Xuan Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1540028/publications.pdf

Version: 2024-02-01

81900 91884 5,131 86 39 69 citations h-index g-index papers 93 93 93 5266 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Discovery of spontaneous de-interpenetration through charged point-point repulsions. CheM, 2022, 8, 225-242.	11.7	11
2	Ethylene polymerization with a crystallographically well-defined metal–organic framework supported catalyst. Catalysis Science and Technology, 2022, 12, 1619-1627.	4.1	6
3	Modulating Chemical Environments of Metal–Organic Framework-Supported Molybdenum(VI) Catalysts for Insights into the Structure–Activity Relationship in Cyclohexene Epoxidation. Journal of the American Chemical Society, 2022, 144, 3554-3563.	13.7	25
4	Catalytic Degradation of Polyethylene Terephthalate Using a Phaseâ€Transitional Zirconiumâ€Based Metal–Organic Framework. Angewandte Chemie - International Edition, 2022, 61, .	13.8	30
5	Catalytic Degradation of Polyethylene Terephthalate Using a Phaseâ€Transitional Zirconiumâ€Based Metal–Organic Framework. Angewandte Chemie, 2022, 134, .	2.0	4
6	Mechanistic Investigation of Enhanced Catalytic Selectivity toward Alcohol Oxidation with Ce Oxysulfate Clusters. Journal of the American Chemical Society, 2022, 144, 12092-12101.	13.7	6
7	Reticular exploration of uranium-based metal—organic frameworks with hexacarboxylate building units. Nano Research, 2021, 14, 376-380.	10.4	25
8	A historical perspective on porphyrin-based metal–organic frameworks and their applications. Coordination Chemistry Reviews, 2021, 429, 213615.	18.8	140
9	The state of the field: from inception to commercialization of metal–organic frameworks. Faraday Discussions, 2021, 225, 9-69.	3.2	70
10	Modulation of CO ₂ adsorption in novel pillar-layered MOFs based on carboxylate–pyrazole flexible linker. Dalton Transactions, 2021, 50, 2880-2890.	3.3	7
11	Small Molecules, Big Effects: Tuning Adsorption and Catalytic Properties of Metal–Organic Frameworks. Chemistry of Materials, 2021, 33, 1444-1454.	6.7	56
12	Mechanically Enhanced Catalytic Reduction of Carbon Dioxide over Defect Hexagonal Boron Nitride. ACS Sustainable Chemistry and Engineering, 2021, 9, 2447-2455.	6.7	25
13	Insights into the Structure–Activity Relationship in Aerobic Alcohol Oxidation over a Metal–Organic-Framework-Supported Molybdenum(VI) Catalyst. Journal of the American Chemical Society, 2021, 143, 4302-4310.	13.7	48
14	Photon Upconversion in a Glowing Metal–Organic Framework. Journal of the American Chemical Society, 2021, 143, 5053-5059.	13.7	34
15	Tuning the Structural Flexibility for Multi-Responsive Gas Sorption in Isonicotinate-Based Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2021, 13, 16820-16827.	8.0	31
16	Nanoporous Water-Stable Zr-Based Metal–Organic Frameworks for Water Adsorption. ACS Applied Nano Materials, 2021, 4, 4346-4350.	5.0	22
17	Stabilization of an enzyme cytochrome c in a metal-organic framework against denaturing organic solvents. IScience, 2021, 24, 102641.	4.1	15
18	Near-instantaneous catalytic hydrolysis of organophosphorus nerve agents with zirconium-based MOF/hydrogel composites. Chem Catalysis, 2021, 1, 721-733.	6.1	49

