Margaret R Maclean

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1540051/publications.pdf

Version: 2024-02-01

113 papers 8,875 citations

44069 48 h-index 93 g-index

114 all docs

114 docs citations

times ranked

114

7185 citing authors

#	Article	IF	CITATIONS
1	Estrogen Signaling and Portopulmonary Hypertension: The Pulmonary Vascular Complications of Liver Disease Study (PVCLD2). Hepatology, 2021, 73, 726-737.	7.3	24
2	Insights from the Menstrual Cycle in Pulmonary Arterial Hypertension. Annals of the American Thoracic Society, 2021, 18, 218-228.	3.2	15
3	Sex Differences in Pulmonary Hypertension. Clinics in Chest Medicine, 2021, 42, 217-228.	2.1	24
4	Enhancing the Interaction Between MAS and ETB Receptors is Vasoprotective. FASEB Journal, 2021, 35, .	0.5	0
5	Sex-dependent right ventricular hypertrophic gene changes after methamphetamine treatment in mice. European Journal of Pharmacology, 2021, 900, 174066.	3.5	1
6	Obesity, estrogens and adipose tissue dysfunction – implications for pulmonary arterial hypertension. Pulmonary Circulation, 2020, 10, 1-21.	1.7	44
7	Direct Delivery of MicroRNA96 to the Lungs Reduces Progression of Sugen/Hypoxia-Induced Pulmonary Hypertension in the Rat. Molecular Therapy - Nucleic Acids, 2020, 22, 396-405.	5.1	3
8	Sex-Dependent Changes in Right Ventricular Gene Expression in Response to Pressure Overload in a Rat Model of Pulmonary Trunk Banding. Biomedicines, 2020, 8, 430.	3.2	4
9	Apoptosis signalâ€regulating kinase 1Âinhibition in <i>in vivo</i> and <i>in vitro</i> models of pulmonary hypertension. Pulmonary Circulation, 2020, 10, 1-16.	1.7	3
10	Estrogen metabolites in a small cohort of patients with idiopathic pulmonary arterial hypertension. Pulmonary Circulation, 2020, 10, 1-5.	1.7	11
11	Melatonin: shining some light on pulmonary hypertension. Cardiovascular Research, 2020, 116, 2036-2037.	3.8	6
12	Reduction of the serotonin 5-HT1B and 5-HT2A receptor-mediated contraction of human pulmonary artery by the combined 5-HT1B receptor antagonist and serotonin transporter inhibitor LY393558. Pharmacological Reports, 2020, 72, 756-762.	3.3	4
13	Fulvestrant for the Treatment of Pulmonary Arterial Hypertension. Annals of the American Thoracic Society, 2019, 16, 1456-1459.	3.2	21
14	Current strategies for quantification of estrogens in clinical research. Journal of Steroid Biochemistry and Molecular Biology, 2019, 192, 105373.	2.5	55
15	Data for analysis of catechol estrogen metabolites in humanÂplasma by liquid chromatography tandem mass spectrometry. Data in Brief, 2019, 23, 103740.	1.0	5
16	Influence of 2â€Methoxyestradiol and Sex on Hypoxiaâ€Induced Pulmonary Hypertension and Hypoxiaâ€Inducible Factorâ€Iâ€Î±. Journal of the American Heart Association, 2019, 8, e011628.	3.7	33
17	Obesity alters oestrogen metabolism and contributes to pulmonary arterial hypertension. European Respiratory Journal, 2019, 53, 1801524.	6.7	26
18	Derivatization enhances analysis of estrogens and their bioactive metabolites in human plasma by liquid chromatography tandem mass spectrometry. Analytica Chimica Acta, 2019, 1054, 84-94.	5.4	33

