414.	1.5	13
200	Temporal variation of large intraplate earthquakes in coupled subduction zones. Physics of the Earth and Planetary Interiors, 1989, 54, 258-312.	0.7	168
201	The Superstition Hills, California, earthquakes of 24 November 1987. Bulletin of the Seismological Society of America, 1989, 79, 239-251.	1.1	59
202	Teleseismic and strong-motion source spectra from two earthquakes in eastern Taiwan. Bulletin of the Seismological Society of America, 1989, 79, 935-944.	1.1	25
203	Introduction to subduction zones. Pure and Applied Geophysics, 1988, 128, 449-453.	0.8	1
204	Source finiteness of large earthquakes measured from long-period Rayleigh waves. Physics of the Earth and Planetary Interiors, 1988, 52, 56-84.	0.7	37
205	Large intermediate-depth earthquakes and the subduction process. Physics of the Earth and Planetary Interiors, 1988, 53, 80-166.	0.7	137
206	Reply [to "Comment on â€~A singleâ€force model for the 1975 Kalapana, Hawaii, earthquake' by Holly K. Eissler and Hiroo Kanamoriâ€]. Journal of Geophysical Research, 1988, 93, 8083-8084.	3.3	4
207	Correction to "Source parameters of the May 7, 1986 Andreanof Islands Earthquake,― Geophysical Research Letters, 1987, 14, 170-170.	1.5	Ο
208	Application of an inhomogeneous stress (patch) model to complex subduction zone earthquakes: A discrete interaction matrix approach. Journal of Geophysical Research, 1987, 92, 2606-2616.	3.3	42
209	A singleâ€ f orce model for the 1975 Kalapana, Hawaii, Earthquake. Journal of Geophysical Research, 1987, 92, 4827-4836.	3.3	100
210	Long-period surface waves of four western United States earthquakes recorded by the Pasadena strainmeter. Bulletin of the Seismological Society of America, 1987, 77, 236-243.	1.1	14
211	Regional variation of the short-period (1 to 10 second) source spectrum. Bulletin of the Seismological Society of America, 1987, 77, 514-529.	1.1	19
212	Source characteristics of earthquakes in the Michoacan seismic gap in Mexico. Bulletin of the Seismological Society of America, 1987, 77, 1326-1346.	1.1	54
213	Inversion of complex body waves-II. Physics of the Earth and Planetary Interiors, 1986, 43, 205-222.	0.7	122
214	Earthquake multiplets in the southeastern Solomon Islands. Physics of the Earth and Planetary Interiors, 1986, 44, 304-318.	0.7	14
215	Depth of seismicity in the Imperial Valley Region (1977–1983) and its relationship to heat flow, crustal structure and the October 15, 1979, earthquake. Journal of Geophysical Research, 1986, 91, 675-688.	3.3	155
216	Correction to "An inhomogeneous fault model for gaps, asperities, barriers, and seismicity migration― by John B. Rundle, Hiroo Kanamori, and Karen C. McNally. Journal of Geophysical Research, 1986, 91, 2218-2218.	3.3	2

#	Article	IF	CITATIONS
217	Rupture Process of Subduction-Zone Earthquakes. Annual Review of Earth and Planetary Sciences, 1986, 14, 293-322.	4.6	162
218	Tectonic Setting and Source Parameters of the September 19, 1985 Michoacan, Mexico Earthquake. Geophysical Research Letters, 1986, 13, 569-572.	1.5	45
219	Source characteristics of the 1985 Michoacan, Mexico Earthquake at periods of 1 to 30 seconds. Geophysical Research Letters, 1986, 13, 597-600.	1.5	42
220	Of the May 7, 1986 Andreanof Islands Earthquake source parameters. Geophysical Research Letters, 1986, 13, 1426-1429.	1.5	32
221	Linear programming approach to moment tensor inversion of earthquake sources and some tests on the three-dimensional structure of the upper mantle. Geophysical Journal International, 1986, 84, 413-430.	1.0	23
222	Interplate coupling and temporal variation of mechanisms of intermediate-depth earthquakes in Chile. Bulletin of the Seismological Society of America, 1986, 76, 1614-1622.	1.1	70
