Margaret R Maclean

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1540051/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cellular and molecular pathobiology of pulmonary arterial hypertension. Journal of the American College of Cardiology, 2004, 43, S13-S24.	2.8	1,322
2	Cellular and Molecular Basis of Pulmonary Arterial Hypertension. Journal of the American College of Cardiology, 2009, 54, S20-S31.	2.8	714
3	Relationship among Antioxidant Activity, Vasodilation Capacity, and Phenolic Content of Red Wines. Journal of Agricultural and Food Chemistry, 2000, 48, 220-230.	5.2	369
4	Ellagitannins, Flavonoids, and Other Phenolics in Red Raspberries and Their Contribution to Antioxidant Capacity and Vasorelaxation Properties. Journal of Agricultural and Food Chemistry, 2002, 50, 5191-5196.	5.2	312
5	Dynamic Changes in Lung MicroRNA Profiles During the Development of Pulmonary Hypertension due to Chronic Hypoxia and Monocrotaline. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 716-723.	2.4	305
6	A Role for miR-145 in Pulmonary Arterial Hypertension. Circulation Research, 2012, 111, 290-300.	4.5	263
7	MicroRNA-143 Activation Regulates Smooth Muscle and Endothelial Cell Crosstalk in Pulmonary Arterial Hypertension. Circulation Research, 2015, 117, 870-883.	4.5	246
8	Serotonin Increases Susceptibility to Pulmonary Hypertension in <i>BMPR2</i> -Deficient Mice. Circulation Research, 2006, 98, 818-827.	4.5	227
9	Contribution of the 5-HT _{1B} Receptor to Hypoxia-Induced Pulmonary Hypertension. Circulation Research, 2001, 89, 1231-1239.	4.5	212
10	5â€hydroxytryptamine and the pulmonary circulation: receptors, transporters and relevance to pulmonary arterial hypertension. British Journal of Pharmacology, 2000, 131, 161-168.	5.4	201
11	Overexpression of the 5-Hydroxytryptamine Transporter Gene. Circulation, 2004, 109, 2150-2155.	1.6	192
12	Interdependent Serotonin Transporter and Receptor Pathways Regulate S100A4/Mts1, a Gene Associated With Pulmonary Vascular Disease. Circulation Research, 2005, 97, 227-235.	4.5	147
13	5â€hydroxytryptamine receptors mediating contraction in human small muscular pulmonary arteries: importance of the 5â€HT _{1B} receptor. British Journal of Pharmacology, 1999, 128, 730-734.	5.4	143
14	Potent vasodilator responses to human urotensin-II in human pulmonary and abdominal resistance arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H925-H928.	3.2	137
15	Activity of the Estrogen-Metabolizing Enzyme Cytochrome P450 1B1 Influences the Development of Pulmonary Arterial Hypertension. Circulation, 2012, 126, 1087-1098.	1.6	130
16	Sex-Dependent Influence of Endogenous Estrogen in Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 456-467.	5.6	123
17	Increased expression of the cGMPâ€inhibited cAMPâ€specific (PDE3) and cGMP binding cGMPâ€specific (PDE5) phosphodiesterases in models of pulmonary hypertension. British Journal of Pharmacology, 2002, 137, 1187-1194.	5.4	118
18	Endothelin ETA- and ETB-Receptor-Mediated Vasoconstriction in Rat Pulmonary Arteries and Arteries Arteries and Arterioles. Journal of Cardiovascular Pharmacology, 1994, 23, 838-845.	1.9	108

