
Philip Armitage

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/15420/publications.pdf Version: 2024-02-01

ΡΗΠΙΟ ΔΟΜΙΤΛΟΕ

#	Article	IF	CITATIONS
1	Dynamics of Protoplanetary Disks. Annual Review of Astronomy and Astrophysics, 2011, 49, 195-236.	24.3	413
2	Massive black hole binary mergers within subparsec scale gas discs. Monthly Notices of the Royal Astronomical Society, 2009, 393, 1423-1432.	4.4	304
3	Episodic accretion in magnetically layered protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2001, 324, 705-711.	4.4	293
4	Accretion during the Merger of Supermassive Black Holes. Astrophysical Journal, 2002, 567, L9-L12.	4.5	293
5	Dust filtration at gap edges: implications for the spectral energy distributions of discs with embedded planets. Monthly Notices of the Royal Astronomical Society, 2006, 373, 1619-1626.	4.4	258
6	THE MASS AND SIZE DISTRIBUTION OF PLANETESIMALS FORMED BY THE STREAMING INSTABILITY. I. THE ROLE OF SELF-GRAVITY. Astrophysical Journal, 2016, 822, 55.	4.5	245
7	The effect of cooling on the global stability of self-gravitating protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2003, 339, 1025-1030.	4.4	235
8	Dust dynamics during protoplanetary disc clearing. Monthly Notices of the Royal Astronomical Society, 2007, 375, 500-512.	4.4	208
9	A Three-dimensional View of Turbulence: Constraints on Turbulent Motions in the HD 163296 Protoplanetary Disk Using DCO ⁺ . Astrophysical Journal, 2017, 843, 150.	4.5	208
10	Accelerated planetesimal growth in self-gravitating protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2004, 355, 543-552.	4.4	193
11	GIANT PLANET MIGRATION, DISK EVOLUTION, AND THE ORIGIN OF TRANSITIONAL DISKS. Astrophysical Journal, 2009, 704, 989-1001.	4.5	169
12	Constraints on a planetary origin for the gap in the protoplanetary disc of GM Aurigae. Monthly Notices of the Royal Astronomical Society, 2003, 342, 79-85.	4.4	157
13	TURBULENCE IN THE OUTER REGIONS OF PROTOPLANETARY DISKS. II. STRONG ACCRETION DRIVEN BY A VERTICAL MAGNETIC FIELD. Astrophysical Journal, 2013, 775, 73.	4.5	156
14	Eccentricity of Supermassive Black Hole Binaries Coalescing from Gasâ€rich Mergers. Astrophysical Journal, 2005, 634, 921-927.	4.5	154
15	Turbulence and Angular Momentum Transport in a Global Accretion Disk Simulation. Astrophysical Journal, 1998, 501, L189-L192.	4.5	150
16	Emergent mesoscale phenomena in magnetized accretion disc turbulence. Monthly Notices of the Royal Astronomical Society, 2012, 422, 2685-2700.	4.4	142
17	Magnetically driven accretion in protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2015, 454, 1117-1131.	4.4	138
18	Outward migration of extrasolar planets to large orbital radii. Monthly Notices of the Royal Astronomical Society, 2004, 347, 613-624.	4.4	135

