Anna Ilnicka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1540716/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel nitrogen-containing mesoporous carbons prepared from chitosan. Journal of Materials Chemistry A, 2013, 1, 8961.	10.3	71
2	A microporous and high surface area active carbon obtained by the heat-treatment of chitosan. Carbon, 2012, 50, 3098-3101.	10.3	54
3	Graphene-Based Hydrogen Gas Sensors: A Review. Processes, 2020, 8, 633.	2.8	35
4	Synthesis of N-rich microporous carbon materials from chitosan by alkali activation using Na2CO3. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2015, 201, 66-71.	3.5	32
5	High surface area micro-mesoporous graphene for electrochemical applications. Scientific Reports, 2021, 11, 22054.	3.3	30
6	Morphologically disordered pore model for characterization of micro-mesoporous carbons. Carbon, 2017, 111, 358-370.	10.3	25
7	Urea treatment of nitrogen-doped carbon leads to enhanced performance for the oxygen reduction reaction. Journal of Materials Research, 2018, 33, 1612-1624.	2.6	24
8	The Improvement of Energy Storage Performance by Sucrose-Derived Carbon Foams via Incorporating Nitrogen Atoms. Nanomaterials, 2021, 11, 760.	4.1	24
9	Metal-free nitrogen-rich carbon foam derived from amino acids for the oxygen reduction reaction. Journal of Materials Science, 2019, 54, 14859-14871.	3.7	21
10	Green algae and gelatine derived nitrogen rich carbon as an outstanding competitor to Pt loaded carbon catalysts. Scientific Reports, 2021, 11, 7084.	3.3	21
11	Photosensitizing potential of tailored magnetite hybrid nanoparticles functionalized with levan and zinc (II) phthalocyanine. Applied Surface Science, 2020, 524, 146602.	6.1	20
12	Combined effect of nitrogen-doped functional groups and porosity of porous carbons on electrochemical performance of supercapacitors. Scientific Reports, 2021, 11, 18387.	3.3	20
13	The fungicidal properties of the carbon materials obtained from chitin and chitosan promoted by copper salts. Materials Science and Engineering C, 2015, 52, 31-36.	7.3	19
14	Highly effective three-dimensional functionalization of graphite to graphene by wet chemical exfoliation methods. Adsorption, 2019, 25, 631-638.	3.0	18
15	N-doped graphene foam obtained by microwave-assisted exfoliation of graphite. Scientific Reports, 2021, 11, 2044.	3.3	18
16	Electro-Exfoliation of Graphite to Graphene in an Aqueous Solution of Inorganic Salt and the Stabilization of Its Sponge Structure with Poly(Furfuryl Alcohol). Nanomaterials, 2019, 9, 971.	4.1	17
17	Manufacture of activated carbons using Egyptian wood resources and its application in oligothiophene dye adsorption. Arabian Journal of Chemistry, 2020, 13, 5284-5291.	4.9	16
18	Effective Synthesis of Carbon Hybrid Materials Containing Oligothiophene Dyes. Materials, 2019, 12, 3354.	2.9	13