MARGARET R MACLEAN

#	Article	IF	CITATIONS
19	Effect of Tryptophan Hydroxylase 1 Deficiency on the Development of Hypoxia-Induced Pulmonary Hypertension. Hypertension, 2007, 49, 232-236.	2.7	105
20	The serotonin transporter, gender, and 17Â oestradiol in the development of pulmonary arterial hypertension. Cardiovascular Research, 2011, 90, 373-382.	3.8	98
21	MicroRNA and vascular remodelling in acute vascular injury and pulmonary vascular remodelling. Cardiovascular Research, 2012, 93, 594-604.	3.8	98
22	Proliferation and Signaling in Fibroblasts. American Journal of Respiratory and Critical Care Medicine, 2004, 170, 252-259.	5.6	97
23	The Serotonin Hypothesis of Pulmonary Hypertension Revisited. Advances in Experimental Medicine and Biology, 2010, 661, 309-322.	1.6	97
24	Is the Pregnancy Hormone Relaxin Also a Vasodilator Peptide Secreted by the Heart?. Circulation, 2002, 106, 292-295.	1.6	94
25	Endothelin _B receptorâ€mediated contraction in human pulmonary resistance arteries. British Journal of Pharmacology, 1996, 119, 1125-1130.	5.4	92
26	Short-term haemodynamic effects of BQ-123, a selective endothelin ETA-receptor antagonist, in chronic heart failure. Lancet, The, 1998, 352, 201-202.	13.7	88
27	Gender, Sex Hormones and Pulmonary Hypertension. Pulmonary Circulation, 2013, 3, 294-314.	1.7	86
28	Chronic Hypoxia Induces Constitutive p38 Mitogen-activated Protein Kinase Activity That Correlates with Enhanced Cellular Proliferation in Fibroblasts from Rat Pulmonary But Not Systemic Arteries. American Journal of Respiratory and Critical Care Medicine, 2001, 164, 282-289.	5.6	84
29	Development of pulmonary arterial hypertension in mice over-expressing S100A4/Mts1 is specific to females. Respiratory Research, 2011, 12, 159.	3.6	84
30	Endothelial Apoptosis in Pulmonary Hypertension Is Controlled by a microRNA/Programmed Cell Death 4/Caspase-3 Axis. Hypertension, 2014, 64, 185-194.	2.7	84
31	Metformin Reverses Development of Pulmonary Hypertension via Aromatase Inhibition. Hypertension, 2016, 68, 446-454.	2.7	83
32	Functional Interactions between 5-Hydroxytryptamine Receptors and the Serotonin Transporter in Pulmonary Arteries. Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 539-548.	2.5	82
33	Converging Evidence in Support of the Serotonin Hypothesis of Dexfenfluramine-Induced Pulmonary Hypertension With Novel Transgenic Mice. Circulation, 2008, 117, 2928-2937.	1.6	82
34	Evidence for 5â€HT ₁ â€ŀike receptorâ€mediated vasoconstriction in human pulmonary artery. British Journal of Pharmacology, 1996, 119, 277-282.	5.4	78
35	Endothelin receptors mediating contraction of rat and human pulmonary resistance arteries: effect of chronic hypoxia in the rat. British Journal of Pharmacology, 1998, 123, 1621-1630.	5.4	71
36	Serotonin and pulmonary hypertension—from bench to bedside?. Current Opinion in Pharmacology, 2009, 9, 281-286.	3.5	70

#	Article	IF	CITATIONS
37	Sex Affects Bone Morphogenetic Protein Type II Receptor Signaling in Pulmonary Artery Smooth Muscle Cells. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 693-703.	5.6	65
38	Notch3 signalling and vascular remodelling in pulmonary arterial hypertension. Clinical Science, 2019, 133, 2481-2498.	4.3	65
39	Nicotinamide Adenine Dinucleotide Phosphate Oxidase–Mediated Redox Signaling and Vascular Remodeling by 16α-Hydroxyestrone in Human Pulmonary Artery Cells. Hypertension, 2016, 68, 796-808.	2.7	62
40	Endothelin-1 and serotonin: Mediators of primary and secondary pulmonary hypertension?. Translational Research, 1999, 134, 105-114.	2.3	61
41	Pulmonary hypertension, anorexigens and 5-HT: pharmacological synergism in action?. Trends in Pharmacological Sciences, 1999, 20, 490-495.	8.7	61
42	MicroRNAs in pulmonary arterial remodeling. Cellular and Molecular Life Sciences, 2013, 70, 4479-4494.	5.4	61
43	A Sex-Specific MicroRNA-96/5-Hydroxytryptamine 1B Axis Influences Development of Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 1432-1442.	5.6	61
44	Dexfenfluramine and the oestrogen-metabolizing enzyme CYP1B1 in the development of pulmonary arterial hypertension. Cardiovascular Research, 2013, 99, 24-34.	3.8	59
45	Imatinib Attenuates Hypoxia-induced Pulmonary Arterial Hypertension Pathology via Reduction in 5-Hydroxytryptamine through Inhibition of Tryptophan Hydroxylase 1 Expression. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 78-89.	5.6	58
46	The serotonin hypothesis in pulmonary hypertension revisited: targets for novel therapies (2017) Tj ETQq0 0 0 rg	gBT /Overlo 1.7	ock 10 Tf 50 3
47	Current strategies for quantification of estrogens in clinical research. Journal of Steroid Biochemistry and Molecular Biology, 2019, 192, 105373.	2.5	55
48	EndothelinBreceptors are functionally important in mediating vasoconstriction in the systemic circulation in patients with left ventricular systolic dysfunction. Journal of the American College of Cardiology, 1999, 33, 932-938.	2.8	53
49	Serotonin transporter, sex, and hypoxia: microarray analysis in the pulmonary arteries of mice identifies genes with relevance to human PAH. Physiological Genomics, 2011, 43, 417-437.	2.3	52
50	Serotonin Signaling Through the 5-HT _{1B} Receptor and NADPH Oxidase 1 in Pulmonary	0.4	E1