#	Article	IF	Citations
19	Notch3 signalling and vascular remodelling in pulmonary arterial hypertension. Clinical Science, 2019, 133, 2481-2498.	4.3	65
20	The serotonin hypothesis in pulmonary hypertension revisited: targets for novel therapies (2017) Tj ETQq0 0 0 rgB	T./Overloc	ጲ 10 Tf 50 7
21	Role of the Aryl Hydrocarbon Receptor in Sugen 5416–induced Experimental Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 320-330.	2.9	47
22	The Role of Sex in the Pathophysiology of Pulmonary Hypertension. Advances in Experimental Medicine and Biology, 2018, 1065, 511-528.	1.6	31
23	Serotonin Signaling Through the 5-HT ₁₈ Receptor and NADPH Oxidase 1 in Pulmonary Arterial Hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1361-1370.	2.4	51
24	Klotho and Pulmonary Hypertension. Hypertension, 2016, 68, 1106-1107.	2.7	0
25	Nicotinamide Adenine Dinucleotide Phosphate Oxidase–Mediated Redox Signaling and Vascular Remodeling by 16α-Hydroxyestrone in Human Pulmonary Artery Cells. Hypertension, 2016, 68, 796-808.	2.7	62
26	The Serotonin Transporter Promotes a Pathological Estrogen Metabolic Pathway in Pulmonary Hypertension via Cytochrome P450 1B1. Pulmonary Circulation, 2016, 6, 82-92.	1.7	33
27	Regulation and Function of miRâ€214Âin Pulmonary Arterial Hypertension. Pulmonary Circulation, 2016, 6, 109-117.	1.7	28
28	Novel Signaling Pathways in Pulmonary Arterial Hypertension (2015 Grover Conference Series). Pulmonary Circulation, 2016, 6, 285-294.	1.7	31
29	Metformin Reverses Development of Pulmonary Hypertension via Aromatase Inhibition. Hypertension, 2016, 68, 446-454.	2.7	83
30	3â€Angiotensin 1–7 regulation of endothelin-1 system in pulmonary hypertension. Heart, 2015, 101, A1.3-A1.	. 2.9	0
31	Oestrogen receptor alpha in pulmonary hypertension. Cardiovascular Research, 2015, 106, 206-216.	3.8	47
32	A Sex-Specific MicroRNA-96/5-Hydroxytryptamine 1B Axis Influences Development of Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 1432-1442.	5.6	61
33	Sex Affects Bone Morphogenetic Protein Type II Receptor Signaling in Pulmonary Artery Smooth Muscle Cells. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 693-703.	5.6	65
34	MicroRNA-143 Activation Regulates Smooth Muscle and Endothelial Cell Crosstalk in Pulmonary Arterial Hypertension. Circulation Research, 2015, 117, 870-883.	4.5	246
35	Endothelial Apoptosis in Pulmonary Hypertension Is Controlled by a microRNA/Programmed Cell Death 4/Caspase-3 Axis. Hypertension, 2014, 64, 185-194.	2.7	84
36	Sex-Dependent Influence of Endogenous Estrogen in Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 456-467.	5.6	123

#	Article	IF	Citations
37	MicroRNAs in pulmonary arterial remodeling. Cellular and Molecular Life Sciences, 2013, 70, 4479-4494.	5.4	61
38	Imatinib Attenuates Hypoxia-induced Pulmonary Arterial Hypertension Pathology via Reduction in 5-Hydroxytryptamine through Inhibition of Tryptophan Hydroxylase 1 Expression. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 78-89.	5.6	58
39	The influence of gender on the development of pulmonary arterial hypertension. Experimental Physiology, 2013, 98, 1257-1261.	2.0	20
40	Dexfenfluramine and the oestrogen-metabolizing enzyme CYP1B1 in the development of pulmonary arterial hypertension. Cardiovascular Research, 2013, 99, 24-34.	3.8	59
41	The First Keystone Symposia Conference on Pulmonary Vascular Disease and Right Ventricular Dysfunction: Current Concepts and Future Therapies. Pulmonary Circulation, 2013, 3, 275-277.	1.7	2
42	Gender, Sex Hormones and Pulmonary Hypertension. Pulmonary Circulation, 2013, 3, 294-314.	1.7	86
43	Transient but Not Genetic Loss of miRâ€451 is Protective in the Development of Pulmonary Arterial Hypertension. Pulmonary Circulation, 2013, 3, 840-850.	1.7	14
44	Gene Therapy by Targeted Adenovirus-mediated Knockdown of Pulmonary Endothelial Tph1 Attenuates Hypoxia-induced Pulmonary Hypertension. Molecular Therapy, 2012, 20, 1516-1528.	8.2	48
45	MicroRNA and vascular remodelling in acute vascular injury and pulmonary vascular remodelling. Cardiovascular Research, 2012, 93, 594-604.	3.8	98
46	Activity of the Estrogen-Metabolizing Enzyme Cytochrome P450 1B1 Influences the Development of Pulmonary Arterial Hypertension. Circulation, 2012, 126, 1087-1098.	1.6	130
47	A Role for miR-145 in Pulmonary Arterial Hypertension. Circulation Research, 2012, 111, 290-300.	4.5	263
48	Endothelium-dependent mechanisms of the vasodilatory effect of the endocannabinoid, anandamide, in the rat pulmonary artery. Pharmacological Research, 2012, 66, 251-259.	7.1	33
49	Development of pulmonary arterial hypertension in mice over-expressing \$100A4/Mts1 is specific to females. Respiratory Research, 2011, 12, 159.	3.6	84
50	The serotonin transporter, gender, and 17Â oestradiol in the development of pulmonary arterial hypertension. Cardiovascular Research, 2011, 90, 373-382.	3.8	98
51	Serotonin transporter, sex, and hypoxia: microarray analysis in the pulmonary arteries of mice identifies genes with relevance to human PAH. Physiological Genomics, 2011, 43, 417-437.	2.3	52
52	The Influence of the Major Vasoactive Mediators Relevant to the Pathogenesis of Pulmonary Hypertension. , 2011 , , $117-133$.		0
53	In vivo effects of a combined 5-HT1B receptor/SERT antagonist in experimental pulmonary hypertension. Cardiovascular Research, 2010, 85, 593-603.	3.8	45
54	Dynamic Changes in Lung MicroRNA Profiles During the Development of Pulmonary Hypertension due to Chronic Hypoxia and Monocrotaline. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 716-723.	2.4	305

