Corina Lorz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1540124/publications.pdf

Version: 2024-02-01

		218677	243625
54	1,989	26	44
papers	citations	h-index	g-index
57	57	57	2697
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Generating New FANCA-Deficient HNSCC Cell Lines by Genomic Editing Recapitulates the Cellular Phenotypes of Fanconi Anemia. Genes, 2021, 12, 548.	2.4	2
2	Genes involved in the epithelial-mesenchymal transition in oral cancer: A systematic review. Oral Oncology, 2021, 117, 105310.	1.5	15
3	Neuroendocrine Lung Cancer Mouse Models: An Overview. Cancers, 2021, 13, 14.	3.7	8
4	Comprehensive Molecular Characterization of Squamous Cell Carcinomas., 2020,,.		1
5	Competitive Repopulation Assay of Long-Term Epidermal Stem Cell Regeneration Potential. Methods in Molecular Biology, 2019, 2109, 45-53.	0.9	1
6	Frequent Alteration of Annexin A9 and A10 in HPV-Negative Head and Neck Squamous Cell Carcinomas: Correlation with the Histopathological Differentiation Grade. Journal of Clinical Medicine, 2019, 8, 229.	2.4	10
7	Differential development of large-cell neuroendocrine or small-cell lung carcinoma upon inactivation of 4 tumor suppressor genes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22300-22306.	7.1	29
8	Hippo Pathway and YAP Signaling Alterations in Squamous Cancer of the Head and Neck. Journal of Clinical Medicine, 2019, 8, 2131.	2.4	23
9	CDK4/6 Inhibitor as a Novel Therapeutic Approach for Advanced Bladder Cancer Independently of <i>RB1</i> Status. Clinical Cancer Research, 2019, 25, 390-402.	7.0	44
10	Overexpression of PIK3CA in head and neck squamous cell carcinoma is associated with poor outcome and activation of the YAP pathway. Oral Oncology, 2018, 79, 55-63.	1.5	54
11	The transcriptional co-activator YAP: A new player in head and neck cancer. Oral Oncology, 2018, 86, 25-32.	1.5	31
12	Bosutinib Inhibits EGFR Activation in Head and Neck Cancer. International Journal of Molecular Sciences, 2018, 19, 1824.	4.1	12
13	Inefficient differentiation response to cell cycle stress leads to genomic instability and malignant progression of squamous carcinoma cells. Cell Death and Disease, 2017, 8, e2901-e2901.	6.3	12
14	IKKÎ ² -Mediated Resistance to Skin Cancer Development Is <i>Ink4a/Arf-</i> Dependent. Molecular Cancer Research, 2017, 15, 1255-1264.	3.4	8
15	Deregulation of the pRb-E2F4 axis alters epidermal homeostasis and favors tumor development. Oncotarget, 2016, 7, 75712-75728.	1.8	2
16	Thyroid hormone signaling controls hair follicle stem cell function. Molecular Biology of the Cell, 2015, 26, 1263-1272.	2.1	36
17	The downregulation of î"Np63 in p53-deficient mouse epidermal tumors favors metastatic behavior. Oncotarget, 2015, 6, 24230-24245.	1.8	4
18	Akt Signaling Leads to Stem Cell Activation and Promotes Tumor Development in Epidermis. Stem Cells, 2014, 32, 1917-1928.	3.2	30

