Anna Ilnicka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1540716/publications.pdf

Version: 2024-02-01

516710 642732 43 661 16 23 h-index citations g-index papers 43 43 43 854 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Successful Manufacturing Protocols of N-Rich Carbon Electrodes Ensuring High ORR Activity: A Review. Processes, 2022, 10, 643.	2.8	7
2	N-doped graphene foam obtained by microwave-assisted exfoliation of graphite. Scientific Reports, 2021, 11, 2044.	3.3	18
3	Chemical Activation of Nitrogen-doped Carbon Derived from Chitosan with ZnCl ₂ to Produce a High-performance Gas Diffusion-type Oxygen Electrode. Electrochemistry, 2021, 89, 36-42.	1.4	5
4	Green algae and gelatine derived nitrogen rich carbon as an outstanding competitor to Pt loaded carbon catalysts. Scientific Reports, 2021, 11, 7084.	3.3	21
5	The Improvement of Energy Storage Performance by Sucrose-Derived Carbon Foams via Incorporating Nitrogen Atoms. Nanomaterials, 2021, 11, 760.	4.1	24
6	Combined effect of nitrogen-doped functional groups and porosity of porous carbons on electrochemical performance of supercapacitors. Scientific Reports, 2021, 11, 18387.	3.3	20
7	Linking the Defective Structure of Boron-Doped Carbon Nano-Onions with Their Catalytic Properties: Experimental and Theoretical Studies. ACS Applied Materials & Samp; Interfaces, 2021, 13, 51628-51642.	8.0	5
8	High surface area micro-mesoporous graphene for electrochemical applications. Scientific Reports, 2021, 11, 22054.	3.3	30
9	The effect of nitrogen species on the catalytic properties of N-doped graphene. Scientific Reports, 2021, 11, 23970.	3.3	12
10	Synthesis of Hybrid Carbon Materials Consisting of N-Doped Microporous Carbon and Amorphous Carbon Nanotubes. Materials, 2020, 13, 2997.	2.9	5
11	3D hierarchical porous hybrid nanostructure of carbon nanotubes and N-doped activated carbon. Scientific Reports, 2020, 10, 18793.	3.3	8
12	Photosensitizing potential of tailored magnetite hybrid nanoparticles functionalized with levan and zinc (II) phthalocyanine. Applied Surface Science, 2020, 524, 146602.	6.1	20
13	Graphene-Based Hydrogen Gas Sensors: A Review. Processes, 2020, 8, 633.	2.8	35
14	Manufacture of activated carbons using Egyptian wood resources and its application in oligothiophene dye adsorption. Arabian Journal of Chemistry, 2020, 13, 5284-5291.	4.9	16
15	Improving the Performance of Zn-Air Batteries with N-Doped Electroexfoliated Graphene. Materials, 2020, 13, 2115.	2.9	13
16	Highly effective three-dimensional functionalization of graphite to graphene by wet chemical exfoliation methods. Adsorption, 2019, 25, 631-638.	3.0	18
17	Electro-Exfoliation of Graphite to Graphene in an Aqueous Solution of Inorganic Salt and the Stabilization of Its Sponge Structure with Poly(Furfuryl Alcohol). Nanomaterials, 2019, 9, 971.	4.1	17
18	Effective Synthesis of Carbon Hybrid Materials Containing Oligothiophene Dyes. Materials, 2019, 12, 3354.	2.9	13