223	Spatial and temporal variations in seismicity in the Imperial Valley (1902-1984). Bulletin of the Seismological Society of America, 1986, 76, 421-438.	1.1	17
224	Rupture patterns and preshocks of large earthquakes in the southern San Jacinto fault zone. Bulletin of the Seismological Society of America, 1986, 76, 1187-1206.	1.1	27
225	Small science and unexpected discoveries in seismology. Bulletin of the Seismological Society of America, 1986, 76, 1501-1503.	1.1	3
226	Aftershock area expansion and mechanical heterogeneity of fault zone within subduction zones. Geophysical Research Letters, 1985, 12, 345-348.	1.5	35
227	On the consistency of moment tensor source mechanisms with first-motion data. Physics of the Earth and Planetary Interiors, 1985, 37, 97-107.	0.7	32
228	Global survey of aftershock area expansion patterns. Physics of the Earth and Planetary Interiors, 1985, 40, 77-134.	0.7	146
229	Reply to H. Acharya's "Comments on †Seismic potential associated with subduction in the Northwestern United States'― Bulletin of the Seismological Society of America, 1985, 75, 891-892.	1.1	2
230	Analysis of seismic body waves excited by the Mount St. Helens eruption of May 18, 1980. Journal of Geophysical Research, 1984, 89, 1856-1866.	3.3	188
231	An earthquake doublet in Ometepec, Guerrero, Mexico. Physics of the Earth and Planetary Interiors, 1984, 34, 24-45.	0.7	103
232	A seismotectonic analysis of the Anza Seismic Gap, San Jacinto Fault Zone, southern California. Journal of Geophysical Research, 1984, 89, 5873-5890.	3.3	98
233	Seismic coupling and uncoupling at subduction zones. Tectonophysics, 1983, 99, 99-117.	0.9	247
234	Magnitude scale and quantification of earthquakes. Tectonophysics, 1983, 93, 185-199.	0.9	278

#	Article	IF	CITATIONS
235	Source parameters of recent strong earthquakes in northeastern Iran from long-period surface waves. Tectonophysics, 1983, 93, 205.	0.9	Ο
236	Lamb pulse observed in nature. Geophysical Research Letters, 1983, 10, 373-376.	1.5	35
237	The October 1980 earthquake sequence near the New Hebrides. Geophysical Research Letters, 1983, 10, 1137-1140.	1.5	24
238	The rupture process and asperity distribution of three great earthquakes from long-period diffracted P-waves. Physics of the Earth and Planetary Interiors, 1983, 31, 202-230.	0.7	175
239	Determination of rupture duration and stress drop for earthquakes in southern California. Bulletin of the Seismological Society of America, 1983, 73, 1527-1551.	1.1	65
240	Rupture complexity of the 1970 Tonghai and 1973 Luhuo earthquakes, China, from <i>P</i> -wave inversion, and relationship to surface faulting. Bulletin of the Seismological Society of America, 1983, 73, 1585-1597.	1.1	48
241	Effect of distance on local magnitudes found from strong-motion records. Bulletin of the Seismological Society of America, 1983, 73, 265-280.	1.1	40
242	Source processes of large earthquakes along the Xianshuihe fault in southwestern China. Bulletin of the Seismological Society of America, 1983, 73, 537-551.	1.1	42
243	A discrepancy between long―and shortâ€period mechanisms of earthquakes near the Long Valley Caldera. Geophysical Research Letters, 1982, 9, 1131-1134.	1.5	30
244	A large normal-fault earthquake at the junction of the Tonga trench and the Louisville ridge. Physics of the Earth and Planetary Interiors, 1982, 29, 161-172.	0.7	23
245	Use of long-period surface waves for rapid determination of earthquake source parameters 2. Preliminary determination of source mechanisms of large earthquakes (MS ⩾ 6.5) in 1980. Physics of the Earth and Planetary Interiors, 1982, 30, 260-268.	0.7	63