#	Article	IF	CITATIONS
55	The Serotonin Hypothesis of Pulmonary Hypertension Revisited. Advances in Experimental Medicine and Biology, 2010, 661, 309-322.	1.6	97
56	Serotonin and pulmonary hypertensionâ€"from bench to bedside?. Current Opinion in Pharmacology, 2009, 9, 281-286.	3.5	70
57	Cellular and Molecular Basis of Pulmonary Arterial Hypertension. Journal of the American College of Cardiology, 2009, 54, S20-S31.	2.8	714
58	Role of the serotonin transporter in pulmonary arterial hypertension. Expert Review of Clinical Pharmacology, 2008, 1, 749-757.	3.1	12
59	Converging Evidence in Support of the Serotonin Hypothesis of Dexfenfluramine-Induced Pulmonary Hypertension With Novel Transgenic Mice. Circulation, 2008, 117, 2928-2937.	1.6	82
60	Effect of Tryptophan Hydroxylase 1 Deficiency on the Development of Hypoxia-Induced Pulmonary Hypertension. Hypertension, 2007, 49, 232-236.	2.7	105
61	Hypoxia-induced remodelling of PDE4 isoform expression and cAMP handling in human pulmonary artery smooth muscle cells. European Journal of Cell Biology, 2006, 85, 679-691.	3.6	37
62	The in vivo effects of human urotensin II in the rabbit and rat pulmonary circulation: Effects of experimental pulmonary hypertension. European Journal of Pharmacology, 2006, 537, 135-142.	3.5	2
63	Serotonin Increases Susceptibility to Pulmonary Hypertension in <i>BMPR2</i> -Deficient Mice. Circulation Research, 2006, 98, 818-827.	4.5	227
64	Interdependent Serotonin Transporter and Receptor Pathways Regulate S100A4/Mts1, a Gene Associated With Pulmonary Vascular Disease. Circulation Research, 2005, 97, 227-235.	4.5	147
65	Functional Interactions between 5-Hydroxytryptamine Receptors and the Serotonin Transporter in Pulmonary Arteries. Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 539-548.	2.5	82
66	The role of 5-hydroxytryptamine in the control of pulmonary vascular tone in a rabbit model of pulmonary hypertension secondary to left ventricular dysfunction. Pulmonary Pharmacology and Therapeutics, 2005, 18, 23-31.	2.6	3
67	Proliferation and Signaling in Fibroblasts. American Journal of Respiratory and Critical Care Medicine, 2004, 170, 252-259.	5.6	97
68	Overexpression of the 5-Hydroxytryptamine Transporter Gene. Circulation, 2004, 109, 2150-2155.	1.6	192
69	Cellular and molecular pathobiology of pulmonary arterial hypertension. Journal of the American College of Cardiology, 2004, 43, S13-S24.	2.8	1,322
70	An assessment of the role of the inhibitory gamma subunit of the retinal cyclic GMP phosphodiesterase and its effect on the p42/p44 mitogen-activated protein kinase pathway in animal and cellular models of pulmonary hypertension. British Journal of Pharmacology, 2003, 138, 1313-1319.	5.4	16
71	Is the Pregnancy Hormone Relaxin Also a Vasodilator Peptide Secreted by the Heart?. Circulation, 2002, 106, 292-295.	1.6	94
72	Ellagitannins, Flavonoids, and Other Phenolics in Red Raspberries and Their Contribution to Antioxidant Capacity and Vasorelaxation Properties. Journal of Agricultural and Food Chemistry, 2002, 50, 5191-5196.	5. 2	312