#	Article	IF	CITATIONS
19	Debris disks as signposts of terrestrial planet formation. Astronomy and Astrophysics, 2011, 530, A62.	5.1	130
20	Quasi-stars: accreting black holes inside massive envelopes. Monthly Notices of the Royal Astronomical Society, 2008, 387, 1649-1659.	4.4	128
21	Axisymmetric Magnetohydrodynamic Simulations of the Collapsar Model for Gamma-Ray Bursts. Astrophysical Journal, 2003, 599, L5-L8.	4.5	127
22	PLANET-PLANET SCATTERING IN PLANETESIMAL DISKS. II. PREDICTIONS FOR OUTER EXTRASOLAR PLANETARY SYSTEMS. Astrophysical Journal, 2010, 711, 772-795.	4.5	127
23	Predictions for the frequency and orbital radii of massive extrasolar planets. Monthly Notices of the Royal Astronomical Society, 2002, 334, 248-256.	4.4	124
24	Magnetic braking of T Tauri stars. Monthly Notices of the Royal Astronomical Society, 1996, 280, 458-468.	4.4	123
25	THE KOZAI-LIDOV MECHANISM IN HYDRODYNAMICAL DISKS. Astrophysical Journal Letters, 2014, 792, L33.	8.3	122
26	Circumbinary, not transitional: on the spiral arms, cavity, shadows, fast radial flows, streamers, and horseshoe in the HD 142527 disc. Monthly Notices of the Royal Astronomical Society, 2018, 477, 1270-1284.	4.4	122
27	TURBULENCE IN THE OUTER REGIONS OF PROTOPLANETARY DISKS. I. WEAK ACCRETION WITH NO VERTICAL MAGNETIC FLUX. Astrophysical Journal, 2013, 764, 66.	4.5	121
28	Evidence for Universality in the Initial Planetesimal Mass Function. Astrophysical Journal Letters, 2017, 847, L12.	8.3	118
29	ACCRETION KINEMATICS THROUGH THE WARPED TRANSITION DISK IN HD 142527 FROM RESOLVED CO(6–5) OBSERVATIONS. Astrophysical Journal, 2015, 811, 92.	4.5	117
30	On the Formation Timescale and Core Masses of Gas Giant Planets. Astrophysical Journal, 2003, 598, L55-L58.	4.5	108
31	Mean Motion Resonances from Planet-Planet Scattering. Astrophysical Journal, 2008, 687, L107-L110.	4.5	108
32	Dispersion in the lifetime and accretion rate of T Tauri discs. Monthly Notices of the Royal Astronomical Society, 2003, 342, 1139-1146.	4.4	105
33	Massive Planet Migration: Theoretical Predictions and Comparison with Observations. Astrophysical Journal, 2007, 665, 1381-1390.	4.5	105
34	Time-dependent models of the structure and stability of self-gravitating protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2009, 396, 2228-2236.	4.4	102
35	Accretion disc dynamo activity in local simulations spanning weak-to-strong net vertical magnetic flux regimes. Monthly Notices of the Royal Astronomical Society, 2016, 457, 857-874.	4.4	96
36	The variability of accretion on to Schwarzschild black holes from turbulent magnetized discs. Monthly Notices of the Royal Astronomical Society, 2003, 341, 1041-1050.	4.4	93

#	Article	IF	CITATIONS
37	PLANET-PLANET SCATTERING LEADS TO TIGHTLY PACKED PLANETARY SYSTEMS. Astrophysical Journal, 2009, 696, L98-L101.	4.5	91
38	Planet–disc evolution and the formation of Kozai–Lidov planets. Monthly Notices of the Royal Astronomical Society, 2016, 458, 4345-4353.	4.4	91
39	The brown dwarf desert as a consequence of orbital migration. Monthly Notices of the Royal Astronomical Society, 2002, 330, L11-L14.	4.4	87
40	Substellar companions and isolated planetary-mass objects from protostellar disc fragmentation. Monthly Notices of the Royal Astronomical Society, 2003, 346, L36-L40.	4.4	87
41	The role of disc self-gravity in the formation of protostars and protostellar discs. Monthly Notices of the Royal Astronomical Society, 2010, 402, 1740-1749.	4.4	85
42	The interplay between X-ray photoevaporation and planet formation. Monthly Notices of the Royal Astronomical Society, 2013, 430, 1392-1401.	4.4	85
43	PLANET-PLANET SCATTERING IN PLANETESIMAL DISKS. Astrophysical Journal, 2009, 699, L88-L92.	4.5	83
44	Hydrodynamics of the Streamâ€Disk Impact in Interacting Binaries. Astrophysical Journal, 1998, 493, 898-908.	4.5	83
45	Implications of the interstellar object 11/'Oumuamua for planetary dynamics and planetesimal formation. Monthly Notices of the Royal Astronomical Society, 2018, 476, 3031-3038.	4.4	82
46	The dynamics of two massive planets on inclined orbits. Icarus, 2004, 172, 349-371.	2.5	79
47	A limit on eccentricity growth from global 3D simulations of disc–planet interactions. Monthly Notices of the Royal Astronomical Society, 2013, 428, 3072-3082.	4.4	79
48	GIANT OUTBURSTS IN Be/X-RAY BINARIES. Astrophysical Journal Letters, 2014, 790, L34.	8.3	79
49	Black Hole Formation via Hypercritical Accretion during Commonâ€Envelope Evolution. Astrophysical Journal, 2000, 532, 540-547.	4.5	78
50	The Mass and Size Distribution of Planetesimals Formed by the Streaming Instability. II. The Effect of the Radial Gas Pressure Gradient. Astrophysical Journal, 2019, 883, 192.	4.5	75
51	Debris disks as signposts of terrestrial planet formation. Astronomy and Astrophysics, 2012, 541, A11.	5.1	73
52	Stability of self-gravitating discs under irradiation. Monthly Notices of the Royal Astronomical Society, 2011, 418, 1356-1362.	4.4	71
53	The Stellar Mass-Accretion Rate Relation in T Tauri Stars and Brown Dwarfs. Astrophysical Journal, 2006, 639, L83-L86.	4.5	70
54	Black hole mergers: the first light. Monthly Notices of the Royal Astronomical Society, 2010, 401, 2021-2035.	4.4	66