246	Complexity of rupture in large strike-slip earthquakes in Turkey. Physics of the Earth and Planetary Interiors, 1982, 28, 70-84.	0.7	28
247	Analysis of longâ€period seismic waves excited by the May 18, 1980, eruption of Mount St. Helens—A terrestrial monopole?. Journal of Geophysical Research, 1982, 87, 5422-5432.	3.3	234
248	Effects of lateral heterogeneity and source process time on the linear moment tensor inversion of long-period Rayleigh waves. Bulletin of the Seismological Society of America, 1982, 72, 2063-2080.	1.1	32
249	Long-period mechanism of the 8 November 1980 Eureka, California, earthquake. Bulletin of the Seismological Society of America, 1982, 72, 439-456.	1.1	32
250	Teleseismic analysis of the 1980 Mammoth Lakes earthquake sequence. Bulletin of the Seismological Society of America, 1982, 72, 1093-1109.	1.1	37
251	The Montenegro, Yugoslavia, earthquake of April 15, 1979: source orientation and strength. Physics of the Earth and Planetary Interiors, 1981, 27, 133-142.	0.7	35
252	Use of long-period surface waves for rapid determination of earthquake-source parameters. Physics of the Earth and Planetary Interiors, 1981, 27, 8-31.	0.7	352

#	Article	IF	CITATIONS
253	Double seismic zones and stresses of intermediate depth earthquakes. Geophysical Journal International, 1981, 66, 131-156.	1.0	139
254	Magnitudes of great shallow earthquakes from 1953 to 1977. Tectonophysics, 1980, 62, 191-203.	0.9	59
255	Variation of seismic source parameters and stress drops within a descending slab and its implications in plate mechanics. Physics of the Earth and Planetary Interiors, 1980, 23, 134-159.	0.7	61
256	Seismicity and the subduction process. Physics of the Earth and Planetary Interiors, 1980, 23, 240-252.	0.7	428
257	Earthquake doublets in the Solomon Islands. Physics of the Earth and Planetary Interiors, 1980, 21, 283-304.	0.7	181
258	Temporal variation of seismicity and spectrum of small earthquakes preceding the 1952 Kern County, California, earthquake. Bulletin of the Seismological Society of America, 1980, 70, 509-527.	1.1	54
259	Regional S-wave structure for southern California from the analysis of teleseismic Rayleigh waves. Geophysical Journal International, 1979, 58, 655-666.	1.0	21
260	A slow earthquake. Physics of the Earth and Planetary Interiors, 1979, 18, 167-175.	0.7	76
261	A moment magnitude scale. Journal of Geophysical Research, 1979, 84, 2348-2350.	3.3	2,954
262	Earthquake source mechanisms and plate tectonics. Reviews of Geophysics, 1979, 17, 337-343.	9.0	0
263	A semi-empirical approach to prediction of long-period ground motions from great earthquakes. Bulletin of the Seismological Society of America, 1979, 69, 1645-1670.	1.1	125
264	The July 27, 1976 Tangshan, China earthquake—A complex sequence of intraplate events. Bulletin of the Seismological Society of America, 1979, 69, 207-220.	1.1	116
265	Quantification of Earthquakes. Nature, 1978, 271, 411-414.	13.7	264
266	Subduction process of a fracture zone and aseismic ridges the focal mechanism and source characteristics of the New Hebrides earthquake of 1969 January 19 and some related events. Geophysical Journal International, 1978, 54, 221-240.	1.0	51
267	Quantification of great earthquakes. Tectonophysics, 1978, 49, 207-212.	0.9	18
268	A mechanical model for plate deformation associated with aseismic ridge subduction in the new hebrides arc. Tectonophysics, 1978, 50, 29-40.	0.9	50
269	Earthquake Swarm Along the San Andreas Fault near Palmdale, Southern California, 1976 to 1977. Science, 1978, 201, 814-817.	6.0	29
270	The foreshock activity of the 1971 San Fernando earthquake, California. Bulletin of the Seismological Society of America, 1978, 68, 1265-1279.	1.1	59