Anna Ilnicka

#	Article	IF	CITATIONS
19	Synthesis of <i>N</i> -Rich Activated Carbons from Chitosan by Chemical Activation. Science of Advanced Materials, 2014, 6, 290-297.	0.7	13
20	Improving the Performance of Zn-Air Batteries with N-Doped Electroexfoliated Graphene. Materials, 2020, 13, 2115.	2.9	13
21	Nano-Structured Carbon Matrixes Obtained from Chitin and Chitosan by a Novel Method. Journal of Nanoscience and Nanotechnology, 2016, 16, 2623-2631.	0.9	12
22	Pyrolysis of Chlorella vulgaris as a green chemistry method for manufacturing of nitrogen doped porous carbon materials of high application potential. Materials Express, 2017, 7, 25-34.	0.5	12
23	The effect of nitrogen species on the catalytic properties of N-doped graphene. Scientific Reports, 2021, 11, 23970.	3.3	12
24	Marine and Freshwater Feedstocks as a Precursor for Nitrogen-Containing Carbons: A Review. Marine Drugs, 2018, 16, 142.	4.6	11
25	Antimicrobial carbon materials incorporating copper nanoâ€crystallites and their <scp>PLA</scp> composites. Journal of Applied Polymer Science, 2016, 133, .	2.6	10
26	Effect of Geometrical Structure, Drying, and Synthetic Method on Aminated Chitosan-Coated Magnetic Nanoparticles Utility for HSA Effective Immobilization. Molecules, 2019, 24, 1925.	3.8	10
27	Discussion Remarks on the Role of Wood and Chitin Constituents during Carbonization. Frontiers in Materials, 2015, 2, .	2.4	9
28	Nanostructured composite TiO2/carbon catalysts of high activity for dehydration of n-butanol. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2015, 198, 35-42.	3.5	9
29	Zinc Regarding the Utilization of Waste Tires by Pyrolysis. Polish Journal of Environmental Studies, 2016, 25, 2683-2687.	1.2	9
30	3D hierarchical porous hybrid nanostructure of carbon nanotubes and N-doped activated carbon. Scientific Reports, 2020, 10, 18793.	3.3	8
31	Biologically Active Constituents from Salix viminalis Bio-Oil and Their Protective Activity Against Hydrogen Peroxide-Induced Oxidative Stress in Chinese Hamster Ovary Cells. Applied Biochemistry and Biotechnology, 2014, 174, 2153-2161.	2.9	7
32	Successful Manufacturing Protocols of N-Rich Carbon Electrodes Ensuring High ORR Activity: A Review. Processes, 2022, 10, 643.	2.8	7
33	Selected Aspects of Graphene Exfoliation as an Introductory Step Towards 3D Structuring of Graphene Nano-Sheets. Current Graphene Science, 2019, 2, 106-117.	0.5	6
34	Effect of Salix viminalis Pyrolysis Derived Antioxidants on Oxidative Stability of Diesters and Diester–Poly-α-olefin Mixtures. Industrial & Engineering Chemistry Research, 2012, 51, 5117-5123.	3.7	5
35	Manufacture of a nanostructured CeO /carbon catalyst for n-butanol conversion. Materials Letters, 2014, 118, 119-122.	2.6	5
36	Synthesis of Hybrid Carbon Materials Consisting of N-Doped Microporous Carbon and Amorphous Carbon Nanotubes. Materials, 2020, 13, 2997.	2.9	5

Anna Ilnicka

#	Article	IF	CITATIONS
37	Chemical Activation of Nitrogen-doped Carbon Derived from Chitosan with ZnCl ₂ to Produce a High-performance Gas Diffusion-type Oxygen Electrode. Electrochemistry, 2021, 89, 36-42.	1.4	5
38	Linking the Defective Structure of Boron-Doped Carbon Nano-Onions with Their Catalytic Properties: Experimental and Theoretical Studies. ACS Applied Materials & Interfaces, 2021, 13, 51628-51642.	8.0	5
39	Nanoscale Exfoliation of Graphene Sheets for Manufacturing of 3D Mesoporous Structures. Journal of Nanoscience and Nanotechnology, 2016, 16, 9997-10000.	0.9	4
40	<i>Salix viminalis</i> wood as a new precursor for manufacturing of carbon molecular sieves for effective methane/nitrogen separation. Open Chemistry, 2015, 13, .	1.9	3
41	Alternative Synthesis Method for Carbon Nanotubes. Small, 2019, 15, 1904132.	10.0	2
42	Nitrogen-doped Chitin Carbon Materials. Engineering and Protection of Environment, 2016, 19, 205-215.	0.3	1
43	Chitosan in the Synthesis of Nitrogen-doped Activated Carbons - Recent Achievements. Engineering and Protection of Environment, 2016, 19, 379-390.	0.3	0