#	Article	IF	Citations
19	Metal-free nitrogen-rich carbon foam derived from amino acids for the oxygen reduction reaction. Journal of Materials Science, 2019, 54, 14859-14871.	3.7	21
20	Effect of Geometrical Structure, Drying, and Synthetic Method on Aminated Chitosan-Coated Magnetic Nanoparticles Utility for HSA Effective Immobilization. Molecules, 2019, 24, 1925.	3.8	10
21	Alternative Synthesis Method for Carbon Nanotubes. Small, 2019, 15, 1904132.	10.0	2
22	Selected Aspects of Graphene Exfoliation as an Introductory Step Towards 3D Structuring of Graphene Nano-Sheets. Current Graphene Science, 2019, 2, 106-117.	0.5	6
23	Marine and Freshwater Feedstocks as a Precursor for Nitrogen-Containing Carbons: A Review. Marine Drugs, 2018, 16, 142.	4.6	11
24	Urea treatment of nitrogen-doped carbon leads to enhanced performance for the oxygen reduction reaction. Journal of Materials Research, 2018, 33, 1612-1624.	2.6	24
25	Pyrolysis of Chlorella vulgaris as a green chemistry method for manufacturing of nitrogen doped porous carbon materials of high application potential. Materials Express, 2017, 7, 25-34.	0.5	12
26	Morphologically disordered pore model for characterization of micro-mesoporous carbons. Carbon, 2017, 111, 358-370.	10.3	25
27	Antimicrobial carbon materials incorporating copper nanoâ€crystallites and their <scp>PLA</scp> composites. Journal of Applied Polymer Science, 2016, 133, .	2.6	10
28	Nanoscale Exfoliation of Graphene Sheets for Manufacturing of 3D Mesoporous Structures. Journal of Nanoscience and Nanotechnology, 2016, 16, 9997-10000.	0.9	4
29	Nano-Structured Carbon Matrixes Obtained from Chitin and Chitosan by a Novel Method. Journal of Nanoscience and Nanotechnology, 2016, 16, 2623-2631.	0.9	12
30	Zinc Regarding the Utilization of Waste Tires by Pyrolysis. Polish Journal of Environmental Studies, 2016, 25, 2683-2687.	1.2	9
31	Nitrogen-doped Chitin Carbon Materials. Engineering and Protection of Environment, 2016, 19, 205-215.	0.3	1
32	Chitosan in the Synthesis of Nitrogen-doped Activated Carbons - Recent Achievements. Engineering and Protection of Environment, 2016, 19, 379-390.	0.3	0
33	<i>Salix viminalis</i> wood as a new precursor for manufacturing of carbon molecular sieves for effective methane/nitrogen separation. Open Chemistry, 2015, 13, .	1.9	3
34	Discussion Remarks on the Role of Wood and Chitin Constituents during Carbonization. Frontiers in Materials, 2015, 2, .	2.4	9
35	Nanostructured composite TiO2/carbon catalysts of high activity for dehydration of n-butanol. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2015, 198, 35-42.	3.5	9
36	The fungicidal properties of the carbon materials obtained from chitin and chitosan promoted by copper salts. Materials Science and Engineering C, 2015, 52, 31-36.	7.3	19

Anna Ilnicka

#	Article	IF	CITATION
37	Synthesis of N-rich microporous carbon materials from chitosan by alkali activation using Na2CO3. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2015, 201, 66-71.	3.5	32
38	Biologically Active Constituents from Salix viminalis Bio-Oil and Their Protective Activity Against Hydrogen Peroxide-Induced Oxidative Stress in Chinese Hamster Ovary Cells. Applied Biochemistry and Biotechnology, 2014, 174, 2153-2161.	2.9	7
39	Manufacture of a nanostructured CeO /carbon catalyst for n-butanol conversion. Materials Letters, 2014, 118, 119-122.	2.6	5
40	Synthesis of $<$ I>N-Rich Activated Carbons from Chitosan by Chemical Activation. Science of Advanced Materials, 2014, 6, 290-297.	0.7	13
41	Novel nitrogen-containing mesoporous carbons prepared from chitosan. Journal of Materials Chemistry A, 2013, 1, 8961.	10.3	71
42	Effect of Salix viminalis Pyrolysis Derived Antioxidants on Oxidative Stability of Diesters and Diester–Poly-α-olefin Mixtures. Industrial & Diester—Poly-α-olefin Mixtures. Industrial & Diesterâf"Poly-α-olefin Mixt	3.7	5
43	A microporous and high surface area active carbon obtained by the heat-treatment of chitosan. Carbon, 2012, 50, 3098-3101.	10.3	54