#	Article	IF	CITATIONS
271	Recent seismicity in the San Fernando region and tectonics in the west-central transverse ranges, California. Bulletin of the Seismological Society of America, 1978, 68, 1449-1457.	1.1	26
272	The Earth as a Seismic Absorption Band. Science, 1977, 196, 1104-1106.	6.0	57
273	Seismic structure of the Transverse Ranges, California. Bulletin of the Geological Society of America, 1977, 88, 1469.	1.6	227
274	The effect of attenuation on gross earth models. Journal of Geophysical Research, 1977, 82, 1647-1654.	3.3	59
275	The energy release in great earthquakes. Journal of Geophysical Research, 1977, 82, 2981-2987.	3.3	1,887
276	The spatioâ€ŧemporal variation of seismicity before the 1971 San Fernando Earthquake, California. Geophysical Research Letters, 1977, 4, 345-346.	1.5	27
277	Importance of physical dispersion in surface wave and free oscillation problems: Review. Reviews of Geophysics, 1977, 15, 105-112.	9.0	278
278	Magnitudes of great shallow earthquakes from 1904 to 1952. Bulletin of the Seismological Society of America, 1977, 67, 587-598.	1.1	137
279	Shear velocity and density of an attenuating earth. Earth and Planetary Science Letters, 1976, 32, 25-34.	1.8	24
280	Mode of the strain release along the Gibbs fracture zone, Mid-Atlantic ridge. Physics of the Earth and Planetary Interiors, 1976, 11, 312-332.	0.7	296
281	Re-examination of the earth's free oxcillations excited by the Kamchatka earthquake of November 4, 1952. Physics of the Earth and Planetary Interiors, 1976, 11, 216-226.	0.7	52
282	Source process and tectonic implications of the Spanish deep-focus earthquake of March 29, 1954. Physics of the Earth and Planetary Interiors, 1976, 13, 85-96.	0.7	150
283	Velocity dispersion due to anelasticity; implications for seismology and mantle composition. Geophysical Journal International, 1976, 47, 41-58.	1.0	687
284	Dr. Bush writes a report: "sciencethe endless frontier". Science, 1976, 191, 41-47.	6.0	149
285	Search for compression before a deep earthquake. Nature, 1975, 253, 333-336.	13.7	13
286	Amplitude of the Earth's free oscillations and long-period characteristics of the earthquake source. Journal of Geophysical Research, 1975, 80, 1075-1078.	3.3	69
287	Focal process of the great Chilean earthquake May 22, 1960. Physics of the Earth and Planetary Interiors, 1974, 9, 128-136.	0.7	355
288	Long-period ground motion in the epicentral area of major earthquakes. Tectonophysics, 1974, 21, 341-356.	0.9	18

#	Article	IF	CITATIONS
289	Temporal changes in P-wave velocity in Southern California. Tectonophysics, 1974, 23, 67-78.	0.9	19
290	Source mechanism of February 4, 1965, Rat Island earthquake. Journal of Geophysical Research, 1973, 78, 6082-6092.	3.3	83
291	Source mechanism of the Alaskan earthquake of 1964 from amplitudes of free oscillations and surface waves — comments. Physics of the Earth and Planetary Interiors, 1973, 7, 222-224.	0.7	1
292	Point Mugu, California, Earthquake of 21 February 1973 and Its Aftershocks. Science, 1973, 182, 1127-1129.	6.0	29
293	Mode of Strain Release Associated with Major Earthquakes in Japan. Annual Review of Earth and Planetary Sciences, 1973, 1, 213-239.	4.6	124
294	Mechanism of tsunami earthquakes. Physics of the Earth and Planetary Interiors, 1972, 6, 346-359.	0.7	813
295	Tectonic implications of the 1944 Tonankai and the 1946 Nankaido earthquakes. Physics of the Earth and Planetary Interiors, 1972, 5, 129-139.	0.7	312
296	Determination of effective tectonic stress associated with earthquake faulting. The Tottori earthquake of 1943. Physics of the Earth and Planetary Interiors, 1972, 5, 426-434.	0.7	114
297	Relation between tectonic stress, great earthquakes and earthquake swarms. Tectonophysics, 1972, 14, 1-12.	0.9	47
