Ana M Briones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1541854/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Temporal relationship between systemic endothelial dysfunction and alterations in erythrocyte function in a murine model of chronic heart failure. Cardiovascular Research, 2022, 118, 2610-2624.	3.8	17
2	Interferon-stimulated gene 15 pathway is a novel mediator of endothelial dysfunction and aneurysms development in angiotensin II infused mice through increased oxidative stress. Cardiovascular Research, 2022, 118, 3250-3268.	3.8	18
3	Microsomal prostaglandin E synthase $\widehat{a} \in \mathbb{R}$ is involved in the metabolic and cardiovascular alterations associated with obesity. British Journal of Pharmacology, 2022, 179, 2733-2753.	5.4	6
4	CCN2 (Cellular Communication Network Factor 2) Deletion Alters Vascular Integrity and Function Predisposing to Aneurysm Formation. Hypertension, 2022, 79, e42-e55.	2.7	9
5	Specialized Pro-Resolving Lipid Mediators: New Therapeutic Approaches for Vascular Remodeling. International Journal of Molecular Sciences, 2022, 23, 3592.	4.1	7
6	Hypothyroidism confers tolerance to cerebral malaria. Science Advances, 2022, 8, eabj7110.	10.3	5
7	High NOR-1 (Neuron-Derived Orphan Receptor 1) Expression Strengthens the Vascular Wall Response to Angiotensin II Leading to Aneurysm Formation in Mice. Hypertension, 2021, 77, 557-570.	2.7	14
8	K V 1.3 channels are novel determinants of macrophageâ€dependent endothelial dysfunction in angiotensin IIâ€induced hypertension in mice. British Journal of Pharmacology, 2021, 178, 1836-1854.	5.4	3
9	Extracellular Tuning of Mitochondrial Respiration Leads to Aortic Aneurysm. Circulation, 2021, 143, 2091-2109.	1.6	54
10	Report on the 24th meeting of the ECCR 8th-9th October 2021. Clinical Science, 2021, 135, 1-1.	0.0	0
11	Myeloid GRK2 Regulates Obesity-Induced Endothelial Dysfunction by Modulating Inflammatory Responses in Perivascular Adipose Tissue. Antioxidants, 2020, 9, 953.	5.1	3
12	Aging-Associated miR-217 Aggravates Atherosclerosis and Promotes Cardiovascular Dysfunction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 2408-2424.	2.4	73
13	Characterization of Novel Synthetic Polyphenols: Validation of Antioxidant and Vasculoprotective Activities. Antioxidants, 2020, 9, 787.	5.1	7
14	Interleukin-17A induces vascular remodeling of small arteries and blood pressure elevation. Clinical Science, 2020, 134, 513-527.	4.3	31
15	Wilms Tumor 1b Expression Defines a Pro-regenerative Macrophage Subtype and Is Required for Organ Regeneration in the Zebrafish. Cell Reports, 2019, 28, 1296-1306.e6.	6.4	61
16	Emerging Roles of Lysyl Oxidases in the Cardiovascular System: New Concepts and Therapeutic Challenges. Biomolecules, 2019, 9, 610.	4.0	39
17	Aldosterone/MR Signaling, Oxidative Stress, and Vascular Dysfunction. , 2019, , .		3
18	Pioglitazone Modulates the Vascular Contractility in Hypertension by Interference with ET-1 Pathway. Scientific Reports, 2019, 9, 16461.	3.3	19

#	Article	IF	CITATIONS
19	Vascular smooth muscle cellâ€specific progerin expression in a mouse model of Hutchinson–Gilford progeria syndrome promotes arterial stiffness: Therapeutic effect of dietary nitrite. Aging Cell, 2019, 18, e12936.	6.7	51
20	G Protein-Coupled Receptor Kinase 2 (GRK2) as a Potential Therapeutic Target in Cardiovascular and Metabolic Diseases. Frontiers in Pharmacology, 2019, 10, 112.	3.5	68
21	Vascular dysfunction in obese diabetic db/db mice involves the interplay between aldosterone/mineralocorticoid receptor and Rho kinase signaling. Scientific Reports, 2018, 8, 2952.	3.3	32
22	Regulator of calcineurin 1 modulates vascular contractility and stiffness through the upregulation of COX-2-derived prostanoids. Pharmacological Research, 2018, 133, 236-249.	7.1	12
23	G protein-coupled receptor kinase 2 (GRK2) as an integrative signalling node in the regulation of cardiovascular function and metabolic homeostasis. Cellular Signalling, 2018, 41, 25-32.	3.6	36
