Albert A Bowers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1540035/publications.pdf

Version: 2024-02-01

33 papers 3,214 citations

304743

22

h-index

32 g-index

34 all docs

34 docs citations

times ranked

34

3627 citing authors

#	Article	IF	Citations
1	Discovery and Structural Basis of the Selectivity of Potent Cyclic Peptide Inhibitors of MAGE-A4. Journal of Medicinal Chemistry, 2022, 65, 7231-7245.	6.4	12
2	Discovery and Development of Cyclic Peptide Inhibitors of CIB1. ACS Medicinal Chemistry Letters, 2021, 12, 1832-1839.	2.8	14
3	Chemistry and Chemical Biology of Thiopeptide Natural Products. , 2020, , 166-192.		O
4	Expanding the Chemical Diversity of Genetically Encoded Libraries. ACS Combinatorial Science, 2020, 22, 712-733.	3.8	19
5	Discovery and Characterization of Peptide Inhibitors for Calcium and Integrin Binding Protein 1. ACS Chemical Biology, 2020, 15, 1505-1516.	3.4	11
6	Interception of the Bycroft–Gowland Intermediate in the Enzymatic Macrocyclization of Thiopeptides. Journal of the American Chemical Society, 2020, 142, 13170-13179.	13.7	10
7	Thiopeptides Induce Proteasome-Independent Activation of Cellular Mitophagy. ACS Chemical Biology, 2020, 15, 2164-2174.	3.4	9
8	Exploring the Post-translational Enzymology of PaaA by mRNA Display. Journal of the American Chemical Society, 2020, 142, 5024-5028.	13.7	29
9	Dehydroamino acids: chemical multi-tools for late-stage diversification. Organic and Biomolecular Chemistry, 2019, 17, 3653-3669.	2.8	77
10	Inter-Modular Linkers play a crucial role in governing the biosynthesis of non-ribosomal peptides. Bioinformatics, 2019, 35, 3584-3591.	4.1	7
11	Flexizyme-Enabled Benchtop Biosynthesis of Thiopeptides. Journal of the American Chemical Society, 2019, 141, 758-762.	13.7	56
12	Mapping the sites of the lipoprotein lipase (LPL)–angiopoietin-like protein 4 (ANGPTL4) interaction provides mechanistic insight into LPL inhibition. Journal of Biological Chemistry, 2019, 294, 2678-5366.	3.4	34
13	Thiopeptide Pyridine Synthase TbtD Catalyzes an Intermolecular Formal Aza-Diels–Alder Reaction. Journal of the American Chemical Society, 2019, 141, 1842-1846.	13.7	25
14	The substrate lends a hand. Nature Chemical Biology, 2018, 14, 907-908.	8.0	0
15	Thiolutin is a zinc chelator that inhibits the Rpn11 and other JAMM metalloproteases. Nature Chemical Biology, 2017, 13, 709-714.	8.0	95
16	P450-Mediated Non-natural Cyclopropanation of Dehydroalanine-Containing Thiopeptides. ACS Chemical Biology, 2017, 12, 1726-1731.	3.4	63
17	Methylating mushrooms. Nature Chemical Biology, 2017, 13, 821-822.	8.0	2
18	Large-Scale Bioinformatics Analysis of <i>Bacillus</i> Genomes Uncovers Conserved Roles of Natural Products in Bacterial Physiology. MSystems, 2017, 2, .	3.8	70

#	Article	IF	Citations
19	Structural Insights into Thioether Bond Formation in the Biosynthesis of Sactipeptides. Journal of the American Chemical Society, 2017, 139, 11734-11744.	13.7	119
20	Production of Sactipeptides in <i>Escherichia coli:</i> Subtilosin A Biosynthesis. ACS Chemical Biology, 2016, 11, 1737-1744.	3.4	44
21	Post-translational Claisen Condensation and Decarboxylation en Route to the Bicyclic Core of Pantocin A. Journal of the American Chemical Society, 2016, 138, 5487-5490.	13.7	25
22	Identification of Pyridine Synthase Recognition Sequences Allows a Modular Solid-Phase Route to Thiopeptide Variants. Journal of the American Chemical Society, 2016, 138, 13461-13464.	13.7	37
23	Dynamic Docking of Conformationally Constrained Macrocycles: Methods and Applications. ACS Chemical Biology, 2016, 11, 10-24.	3.4	39
24	Thiopeptide antibiotics stimulate biofilm formation in <i>Bacillus subtilis </i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3086-3091.	7.1	98
25	Chemoenzymatic Synthesis of Thiazolyl Peptide Natural Products Featuring an Enzyme-Catalyzed Formal [4 + 2] Cycloaddition. Journal of the American Chemical Society, 2015, 137, 3494-3497.	13.7	113
26	Inhibition of Cell Differentiation in Bacillus subtilis by Pseudomonas protegens. Journal of Bacteriology, 2015, 197, 2129-2138.	2.2	90
27	Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Natural Product Reports, 2013, 30, 108-160.	10.3	1,692
28	Biochemical and biosynthetic preparation of natural product-like cyclic peptide libraries. MedChemComm, 2012, 3, 905-915.	3.4	11
29	Generation of Thiocillin Ring Size Variants by Prepeptide Gene Replacement and in Vivo Processing by <i>Bacillus cereus</i> . Journal of the American Chemical Society, 2012, 134, 10313-10316.	13.7	54
30	Thiazolyl Peptide Antibiotic Biosynthesis: A Cascade of Post-translational Modifications on Ribosomal Nascent Proteins. Journal of Biological Chemistry, 2010, 285, 27525-27531.	3.4	92
31	Manipulation of Thiocillin Variants by Prepeptide Gene Replacement: Structure, Conformation, and Activity of Heterocycle Substitution Mutants. Journal of the American Chemical Society, 2010, 132, 7519-7527.	13.7	106
32	Genetic Interception and Structural Characterization of Thiopeptide Cyclization Precursors from <i>Bacillus cereus</i> . Journal of the American Chemical Society, 2010, 132, 12182-12184.	13.7	76
33	Generation of Thiocillin Variants by Prepeptide Gene Replacement and in Vivo Processing by <i>Bacillus cereus</i> . Journal of the American Chemical Society, 2009, 131, 17563-17565.	13.7	77