298	Great earthquakes at island arcs and the lithosphere. Tectonophysics, 1971, 12, 187-198.	0.9	200
299	Spatial distribution of earthquakes in the Kii peninsula, Japan, south of the Median Tectonic Line. Tectonophysics, 1971, 12, 327-342.	0.9	30
300	Focal mechanism of the Tokachi-Oki earthquake of may 16, 1968: Contortion of the lithosphere at a junction of two trenches. Tectonophysics, 1971, 12, 1-13.	0.9	159
301	Seismological evidence for a lithospheric normal faulting — the Sanriku earthquake of 1933. Physics of the Earth and Planetary Interiors, 1971, 4, 289-300.	0.7	331
302	How Thick is the Lithosphere ?. Nature, 1970, 226, 330-331.	13.7	161
303	Elastic Wave Velocities of Lunar Samples at High Pressures and Their Geophysical Implications. Science, 1970, 167, 726-728.	6.0	32
304	Thermal Diffusivity and Conductivity of Lunar Material. Science, 1970, 167, 730-731.	6.0	23
305	Velocity and Q of mantle waves. Physics of the Earth and Planetary Interiors, 1970, 2, 259-275.	0.7	180
306	Mantle beneath the Japanese arc. Physics of the Earth and Planetary Interiors, 1970, 3, 475-483.	0.7	84

#	Article	IF	CITATIONS
307	Synthesis ofzce Studies-Kurile Islands Earthquake of October 13, 1963. Journal of Geophysical Research, 1970, 75, 5011-5027.	3.3	187
308	The Alaska Earthquake of 1964: Radiation of long-period surface waves and source mechanism. Journal of Geophysical Research, 1970, 75, 5029-5040.	3.3	211
309	Recent developments in earthquake prediction research in Japan. Tectonophysics, 1970, 9, 291-300.	0.9	16
310	Seismological Evidence for Heterogeneity of the Mantle. Journal of Geomagnetism and Geoelectricity, 1970, 22, 53-70.	0.8	7
311	Method of Thermal Diffusivity Measurement. Journal of Physics of the Earth, 1969, 17, 43-53.	1.4	30
312	Thermal diffusivity measurement of rock-forming minerals from 300° to 1100°K. Journal of Geophysical Research, 1968, 73, 595-605.	3.3	294
313	Thermal diffusivity of Mg ₂ SiO ₄ , Fe ₂ SiO ₄ , and NaCl at high pressures and temperatures. Journal of Geophysical Research, 1968, 73, 4727-4733.	3.3	89
314	Shock-wave equations of state for rocks and minerals. Journal of Geophysical Research, 1968, 73, 6477-6502.	3.3	82
315	Mechanical properties of rocks at high temperatures and pressures. Tectonophysics, 1968, 5, 348-349.	0.9	0
316	Digital Processing of Surface Waves and Structure of Island Arcs. Journal of Physics of the Earth, 1968, 16, 137-140.	1.4	4
317	Spectrum of <i>P</i> and <i>PcP</i> in relation to the mantle-core boundary and attenuation in the mantle. Journal of Geophysical Research, 1967, 72, 559-571.	3.3	77
318	Comparison of gravity interpretation methods. Journal of Geophysical Research, 1967, 72, 583-587.	3.3	0
319	Spectrum of short-period core phases in relation to the attenuation in the mantle. Journal of Geophysical Research, 1967, 72, 2181-2186.	3.3	57
320	Electrical Conductivities of Rock-Forming Minerals at High Temperatures. Journal of Physics of the Earth, 1967, 15, 25-31.	1.4	20
321	Equations of state of matter from shock wave experiments. Journal of Geophysical Research, 1966, 71, 3985-3994.	3.3	74
322	Variation of Elastic Wave Velocity and Attenuative Property near the Melting Temperature. Journal of Physics of the Earth, 1964, 12, 43-49.	1.4	43
323	Gravity Anomalies and the Crust-mantle Structure in Japan. Journal of Geography (Chigaku Zasshi), 1964, 73, 243-246.	0.1	0
324	Absence of spectral peaks in short-period oscillations from the Chilean Earthquake. Journal of Geophysical Research, 1963, 68, 4884-4884.	3.3	2

#	Article	IF	CITATIONS
325	An Asperity Model of Large Earthquake Sequences. Maurice Ewing Series, 0, , 579-592.	0.1	134