24	Periarterial fat from two human vascular beds is not a source of aldosterone to promote vasoconstriction. American Journal of Physiology - Renal Physiology, 2018, 315, F1670-F1682.	2.7	11
25	Branchedâ€chain amino acids promote endothelial dysfunction through increased reactive oxygen species generation and inflammation. Journal of Cellular and Molecular Medicine, 2018, 22, 4948-4962.	3.6	89
26	mPGES-1 (Microsomal Prostaglandin E Synthase-1) Mediates Vascular Dysfunction in Hypertension Through Oxidative Stress. Hypertension, 2018, 72, 492-502.	2.7	29
27	Nitric oxide mediates aortic disease in mice deficient in the metalloprotease Adamts1 and in a mouse model of Marfan syndrome. Nature Medicine, 2017, 23, 200-212.	30.7	134
28	Isolation of Mature Adipocytes from White Adipose Tissue and Gene Expression Studies by Real-Time Quantitative RT-PCR. Methods in Molecular Biology, 2017, 1527, 283-295.	0.9	8
29	Lysyl Oxidase Induces Vascular Oxidative Stress and Contributes to Arterial Stiffness and Abnormal Elastin Structure in Hypertension: Role of p38MAPK. Antioxidants and Redox Signaling, 2017, 27, 379-397.	5.4	91
30	Vascular lysyl oxidase over-expression alters extracellular matrix structure and induces oxidative stress. ClÁnica E InvestigaciÃ ³ n En Arteriosclerosis (English Edition), 2017, 29, 157-165.	0.2	3
31	La sobreexpresión vascular de la lisil oxidasa altera la estructura de la matriz extracelular e induce estrés oxidativo. ClÃnica E Investigación En Arteriosclerosis, 2017, 29, 157-165.	0.8	6
32	Oxidative Stress in Human Atherothrombosis: Sources, Markers and Therapeutic Targets. International Journal of Molecular Sciences, 2017, 18, 2315.	4.1	45
33	Hu antigen R is required for NOX-1 but not NOX-4 regulation by inflammatory stimuli in vascular smooth muscle cells. Journal of Hypertension, 2016, 34, 253-265.	0.5	19
34	Differential renal effects of candesartan at high and ultra-high doses in diabetic mice–potential role of the ACE2/AT2R/Mas axis. Bioscience Reports, 2016, 36, .	2.4	32
35	Cerebrovascular endothelial dysfunction induced by mercury exposure at low concentrations. NeuroToxicology, 2016, 53, 282-289.	3.0	11
36	Activation of PPARβ/δ prevents hyperglycaemia-induced impairment of Kv7 channels and cAMP-mediated relaxation in rat coronary arteries. Clinical Science, 2016, 130, 1823-1836.	4.3	10

#	Article	IF	CITATIONS
37	NADPH oxidases and vascular remodeling in cardiovascular diseases. Pharmacological Research, 2016, 114, 110-120.	7.1	110
38	Carnitine palmitoyltransferase-1 up-regulation by PPAR-β/Î′ prevents lipid-induced endothelial dysfunction. Clinical Science, 2015, 129, 823-837.	4.3	42
39	Molecular physiopathology of obesity-related diseases: multi-organ integration by GRK2. Archives of Physiology and Biochemistry, 2015, 121, 163-177.	2.1	9
40	Oxidative Stress and Human Hypertension: Vascular Mechanisms, Biomarkers, and Novel Therapies. Canadian Journal of Cardiology, 2015, 31, 631-641.	1.7	257
41	Interleukin-33/ST2 system attenuates aldosterone-induced adipogenesis and inflammation. Molecular and Cellular Endocrinology, 2015, 411, 20-27.	3.2	26
42	c-Src, ERK1/2 and Rho kinase mediate hydrogen peroxide-induced vascular contraction in hypertension. Journal of Hypertension, 2015, 33, 77-87.	0.5	35
43	New roles for old pathways? A circuitous relationship between reactive oxygen species and cyclo-oxygenase in hypertension. Clinical Science, 2014, 126, 111-121.	4.3	75
44	Increased Nitric Oxide Bioavailability in Adult GRK2 Hemizygous Mice Protects Against Angiotensin II–Induced Hypertension. Hypertension, 2014, 63, 369-375.	2.7	42
45	Small Artery Remodeling in Obesity and Insulin Resistance. Current Vascular Pharmacology, 2014, 12, 427-437.	1.7	27
46	Mercury induces proliferation and reduces cell size in vascular smooth muscle cells through MAPK, oxidative stress and cyclooxygenase-2 pathways. Toxicology and Applied Pharmacology, 2013, 268, 188-200.	2.8	49
47	Aerobic exercise reduces oxidative stress and improves vascular changes of small mesenteric and coronary arteries in hypertension. British Journal of Pharmacology, 2013, 168, 686-703.	5.4	119