50	Arterial Hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1361-1370.	2.4	51
51	Gene Therapy by Targeted Adenovirus-mediated Knockdown of Pulmonary Endothelial Tph1 Attenuates Hypoxia-induced Pulmonary Hypertension. Molecular Therapy, 2012, 20, 1516-1528.	8.2	48
52	Oestrogen receptor alpha in pulmonary hypertension. Cardiovascular Research, 2015, 106, 206-216.	3.8	47
53	Role of the Aryl Hydrocarbon Receptor in Sugen 5416–induced Experimental Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 320-330.	2.9	47
54	In vivo effects of a combined 5-HT1B receptor/SERT antagonist in experimental pulmonary hypertension. Cardiovascular Research, 2010, 85, 593-603.	3.8	45

#	Article	IF	CITATIONS
55	Effects of preâ€contraction with endothelinâ€1 on α ₂ â€adrenoceptorâ€and (endotheliumâ€dependent) neuropeptide Yâ€mediated contractions in the isolated vascular bed of the rat tail. British Journal of Pharmacology, 1990, 101, 205-211.	5.4	44
56	Obesity, estrogens and adipose tissue dysfunction – implications for pulmonary arterial hypertension. Pulmonary Circulation, 2020, 10, 1-21.	1.7	44
57	Effects of moderate hypoxia, hypercapnia and acidosis on haemodynamic changes induced by endothelinâ€1 in the pithed rat. British Journal of Pharmacology, 1989, 98, 1055-1065.	5.4	41
58	The influence of endothelinâ€1 on human foetoâ€placental blood vessels: a comparison with 5â€hydroxytryptamine. British Journal of Pharmacology, 1992, 106, 937-941.	5.4	41
59	Effects of Pulmonary Hypertension on Vasoconstrictor Responses to Endothelin-1 and Sarafotoxin S6C and on Inherent Tone in Rat Pulmonary Arteries. Journal of Cardiovascular Pharmacology, 1995, 26, 822-830.	1.9	38
60	Hypoxia-induced remodelling of PDE4 isoform expression and cAMP handling in human pulmonary artery smooth muscle cells. European Journal of Cell Biology, 2006, 85, 679-691.	3.6	37
61	Influences of the endothelium and hypoxia on α ₁ ―and α ₂ â€adrenoceptorâ€mediatec responses in the rabbit isolated pulmonary artery. British Journal of Pharmacology, 1993, 108, 155-161.	.4 5.4	36
62	5-Hydroxytryptamine receptors mediating vasoconstriction and vasodilation in perinatal and adult rabbit small pulmonary arteries. British Journal of Pharmacology, 1998, 125, 69-78.	5.4	35
63	Endothelium-dependent mechanisms of the vasodilatory effect of the endocannabinoid, anandamide, in the rat pulmonary artery. Pharmacological Research, 2012, 66, 251-259.	7.1	33
64	The Serotonin Transporter Promotes a Pathological Estrogen Metabolic Pathway in Pulmonary Hypertension via Cytochrome P450 1B1. Pulmonary Circulation, 2016, 6, 82-92.	1.7	33
65	Influence of 2â€Methoxyestradiol and Sex on Hypoxiaâ€Induced Pulmonary Hypertension and Hypoxiaâ€Inducible Factorâ€1â€Î±. Journal of the American Heart Association, 2019, 8, e011628.	3.7	33
66	Derivatization enhances analysis of estrogens and their bioactive metabolites in human plasma by liquid chromatography tandem mass spectrometry. Analytica Chimica Acta, 2019, 1054, 84-94.	5.4	33
67	Increased contractile response to 5â€hydroxytryptamine ₁ â€receptor stimulation in pulmonary arteries from chronic hypoxic rats: role of pharmacological synergy. British Journal of Pharmacology, 2001, 134, 614-620.	5.4	32
68	Novel Signaling Pathways in Pulmonary Arterial Hypertension (2015 Grover Conference Series). Pulmonary Circulation, 2016, 6, 285-294.	1.7	31
69	The Role of Sex in the Pathophysiology of Pulmonary Hypertension. Advances in Experimental Medicine and Biology, 2018, 1065, 511-528.	1.6	31
70	Regulation and Function of miRâ€⊋14Âin Pulmonary Arterial Hypertension. Pulmonary Circulation, 2016, 6, 109-117.	1.7	28
71	The role of α ₂ â€adrenoceptors in the vasculature of the rat tail. British Journal of Pharmacology, 1995, 114, 1724-1730.	5.4	27
72	Influence of applied tension and nitric oxide on responses to endothelins in rat pulmonary resistance arteries: effect of chronic hypoxia. British Journal of Pharmacology, 1998, 123, 991-999.	5.4	27