#	Article	IF	CITATIONS
7 3	Pulmonary hypertension secondary to left ventricular dysfunction: the role of nitric oxide and endothelin-1 in the control of pulmonary vascular tone. British Journal of Pharmacology, 2002, 135, 1060-1068.	5.4	21
74	Increased expression of the cGMPâ€inhibited cAMPâ€specific (PDE3) and cGMP binding cGMPâ€specific (PDE5) phosphodiesterases in models of pulmonary hypertension. British Journal of Pharmacology, 2002, 137, 1187-1194.	5.4	118
7 5	Potent vasodilator responses to human urotensin-II in human pulmonary and abdominal resistance arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H925-H928.	3.2	137
76	Effect of adrenomedullin on the production of endothelin-1 and on its vasoconstrictor action in resistance arteries: evidence for a receptor-specific functional interaction in patients with heart failure. Clinical Science, 2001, 101, 45-51.	4.3	7
77	Effect of adrenomedullin on the production of endothelin-1 and on its vasoconstrictor action in resistance arteries: evidence for a receptor-specific functional interaction in patients with heart failure. Clinical Science, 2001, 101, 45.	4.3	8
78	Increased contractile response to 5â€hydroxytryptamine ₁ â€receptor stimulation in pulmonary arteries from chronic hypoxic rats: role of pharmacological synergy. British Journal of Pharmacology, 2001, 134, 614-620.	5.4	32
79	Contribution of the 5-HT ₁₈ Receptor to Hypoxia-Induced Pulmonary Hypertension. Circulation Research, 2001, 89, 1231-1239.	4.5	212
80	Chronic Hypoxia Induces Constitutive p38 Mitogen-activated Protein Kinase Activity That Correlates with Enhanced Cellular Proliferation in Fibroblasts from Rat Pulmonary But Not Systemic Arteries. American Journal of Respiratory and Critical Care Medicine, 2001, 164, 282-289.	5.6	84
81	Regional modulation of cyclic nucleotides by endothelin-1 in rat pulmonary arteries: direct activation of Gi 2-protein in the main pulmonary artery. British Journal of Pharmacology, 2000, 129, 1042-1048.	5.4	4
82	5â€hydroxytryptamine and the pulmonary circulation: receptors, transporters and relevance to pulmonary arterial hypertension. British Journal of Pharmacology, 2000, 131, 161-168.	5.4	201
83	Relationship among Antioxidant Activity, Vasodilation Capacity, and Phenolic Content of Red Wines. Journal of Agricultural and Food Chemistry, 2000, 48, 220-230.	5.2	369
84	5â€hydroxytryptamine receptors mediating contraction in human small muscular pulmonary arteries: importance of the 5â€HT _{1B} receptor. British Journal of Pharmacology, 1999, 128, 730-734.	5.4	143
85	Endothelin-1 and serotonin: Mediators of primary and secondary pulmonary hypertension?. Translational Research, 1999, 134, 105-114.	2.3	61
86	Chronic exposure to hypoxia attenuates contractile responses in rat airways in vitro: a possible role for nitric oxide. European Journal of Pharmacology, 1999, 385, 29-37.	3.5	10
87	Pulmonary hypertension, anorexigens and 5-HT: pharmacological synergism in action?. Trends in Pharmacological Sciences, 1999, 20, 490-495.	8.7	61
88	EndothelinBreceptors are functionally important in mediating vasoconstriction in the systemic circulation in patients with left ventricular systolic dysfunction. Journal of the American College of Cardiology, 1999, 33, 932-938.	2.8	53
89	Influence of applied tension and nitric oxide on responses to endothelins in rat pulmonary resistance arteries: effect of chronic hypoxia. British Journal of Pharmacology, 1998, 123, 991-999.	5.4	27
90	Endothelin receptors mediating contraction of rat and human pulmonary resistance arteries: effect of chronic hypoxia in the rat. British Journal of Pharmacology, 1998, 123, 1621-1630.	5.4	71