48	Exercise Training and Cardiometabolic Diseases: Focus on the Vascular System. Current Hypertension Reports, 2013, 15, 204-214.	3.5	57
49	Apocynin Prevents Vascular Effects Caused by Chronic Exposure to Low Concentrations of Mercury. PLoS ONE, 2013, 8, e55806.	2.5	40
50	Reciprocal Relationship Between Reactive Oxygen Species and Cyclooxygenase-2 and Vascular Dysfunction in Hypertension. Antioxidants and Redox Signaling, 2013, 18, 51-65.	5.4	127
51	Peroxisome proliferator-activated receptor-Î ³ activation reduces cyclooxygenase-2 expression in vascular smooth muscle cells from hypertensive rats by interfering with oxidative stress. Journal of Hypertension, 2012, 30, 315-326.	0.5	51
52	Pioglitazone treatment increases COXâ€2â€derived prostacyclin production and reduces oxidative stress in hypertensive rats: role in vascular function. British Journal of Pharmacology, 2012, 166, 1303-1319.	5.4	24
53	Adipocytes Produce Aldosterone Through Calcineurin-Dependent Signaling Pathways. Hypertension, 2012, 59, 1069-1078.	2.7	292
54	Reactive oxygen species and vascular biology: implications in human hypertension. Hypertension Research, 2011, 34, 5-14.	2.7	371

#	Article	IF	CITATIONS
55	Differential regulation of Nox1, Nox2 and Nox4 in vascular smooth muscle cells from WKY and SHR. Journal of the American Society of Hypertension, 2011, 5, 137-153.	2.3	83
56	NOX Isoforms and Reactive Oxygen Species in Vascular Health. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2011, 11, 27-35.	3.4	103
57	Adipocyte-Derived Factors Regulate Vascular Smooth Muscle Cells Through Mineralocorticoid and Glucocorticoid Receptors. Hypertension, 2011, 58, 479-488.	2.7	63
58	Vascular proinflammatory responses by aldosterone are mediated via c-Src trafficking to cholesterol-rich microdomains: role of PDGFR. Cardiovascular Research, 2011, 91, 720-731.	3.8	45
59	Liver growth factor treatment restores cell-extracellular matrix balance in resistance arteries and improves left ventricular hypertrophy in SHR. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H1153-H1165.	3.2	23
60	Role of extracellular matrix in vascular remodeling of hypertension. Current Opinion in Nephrology and Hypertension, 2010, 19, 187-194.	2.0	81
61	Oxidative Stress and Hypertension: Current Concepts. Current Hypertension Reports, 2010, 12, 135-142.	3.5	288
62	Moderate Exercise Decreases Inflammation and Oxidative Stress in Hypertension. Hypertension, 2009, 54, 1206-1208.	2.7	16
63	Atorvastatin Prevents Angiotensin II–Induced Vascular Remodeling and Oxidative Stress. Hypertension, 2009, 54, 142-149.	2.7	104
64	p38 MAPK contributes to angiotensin II-induced COX-2 expression in aortic fibroblasts from normotensive and hypertensive rats. Journal of Hypertension, 2009, 27, 142-154.	0.5	32
65	Losartan and tempol treatments normalize the increased response to hydrogen peroxide in resistance arteries from hypertensive rats. Journal of Hypertension, 2009, 27, 1814-1822.	0.5	12
66	Activation of BKCa channels by nitric oxide prevents coronary artery endothelial dysfunction in ouabain-induced hypertensive rats. Journal of Hypertension, 2009, 27, 83-91.	0.5	16
67	Heightened aberrant deposition of hard-wearing elastin in conduit arteries of prehypertensive SHR is associated with increased stiffness and inward remodeling. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H2299-H2307.	3.2	42
68	Ouabain treatment increases nitric oxide bioavailability and decreases superoxide anion production in cerebral vessels. Journal of Hypertension, 2008, 26, 1944-1954.	0.5	10
69	The dietary flavonoid quercetin activates BKCa currents in coronary arteries via production of H2O2. Role in vasodilatation. Cardiovascular Research, 2007, 73, 424-431.	3.8	77
70	Losartan Reduces the Increased Participation of Cyclooxygenase-2-Derived Products in Vascular Responses of Hypertensive Rats. Journal of Pharmacology and Experimental Therapeutics, 2007, 321, 381-388.	2.5	66
71	Mechanisms Underlying Hypertrophic Remodeling and Increased Stiffness of Mesenteric Resistance Arteries From Aged Rats. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2007, 62, 696-706.	3.6	39