#	Article	IF	CITATIONS
19	p21 suppresses inflammation and tumorigenesis on pRB-deficient stratified epithelia. Oncogene, 2014, 33, 4599-4612.	5.9	13
20	EMT and induction of miR-21 mediate metastasis development in Trp53-deficient tumours. Scientific Reports, 2012, 2, 434.	3.3	74
21	Mouse p53-Deficient Cancer Models as Platforms for Obtaining Genomic Predictors of Human Cancer Clinical Outcomes. PLoS ONE, 2012, 7, e42494.	2.5	7
22	Establishment of a murine epidermal cell line suitable for in vitro and in vivo skin modelling. BMC Dermatology, 2011, 11, 9.	2.1	17
23	A Functional Role of RB-Dependent Pathway in the Control of Quiescence in Adult Epidermal Stem Cells Revealed by Genomic Profiling. Stem Cell Reviews and Reports, 2010, 6, 162-177.	5 . 6	18
24	BASP1 Promotes Apoptosis in Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2010, 21, 610-621.	6.1	81
25	Gene expression profiling of mouse p53-deficient epidermal carcinoma defines molecular determinants of human cancer malignancy. Molecular Cancer, 2010, 9, 193.	19.2	22
26	Isolation of Adult Mouse Stem Keratinocytes Using Magnetic Cell Sorting (MACS). Methods in Molecular Biology, 2010, 585, 1-11.	0.9	7
27	Trail and kidney disease. Frontiers in Bioscience - Landmark, 2009, Volume, 3740.	3.0	14
28	The role of death receptors in neural injury. Frontiers in Bioscience - Landmark, 2009, Volume, 583.	3.0	17
29	On the Origin of Epidermal Cancers. Current Molecular Medicine, 2009, 9, 355-364.	1.3	7
30	Akt Activation Synergizes with <i>Trp53</i> Loss in Oral Epithelium to Produce a Novel Mouse Model for Head and Neck Squamous Cell Carcinoma. Cancer Research, 2009, 69, 1099-1108.	0.9	54
31	Transgenic mice expressing constitutively active Akt in oral epithelium validate KLFA as a potential biomarker of head and neck squamous cell carcinoma. In Vivo, 2009, 23, 653-60.	1.3	8
32	Spontaneous tumor formation in Trp53-deficient epidermis mediated by chromosomal instability and inflammation. Anticancer Research, 2009, 29, 3035-42.	1.1	12
33	p107 acts as a tumor suppressor in pRbâ€deficient epidermis. Molecular Carcinogenesis, 2008, 47, 105-113.	2.7	26
34	Gene profiling approaches help to define the specific functions of retinoblastoma family in epidermis. Molecular Carcinogenesis, 2008, 47, 209-221.	2.7	29
35	Susceptibility of pRbâ€deficient epidermis to chemical skin carcinogenesis is dependent on the p107 allele dosage. Molecular Carcinogenesis, 2008, 47, 815-821.	2.7	13
36	Spontaneous Squamous Cell Carcinoma Induced by the Somatic Inactivation of <i>Retinoblastoma</i> and <i>Trp53</i> Tumor Suppressors. Cancer Research, 2008, 68, 683-692.	0.9	60

#	Article	IF	Citations
37	The Death Ligand TRAIL in Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2008, 19, 904-914.	6.1	100
38	Constitutively Active Akt Induces Ectodermal Defects and Impaired Bone Morphogenetic Protein Signaling. Molecular Biology of the Cell, 2008, 19, 137-149.	2.1	27
39	Deregulated Activity of Akt in Epithelial Basal Cells Induces Spontaneous Tumors and Heightened Sensitivity to Skin Carcinogenesis. Cancer Research, 2007, 67, 10879-10888.	0.9	88
40	Peritoneal defence—lessons learned which apply to diabetes complications. Nephrology Dialysis Transplantation, 2006, 21, ii12-ii15.	0.7	7
41	Role of Bcl-xL in paracetamol-induced tubular epithelial cell death. Kidney International, 2005, 67, 592-601.	5.2	39
42	Paracetamol-Induced Renal Tubular Injury. Journal of the American Society of Nephrology: JASN, 2004, 15, 380-389.	6.1	137
43	Targeting apoptosis in acute tubular injury. Biochemical Pharmacology, 2003, 66, 1589-1594.	4.4	65
44	Bcl-xL overexpression protects from apoptosis induced by HMG-CoA reductase inhibitors in murine tubular cells. Kidney International, 2003, 64, 181-191.	5.2	28
45	Expression of Smac/Diablo in tubular epithelial cells and during acute renal failure. Kidney International, 2003, 64, S52-S56.	5.2	28
46	3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Inhibitors Decrease Fas Ligand Expression and Cytotoxicity in Activated Human T Lymphocytes. Circulation, 2003, 108, 1506-1513.	1.6	64
47	Intracellular Mechanisms of Cyclosporin A–Induced Tubular Cell Apoptosis. Journal of the American Society of Nephrology: JASN, 2003, 14, 3072-3080.	6.1	121
48	Role of Endogenous Vascular Endothelial Growth Factor in Tubular Cell Protection Against Acute Cyclosporine Toxicity1. Transplantation, 2002, 74, 1618-1624.	1.0	39
49	Contribution of apoptotic cell death to renal injury. Journal of Cellular and Molecular Medicine, 2001, 5, 18-32.	3.6	62
50	Expression of apoptosis regulatory proteins in tubular epithelium stressed in culture or following acute renal failure. Kidney International, 2000, 57, 969-981.	5.2	122
51	Proapoptotic Fas Ligand Is Expressed by Normal Kidney Tubular Epithelium and Injured Glomeruli. Journal of the American Society of Nephrology: JASN, 2000, 11, 1266-1277.	6.1	104
52	The Fas ligand/Fas system in renal injury. Nephrology Dialysis Transplantation, 1999, 14, 1831-1834.	0.7	65
53	Cyclosporine A induces apoptosis in murine tubular epithelial cells: Role of caspases. Kidney International, 1998, 54, S25-S29.	5.2	62
54	Incidence of air pollution in the pulmonary surfactant system of the pigeon (Columba livia). The Anatomical Record, 1997, 249, 206-212.	1.8	30