#	Article	IF	CITATIONS
55	PARTICLE TRANSPORT IN EVOLVING PROTOPLANETARY DISKS: IMPLICATIONS FOR RESULTS FROM <i>STARDUST</i> . Astrophysical Journal, 2010, 719, 1633-1653.	4.5	64
56	Tidal disruption events from supermassive black hole binaries. Monthly Notices of the Royal Astronomical Society, 2017, 465, 3840-3864.	4.4	62
57	A MECHANISM FOR HYSTERESIS IN BLACK HOLE BINARY STATE TRANSITIONS. Astrophysical Journal Letters, 2014, 782, L18.	8.3	61
58	Early planet formation as a trigger for further planet formation. Nature, 1999, 402, 633-635.	27.8	58
59	Simulations of Accretion Flows Crossing the Last Stable Orbit. Astrophysical Journal, 2001, 548, 868-875.	4.5	57
60	The Influence of Massive Planet Scattering on Nascent Terrestrial Planets. Astrophysical Journal, 2005, 620, L111-L114.	4.5	56
61	Predictions for the Correlation between Giant and Terrestrial Extrasolar Planets in Dynamically Evolved Systems. Astrophysical Journal, 2006, 645, 1509-1515.	4.5	56
62	EFFICIENCY OF PARTICLE TRAPPING IN THE OUTER REGIONS OF PROTOPLANETARY DISKS. Astrophysical Journal, 2014, 784, 15.	4.5	56
63	The Blandford-Znajek Mechanism and the Emission from Isolated Accreting Black Holes. Astrophysical Journal, 1999, 523, L7-L10.	4.5	55
64	Why are there so few hot Jupiters?. Monthly Notices of the Royal Astronomical Society, 2008, 384, 1242-1248.	4.4	55
65	Hydrodynamic outcomes of planet scattering in transitional discs. Monthly Notices of the Royal Astronomical Society, 2012, 419, 366-376.	4.4	53
66	PROMPT PLANETESIMAL FORMATION BEYOND THE SNOW LINE. Astrophysical Journal Letters, 2016, 828, L2.	8.3	53
67	Predicting the long-term stability of compact multiplanet systems. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18194-18205.	7.1	53
68	Selfâ€Gravitating Fragmentation of Eccentric Accretion Disks. Astrophysical Journal, 2008, 674, 927-935.	4.5	50
69	TWO TIMESCALE DISPERSAL OF MAGNETIZED PROTOPLANETARY DISKS. Astrophysical Journal Letters, 2013, 778, L14.	8.3	50
70	Accretion disc evolution in single and binary T Tauri stars. Monthly Notices of the Royal Astronomical Society, 1999, 304, 425-433.	4.4	49
71	Constraints on the Stellar Mass Function from Stellar Dynamics at the Galactic Center. Astrophysical Journal, 2007, 654, 907-914.	4.5	49
72	Post-periapsis pancakes: sustenance for self-gravity in tidal disruption events. Monthly Notices of the Royal Astronomical Society, 2016, 455, 3612-3627.	4.4	49