MARGARET R MACLEAN

#	Article	IF	CITATIONS
73	Obesity alters oestrogen metabolism and contributes to pulmonary arterial hypertension. European Respiratory Journal, 2019, 53, 1801524.	6.7	26
74	Estrogen Signaling and Portopulmonary Hypertension: The Pulmonary Vascular Complications of Liver Disease Study (PVCLD2). Hepatology, 2021, 73, 726-737.	7.3	24
75	Sex Differences in Pulmonary Hypertension. Clinics in Chest Medicine, 2021, 42, 217-228.	2.1	24
76	Effect of neuropeptide Y on cardiac output, its distribution, regional blood flow and organ vascular resistances in the pithed rat. British Journal of Pharmacology, 1990, 99, 340-342.	5.4	22
77	Pulmonary hypertension secondary to left ventricular dysfunction: the role of nitric oxide and endothelin-1 in the control of pulmonary vascular tone. British Journal of Pharmacology, 2002, 135, 1060-1068.	5.4	21
78	Fulvestrant for the Treatment of Pulmonary Arterial Hypertension. Annals of the American Thoracic Society, 2019, 16, 1456-1459.	3.2	21
79	Effect of artificial respiratory volume on the cardiovascular responses to an α ₁ ―and an α ₂ â€adrenoceptor agonist in the airâ€ventilated pithed rat. British Journal of Pharmacology, 1988, 93, 781-790.	5.4	20
80	The influence of gender on the development of pulmonary arterial hypertension. Experimental Physiology, 2013, 98, 1257-1261.	2.0	20
81	Influences of the endothelium and hypoxia on neurogenic transmission in the isolated pulmonary artery of the rabbit. British Journal of Pharmacology, 1993, 108, 150-154.	5.4	16
82	An assessment of the role of the inhibitory gamma subunit of the retinal cyclic GMP phosphodiesterase and its effect on the p42/p44 mitogen-activated protein kinase pathway in animal and cellular models of pulmonary hypertension. British Journal of Pharmacology, 2003, 138, 1313-1319.	5.4	16
83	The influence of angiotensin II on catecholamine synthesis in neuronal cultures from rat brain. Biochemical and Biophysical Research Communications, 1990, 167, 492-497.	2.1	15
84	Insights from the Menstrual Cycle in Pulmonary Arterial Hypertension. Annals of the American Thoracic Society, 2021, 18, 218-228.	3.2	15
85	Transient but Not Genetic Loss of miRâ€451 is Protective in the Development of Pulmonary Arterial Hypertension. Pulmonary Circulation, 2013, 3, 840-850.	1.7	14
86	Effects of enalapril on changes in cardiac output and organ vascular resistances induced by α ₁ ―and α ₂ â€adrenoceptor agonists in pithed normotensive rats. British Journal of Pharmacology, 1988, 94, 449-462.	5.4	12
87	α1-Adrenergic receptors in the nucleus tractus solitarii region of rats with experimental and genetic hypertension. Brain Research, 1990, 519, 261-265.	2.2	12
88	Developmental changes in endothelium-dependent vasodilation and the influence of superoxide anions in perinatal rabbit pulmonary arteries. British Journal of Pharmacology, 1998, 125, 1585-1593.	5.4	12
89	Role of the serotonin transporter in pulmonary arterial hypertension. Expert Review of Clinical Pharmacology, 2008, 1, 749-757.	3.1	12
90	Development of endothelin receptors in perinatal rabbit pulmonary resistance arteries. British Journal of Pharmacology, 1998, 124, 1165-1174.	5.4	11