72	Transient middle cerebral artery occlusion causes different structural, mechanical, and myogenic alterations in normotensive and hypertensive rats. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H628-H635.	3.2	34

#	Article	IF	CITATIONS
73	Alterations in structure and mechanics of resistance arteries from ouabain-induced hypertensive rats. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H193-H201.	3.2	59
74	Postnatal alterations in elastic fiber organization precede resistance artery narrowing in SHR. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H804-H812.	3.2	39
75	Human Vascular Smooth Muscle Cells From Diabetic Patients Are Resistant to Induced Apoptosis Due to High Bcl-2 Expression. Diabetes, 2006, 55, 1243-1251.	0.6	42
76	Increased Superoxide Anion Production by Interleukin-1β Impairs Nitric Oxide-Mediated Relaxation in Resistance Arteries. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 42-52.	2.5	69
77	Hypertension increases the participation of vasoconstrictor prostanoids from cyclooxygenase-2 in phenylephrine responses. Journal of Hypertension, 2005, 23, 767-777.	0.5	73
78	Direct demonstration of <i>l²</i> ₁ ―and evidence against <i>l²</i> ₂ ―and <i>l²</i> ₃ â€adrenoceptors, in smooth muscle cells of rat small mesenteric arteries. British Journal of Pharmacology, 2005, 146, 679-691.	5.4	59
79	Influence of elastin on rat small artery mechanical properties. Experimental Physiology, 2005, 90, 463-468.	2.0	47
80	New aspects of vascular remodelling: the involvement of all vascular cell types. Experimental Physiology, 2005, 90, 469-475.	2.0	77
81	Ageing alters the production of nitric oxide and prostanoids after IL- $1\hat{1}^2$ exposure in mesenteric resistance arteries. Mechanisms of Ageing and Development, 2005, 126, 710-721.	4.6	26
82	Hypertension alters role of iNOS, COX-2, and oxidative stress in bradykinin relaxation impairment after LPS in rat cerebral arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H225-H234.	3.2	45
83	Mechanisms involved in the early increase of serotonin contraction evoked by endotoxin in rat middle cerebral arteries. British Journal of Pharmacology, 2003, 140, 671-680.	5.4	30
84	Role of Elastin in Spontaneously Hypertensive Rat Small Mesenteric Artery Remodelling. Journal of Physiology, 2003, 552, 185-195.	2.9	122
85	Confocal microscopic image sequence compression using vector quantization and threeâ€dimensional pyramid. Scanning, 2003, 25, 247-256.	1.5	1
86	Alterations by Age of Calcium Handling in Rat Resistance Arteries. Journal of Cardiovascular Pharmacology, 2002, 40, 832-840.	1.9	17
87	Ouabain-induced hypertension is accompanied by increases in endothelial vasodilator factors. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H2110-H2118.	3.2	50
88	Alterations of the Nitric Oxide Pathway in Cerebral Arteries from Spontaneously Hypertensive Rats. Journal of Cardiovascular Pharmacology, 2002, 39, 378-388.	1.9	27
89	Hypertension alters the participation of contractile prostanoids and superoxide anions in lipopolysaccharide effects on small mesenteric arteries. Life Sciences, 2002, 71, 1997-2014.	4.3	23
90	Nitric oxide synthase induction by ouabain in vascular smooth muscle cells from normotensive and hypertensive rats. Journal of Hypertension, 2000, 18, 877-884.	0.5	13

#	Article	IF	CITATIONS
91	Influence of hypertension on nitric oxide synthase expression and vascular effects of lipopolysaccharide in rat mesenteric arteries. British Journal of Pharmacology, 2000, 131, 185-194.	5.4	46
92	Role of iNOS in the vasodilator responses induced by L-arginine in the middle cerebral artery from normotensive and hypertensive rats. British Journal of Pharmacology, 1999, 126, 111-120.	5.4	22
93	Changes in plasma oxidative state with age and their influence on contractions elicited by noradrenaline in the rat tail artery. Life Sciences, 1999, 65, 915-924.	4.3	14
94	Mechanisms involved in the cellular calcium homeostasis in vascular smooth muscle: Calcium pumps. Life Sciences, 1998, 64, 279-303.	4.3	78