#	Article	IF	CITATIONS
73	Strongly magnetized accretion discs: structure and accretion from global magnetohydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2020, 492, 1855-1868.	4.4	48
74	Magnetic activity in accretion disc boundary layers. Monthly Notices of the Royal Astronomical Society, 2002, 330, 895-900.	4.4	47
75	Convergence of simulations of self-gravitating accretion discs – II. Sensitivity to the implementation of radiative cooling and artificial viscosity. Monthly Notices of the Royal Astronomical Society, 2014, 438, 1593-1602.	4.4	47
76	ACCRETION DISK DYNAMO AS THE TRIGGER FOR X-RAY BINARY STATE TRANSITIONS. Astrophysical Journal, 2015, 809, 118.	4.5	47
77	On the structure of tidally disrupted stellar debris streams. Monthly Notices of the Royal Astronomical Society, 2016, 459, 3089-3103.	4.4	46
78	FORMATION OF CIRCUMBINARY PLANETS IN A DEAD ZONE. Astrophysical Journal, 2013, 773, 74.	4.5	45
79	CONNECTIONS BETWEEN LOCAL AND GLOBAL TURBULENCE IN ACCRETION DISKS. Astrophysical Journal, 2010, 712, 1241-1247.	4.5	44
80	SIGNATURES OF MRI-DRIVEN TURBULENCE IN PROTOPLANETARY DISKS: PREDICTIONS FOR ALMA OBSERVATIONS. Astrophysical Journal, 2015, 808, 180.	4.5	44
81	Binary formation and mass function variations in fragmenting discs with short cooling times. Monthly Notices of the Royal Astronomical Society, 2008, 389, 1655-1664.	4.4	43
82	Extrasolar Planet Eccentricities from Scattering in the Presence of Residual Gas Disks. Astrophysical Journal, 2008, 688, 1361-1367.	4.5	43
83	Astrometric signatures of self-gravitating protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2003, 338, 227-232.	4.4	41
84	Turbulence Regulates the Rate of Planetesimal Formation via Gravitational Collapse. Astrophysical Journal, 2020, 904, 132.	4.5	39
85	Mini-Oort clouds: compact isotropic planetesimal clouds from planet–planet scattering. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 429, L99-L103.	3.3	37
86	Interstellar Object 'Oumuamua as an Extinct Fragment of an Ejected Cometary Planetesimal. Astrophysical Journal Letters, 2018, 856, L7.	8.3	36
87	TURBULENT LINEWIDTHS IN PROTOPLANETARY DISKS: PREDICTIONS FROM NUMERICAL SIMULATIONS. Astrophysical Journal, 2011, 743, 17.	4.5	35
88	Secular evolution of MHD wind-driven discs: analytical solutions in the expanded α-framework. Monthly Notices of the Royal Astronomical Society, 2022, 512, 2290-2309.	4.4	35
89	Warped discs and the directional stability of jets in active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 1999, 309, 961-968.	4.4	34
90	Quantifying Orbital Migration from Exoplanet Statistics and Host Metallicities. Astrophysical Journal, 2005, 630, 1107-1113.	4.5	34