MARGARET R MACLEAN

#	Article	IF	CITATIONS
91	Estrogen metabolites in a small cohort of patients with idiopathic pulmonary arterial hypertension. Pulmonary Circulation, 2020, 10, 1-5.	1.7	11
92	Chronic exposure to hypoxia attenuates contractile responses in rat airways in vitro: a possible role for nitric oxide. European Journal of Pharmacology, 1999, 385, 29-37.	3.5	10
93	Effects of endothelin-1 on isolated vascular beds from normotensive and spontaneously hypertensive rats. European Journal of Pharmacology, 1990, 190, 263-267.	3.5	8
94	Effect of adrenomedullin on the production of endothelin-1 and on its vasoconstrictor action in resistance arteries: evidence for a receptor-specific functional interaction in patients with heart failure. Clinical Science, 2001, 101, 45.	4.3	8
95	Effect of adrenomedullin on the production of endothelin-1 and on its vasoconstrictor action in resistance arteries: evidence for a receptor-specific functional interaction in patients with heart failure. Clinical Science, 2001, 101, 45-51.	4.3	7
96	Melatonin: shining some light on pulmonary hypertension. Cardiovascular Research, 2020, 116, 2036-2037.	3.8	6
97	Data for analysis of catechol estrogen metabolites in humanÂplasma by liquid chromatography tandem mass spectrometry. Data in Brief, 2019, 23, 103740.	1.0	5
98	Pressor effects of the α ₂ â€adrenoceptor agonist Bâ€HT 933 in anaesthetized and haemorrhagic rats: comparison with the haemodynamic effects of amidephrine. British Journal of Pharmacology, 1989, 97, 419-432.	5.4	4
99	Regional modulation of cyclic nucleotides by endothelin-1 in rat pulmonary arteries: direct activation of Gi 2-protein in the main pulmonary artery. British Journal of Pharmacology, 2000, 129, 1042-1048.	5.4	4
100	Sex-Dependent Changes in Right Ventricular Gene Expression in Response to Pressure Overload in a Rat Model of Pulmonary Trunk Banding. Biomedicines, 2020, 8, 430.	3.2	4
101	Reduction of the serotonin 5-HT1B and 5-HT2A receptor-mediated contraction of human pulmonary artery by the combined 5-HT1B receptor antagonist and serotonin transporter inhibitor LY393558. Pharmacological Reports, 2020, 72, 756-762.	3.3	4
102	The role of 5-hydroxytryptamine in the control of pulmonary vascular tone in a rabbit model of pulmonary hypertension secondary to left ventricular dysfunction. Pulmonary Pharmacology and Therapeutics, 2005, 18, 23-31.	2.6	3
103	Direct Delivery of MicroRNA96 to the Lungs Reduces Progression of Sugen/Hypoxia-Induced Pulmonary Hypertension in the Rat. Molecular Therapy - Nucleic Acids, 2020, 22, 396-405.	5.1	3
104	Apoptosis signalâ€regulating kinase 1Âinhibition in <i>in vivo</i> and <i>in vitro</i> models of pulmonary hypertension. Pulmonary Circulation, 2020, 10, 1-16.	1.7	3
105	Pulmonary and Systemic Responses to Exogenous Endothelin-1 in Patients with Left Ventricular Dysfunction. Journal of Cardiovascular Pharmacology, 1998, 31, S290-S293.	1.9	3
106	Inhibitory regulation by coâ€released peptides of catecholamine secretion by the canine adrenal medulla. British Journal of Pharmacology, 1988, 93, 383-386.	5.4	2
107	The in vivo effects of human urotensin II in the rabbit and rat pulmonary circulation: Effects of experimental pulmonary hypertension. European Journal of Pharmacology, 2006, 537, 135-142.	3.5	2
108	The First Keystone Symposia Conference on Pulmonary Vascular Disease and Right Ventricular Dysfunction: Current Concepts and Future Therapies. Pulmonary Circulation, 2013, 3, 275-277.	1.7	2

#	Article	IF	CITATIONS
109	Sex-dependent right ventricular hypertrophic gene changes after methamphetamine treatment in mice. European Journal of Pharmacology, 2021, 900, 174066.	3.5	1
110	3â€Angiotensin 1–7 regulation of endothelin-1 system in pulmonary hypertension. Heart, 2015, 101, A1.3-A1	. 2.9	0
111	Klotho and Pulmonary Hypertension. Hypertension, 2016, 68, 1106-1107.	2.7	0
112	Enhancing the Interaction Between MAS and ETB Receptors is Vasoprotective. FASEB Journal, 2021, 35, .	0.5	0
113	The Influence of the Major Vasoactive Mediators Relevant to the Pathogenesis of Pulmonary Hypertension. , 2011, , 117-133.		0