#	Article	IF	CITATIONS
91	Development of endothelin receptors in perinatal rabbit pulmonary resistance arteries. British Journal of Pharmacology, 1998, 124, 1165-1174.	5.4	11
92	5-Hydroxytryptamine receptors mediating vasoconstriction and vasodilation in perinatal and adult rabbit small pulmonary arteries. British Journal of Pharmacology, 1998, 125, 69-78.	5.4	35
93	Developmental changes in endothelium-dependent vasodilation and the influence of superoxide anions in perinatal rabbit pulmonary arteries. British Journal of Pharmacology, 1998, 125, 1585-1593.	5.4	12
94	Short-term haemodynamic effects of BQ-123, a selective endothelin ETA-receptor antagonist, in chronic heart failure. Lancet, The, 1998, 352, 201-202.	13.7	88
95	Pulmonary and Systemic Responses to Exogenous Endothelin-1 in Patients with Left Ventricular Dysfunction. Journal of Cardiovascular Pharmacology, 1998, 31, S290-S293.	1.9	3
96	Evidence for 5â€HT ₁ â€like receptorâ€mediated vasoconstriction in human pulmonary artery. British Journal of Pharmacology, 1996, 119, 277-282.	5.4	78
97	Endothelin _B receptorâ€mediated contraction in human pulmonary resistance arteries. British Journal of Pharmacology, 1996, 119, 1125-1130.	5.4	92
98	Effects of Pulmonary Hypertension on Vasoconstrictor Responses to Endothelin-1 and Sarafotoxin S6C and on Inherent Tone in Rat Pulmonary Arteries. Journal of Cardiovascular Pharmacology, 1995, 26, 822-830.	1.9	38
99	The role of α ₂ â€adrenoceptors in the vasculature of the rat tail. British Journal of Pharmacology, 1995, 114, 1724-1730.	5.4	27
100	Endothelin ETA- and ETB-Receptor-Mediated Vasoconstriction in Rat Pulmonary Arteries and Arterioles. Journal of Cardiovascular Pharmacology, 1994, 23, 838-845.	1.9	108
101	Influences of the endothelium and hypoxia on neurogenic transmission in the isolated pulmonary artery of the rabbit. British Journal of Pharmacology, 1993, 108, 150-154.	5.4	16
102	Influences of the endothelium and hypoxia on α ₁ ―and α ₂ â€adrenoceptorâ€mediatec responses in the rabbit isolated pulmonary artery. British Journal of Pharmacology, 1993, 108, 155-161.	5.4	36
103	The influence of endothelinâ€1 on human foetoâ€placental blood vessels: a comparison with 5â€hydroxytryptamine. British Journal of Pharmacology, 1992, 106, 937-941.	5.4	41
104	Effects of endothelin-1 on isolated vascular beds from normotensive and spontaneously hypertensive rats. European Journal of Pharmacology, 1990, 190, 263-267.	3.5	8
105	$\hat{l}\pm 1$ -Adrenergic receptors in the nucleus tractus solitarii region of rats with experimental and genetic hypertension. Brain Research, 1990, 519, 261-265.	2.2	12
106	The influence of angiotensin II on catecholamine synthesis in neuronal cultures from rat brain. Biochemical and Biophysical Research Communications, 1990, 167, 492-497.	2.1	15
107	Effects of preâ€contraction with endothelinâ€1 on α ₂ â€adrenoceptorâ€and (endotheliumâ€dependent) neuropeptide Yâ€mediated contractions in the isolated vascular bed of the rat tail. British Journal of Pharmacology, 1990, 101, 205-211.	5.4	44
108	Effect of neuropeptide Y on cardiac output, its distribution, regional blood flow and organ vascular resistances in the pithed rat. British Journal of Pharmacology, 1990, 99, 340-342.	5.4	22

#	Article	IF	CITATIONS
109	Pressor effects of the α ₂ â€adrenoceptor agonist Bâ€HT 933 in anaesthetized and haemorrhagic rats: comparison with the haemodynamic effects of amidephrine. British Journal of Pharmacology, 1989, 97, 419-432.	5.4	4
110	Effects of moderate hypoxia, hypercapnia and acidosis on haemodynamic changes induced by endothelinâ€1 in the pithed rat. British Journal of Pharmacology, 1989, 98, 1055-1065.	5.4	41
111	Inhibitory regulation by coâ€released peptides of catecholamine secretion by the canine adrenal medulla. British Journal of Pharmacology, 1988, 93, 383-386.	5.4	2
112	Effect of artificial respiratory volume on the cardiovascular responses to an α ₁ ―and an α ₂ ―adrenoceptor agonist in the air―entilated pithed rat. British Journal of Pharmacology, 1988, 93, 781-790.	5.4	20
113	Effects of enalapril on changes in cardiac output and organ vascular resistances induced by α ₁ ―and α ₂ ―drenoceptor agonists in pithed normotensive rats. British Journal of Pharmacology, 1988, 94, 449-462.	5.4	12