#	Article	IF	CITATIONS
91	Convergence of smoothed particle hydrodynamics simulations of self-gravitating accretion discs: sensitivity to the implementation of radiative cooling. Monthly Notices of the Royal Astronomical Society, 2012, 420, 1640-1647.	4.4	34
92	The ejection of T Tauri stars from molecular clouds and the fate of circumstellar discs. Monthly Notices of the Royal Astronomical Society, 1997, 285, 540-546.	4.4	33
93	A Variable Efficiency for Thin-Disk Black Hole Accretion. Astrophysical Journal, 2001, 561, L81-L84.	4.5	33
94	Tilted accretion discs in cataclysmic variables: tidal instabilities and superhumps. Monthly Notices of the Royal Astronomical Society, 1998, 300, 561-566.	4.4	32
95	MHD disc winds can reproduce fast disc dispersal and the correlation between accretion rate and disc mass in Lupus. Monthly Notices of the Royal Astronomical Society: Letters, 2022, 512, L74-L79.	3.3	29
96	Extrasolar Planetary Dynamics with a Generalized Planar Laplace‣agrange Secular Theory. Astrophysical Journal, 2007, 661, 1311-1322.	4.5	28
97	TURBULENCE, TRANSPORT, AND WAVES IN OHMIC DEAD ZONES. Astrophysical Journal, 2016, 826, 18.	4.5	28
98	Radiation-induced Warping of Protostellar Accretion Disks. Astrophysical Journal, 1997, 488, L47-L50.	4.5	27
99	Strongly magnetized accretion discs require poloidal flux. Monthly Notices of the Royal Astronomical Society, 2016, 460, 3488-3493.	4.4	26
100	Lenseâ€Thirring Precession of Accretion Disks around Compact Objects. Astrophysical Journal, 1999, 525, 909-914.	4.5	26
101	Physical Processes in Protoplanetary Disks. Saas-Fee Advanced Course, 2019, , 1-150.	1.1	24
102	Magnetically modulated accretion in T Tauri stars. Monthly Notices of the Royal Astronomical Society, 1995, 273, 639-642.	4.4	23
103	EXor OUTBURSTS FROM DISK AMPLIFICATION OF STELLAR MAGNETIC CYCLES. Astrophysical Journal Letters, 2016, 833, L15.	8.3	22
104	Tidal disruption by extreme mass ratio binaries and application to ASASSN-15lh. Monthly Notices of the Royal Astronomical Society, 2018, 474, 3857-3865.	4.4	22
105	Simulation of a compact object with outflows moving through a gaseous background. Monthly Notices of the Royal Astronomical Society, 2020, 494, 2327-2336.	4.4	22
106	Global variation of the dust-to-gas ratio in evolving protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2012, 423, 389-405.	4.4	21
107	Local Simulations of Heating Torques on a Luminous Body in an Accretion Disk. Astrophysical Journal, 2020, 902, 50.	4.5	18
108	Simulations of spiral structure in the accretion disc of IP Pegasi during outburst. Monthly Notices of the Royal Astronomical Society, 1998, 297, L81-L85.	4.4	16

#	Article	lF	CITATIONS
109	Partial tidal disruption events by stellar mass black holes: Gravitational instability of stream and impact from remnant core. Monthly Notices of the Royal Astronomical Society, 2021, 503, 6005-6015.	4.4	15
110	Distinguishing an ejected blob from alternative flare models at the Galactic Centre with GRAVITY. Monthly Notices of the Royal Astronomical Society, 2014, 441, 3477-3487.	4.4	14
111	Microphysical dissipation, turbulence and magnetic fields in hyper-accreting discs. Monthly Notices of the Royal Astronomical Society, 2008, 391, 922-934.	4.4	13
112	Turbulent linewidths as a diagnostic of self-gravity in protostellar discs. Monthly Notices of the Royal Astronomical Society, 2012, 426, 2419-2426.	4.4	13
113	A Bayesian neural network predicts the dissolution of compact planetary systems. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	13
114	A Fast-growing Tilt Instability of Detached Circumplanetary Disks. Astrophysical Journal Letters, 2020, 898, L26.	8.3	13
115	Survivor Bias: Divergent Fates of the Solar System's Ejected versus Persisting Planetesimals. Astrophysical Journal Letters, 2020, 904, L4.	8.3	13
116	The effects of tidally induced disc structure on white dwarf accretion in intermediate polars. Monthly Notices of the Royal Astronomical Society, 1999, 302, 189-196.	4.4	12
117	From Protoplanetary Disks to Planet Formation. Saas-Fee Advanced Course, 2019, , .	1.1	12
118	Dynamo-driven Accretion Disks and Dwarf Nova Eruptions. Astrophysical Journal, 1996, 457, 332.	4.5	12
119	Interaction of the Magnetorotational Instability with Hydrodynamic Turbulence in Accretion Disks. Astrophysical Journal, 2008, 685, 406-417.	4.5	10
120	The spectroscopic signature of hot Jupiters in FU Orionis objects. Monthly Notices of the Royal Astronomical Society, 2003, 345, 691-695.	4.4	9
121	A Trap for Planet Formation. Science, 2013, 340, 1179-1180.	12.6	8
122	A Brief Overview of Planet Formation. , 2018, , 2185-2203.		8
123	Global 3D radiation hydrodynamic simulations of proto-Jupiter's convective envelope. Monthly Notices of the Royal Astronomical Society, 2021, 508, 453-474.	4.4	8
124	Lifetime of the Outer Solar System Nebula From Carbonaceous Chondrites. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	8
125	Vertical structure of hyper-accreting disks and consequences for gamma-ray burst outflows. Astrophysics and Space Science, 2007, 311, 185-190.	1.4	7
126	Importance of thermal diffusion in the gravomagnetic limit cycle. Monthly Notices of the Royal Astronomical Society, 2014, 445, 2800-2809.	4.4	6

#	Article	IF	CITATIONS
127	The Influence of Black Hole Binarity on Tidal Disruption Events. Space Science Reviews, 2019, 215, 1.	8.1	6
128	Boundary Layer Circumplanetary Accretion: How Fast Could an Unmagnetized Planet Spin Up through Its Disk?. Astrophysical Journal, 2021, 921, 54.	4.5	6
129	Publisher Note: Circumbinary, not transitional: On the spiral arms, cavity, shadows, fast radial flows, streamers and horseshoe in the HD142527 disc. Monthly Notices of the Royal Astronomical Society, 2018, 481, 3169-3169.	4.4	3
130	Kozai–Lidov oscillations triggered by a tilt instability of detached circumplanetary discs. Monthly Notices of the Royal Astronomical Society, 2021, 502, 4426-4434.	4.4	3
131	Primordial Giant Planet Obliquity Driven by a Circumplanetary Disk. Astrophysical Journal Letters, 2021, 912, L16.	8.3	3
132	The debris disk – terrestrial planet connection. Proceedings of the International Astronomical Union, 2010, 6, 82-88.	0.0	2
133	A Brief Overview of Planet Formation. , 2018, , 1-19.		1
134	Future Simulations of Tidal Disruption Events. Space Science Reviews, 2020, 216, 1.	8.1	1
135	Dynamical stability of giant planets: the critical adiabatic index in the presence of a solid core. Monthly Notices of the Royal Astronomical Society, 2021, 507, 6215-6224.	4.4	1
136	Magnetospheric Accretion in T Tauri Stars. International Astronomical Union Colloquium, 1997, 163, 515-519.	0.1	0
137	Stars in the Making. Science, 2008, 321, 1047-1048.	12.6	Ο
138	Protoplanetary disks and hard X-rays. Proceedings of the International Astronomical Union, 2009, 5, 744-744.	0.0	0
139	Observations of Planetary Systems. , 2020, , 1-48.		0
140	Terrestrial Planet Formation. , 2020, , 181-219.		0
141	Protoplanetary Disk Structure. , 2020, , 49-85.		0
142	Protoplanetary Disk Evolution. , 2020, , 86-140.		0
143	Planetesimal Formation. , 2020, , 141-180.		0
144	Giant Planet Formation. , 2020, , 220-246.		0

#	Article	IF	CITATIONS
145	Early Evolution of Planetary Systems. , 2020, , 247-300.		ο
146	Instability from high-order resonant chains in wide-separation massive planet systems. Monthly Notices of the Royal Astronomical Society, 2022, 512, 2750-2757.	4.4	0