#	Article	IF	Citations
19	A contorted nanographene shelter. Nature Communications, 2021, 12, 5191.	12.8	12
20	Regulation of Catenation in Metal–Organic Frameworks with Tunable Clathrochelate-Based Building Blocks. Crystal Growth and Design, 2021, 21, 6665-6670.	3.0	7
21	Fine-Tuning a Robust Metal–Organic Framework toward Enhanced Clean Energy Gas Storage. Journal of the American Chemical Society, 2021, 143, 18838-18843.	13.7	79
22	Heterometallic Ce ^{IV} /V ^V Oxo Clusters with Adjustable Catalytic Reactivities. Journal of the American Chemical Society, 2021, 143, 21056-21065.	13.7	21
23	Integration of Enzymes and Photosensitizers in a Hierarchical Mesoporous Metal–Organic Framework for Light-Driven CO ₂ Reduction. Journal of the American Chemical Society, 2020, 142, 1768-1773.	13.7	163
24	Singleâ€Site, Singleâ€Metalâ€Atom, Heterogeneous Electrocatalyst: Metal–Organicâ€Framework Supported Molybdenum Sulfide for Redox Mediatorâ€Assisted Hydrogen Evolution Reaction. ChemElectroChem, 2020, 7, 509-516.	3.4	12
25	Insights into the Enhanced Catalytic Activity of Cytochrome c When Encapsulated in a Metal–Organic Framework. Journal of the American Chemical Society, 2020, 142, 18576-18582.	13.7	73
26	Node-Accessible Zirconium MOFs. Journal of the American Chemical Society, 2020, 142, 21110-21121.	13.7	103
27	Unexpected "Spontaneous―Evolution of Catalytic, MOF-Supported Single Cu(II) Cations to Catalytic, MOF-Supported Cu(0) Nanoparticles. Journal of the American Chemical Society, 2020, 142, 21169-21177.	13.7	68
28	Insights into the Structure–Activity Relationships in Metal–Organic Framework-Supported Nickel Catalysts for Ethylene Hydrogenation. ACS Catalysis, 2020, 10, 8995-9005.	11,2	40
29	Metal–organic framework (MOF) materials as polymerization catalysts: a review and recent advances. Chemical Communications, 2020, 56, 10409-10418.	4.1	168
30	A historical overview of the activation and porosity of metal–organic frameworks. Chemical Society Reviews, 2020, 49, 7406-7427.	38.1	367
31	Fiber Composites of Metal–Organic Frameworks. Chemistry of Materials, 2020, 32, 7120-7140.	6.7	82
32	Supramolecular Porous Assemblies of Atomically Precise Catalytically Active Cerium-Based Clusters. Chemistry of Materials, 2020, 32, 8522-8529.	6.7	23
33	Tuning the Atrazine Binding Sites in an Indium-Based Flexible Metal–Organic Framework. ACS Applied Materials & Samp; Interfaces, 2020, 12, 44762-44768.	8.0	11
34	Metal–Organic Framework Nodes as a Supporting Platform for Tailoring the Activity of Metal Catalysts. ACS Catalysis, 2020, 10, 11556-11566.	11.2	52
35	Structural Diversity of Zirconium Metal–Organic Frameworks and Effect on Adsorption of Toxic Chemicals. Journal of the American Chemical Society, 2020, 142, 21428-21438.	13.7	95
36	From spin-crossover to single molecule magnetism: tuning magnetic properties of Co(<scp>ii</scp>) bis-ferrocenylterpy cations <i>via</i> supramolecular interactions with organocyanide radical anions. Journal of Materials Chemistry C, 2020, 8, 8135-8144.	5.5	8

3

#	Article	IF	CITATIONS
37	Stabilization of Photocatalytically Active Uranyl Species in a Uranyl–Organic Framework for Heterogeneous Alkane Fluorination Driven by Visible Light. Inorganic Chemistry, 2020, 59, 16795-16798.	4.0	26
38	Squeezing the box: isoreticular contraction of pyrene-based linker in a Zr-based metal–organic framework for Xe/Kr separation. Dalton Transactions, 2020, 49, 6553-6556.	3.3	11
39	Mechanistic Insights into C–H Borylation of Arenes with Organoiridium Catalysts Embedded in a Microporous Metal–Organic Framework. Organometallics, 2020, 39, 1123-1133.	2.3	20
40	Tailoring Pore Aperture and Structural Defects in Zirconium-Based Metal–Organic Frameworks for Krypton/Xenon Separation. Chemistry of Materials, 2020, 32, 3776-3782.	6.7	89
41	Single crystal structure and photocatalytic behavior of grafted uranyl on the Zr-node of a pyrene-based metal–organic framework. CrystEngComm, 2020, 22, 2097-2102.	2.6	21
42	Phase Transitions in Metal–Organic Frameworks Directly Monitored through In Situ Variable Temperature Liquid-Cell Transmission Electron Microscopy and In Situ X-ray Diffraction. Journal of the American Chemical Society, 2020, 142, 4609-4615.	13.7	69
43	Ultrastable Mesoporous Hydrogen-Bonded Organic Framework-Based Fiber Composites toward Mustard Gas Detoxification. Cell Reports Physical Science, 2020, 1, 100024.	5.6	107
44	Single-Crystal Polycationic Polymers Obtained by Single-Crystal-to-Single-Crystal Photopolymerization. Journal of the American Chemical Society, 2020, 142, 6180-6187.	13.7	50
45	A Flexible Interpenetrated Zirconiumâ€Based Metal–Organic Framework with High Affinity toward Ammonia. ChemSusChem, 2020, 13, 1710-1714.	6.8	36
46	Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science, 2020, 368, 297-303.	12.6	429
47	Coordination Chemistry in the Structural and Functional Exploration of Actinide-Based Metal-Organic Frameworks. Bulletin of Japan Society of Coordination Chemistry, 2020, 75, 3-12.	0.2	1
48	A Hierarchical Nanoporous Diamondoid Superstructure. CheM, 2019, 5, 2353-2364.	11.7	23
49	Ligand-Directed Reticular Synthesis of Catalytically Active Missing Zirconium-Based Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 12229-12235.	13.7	58
50	Modular Synthesis of Highly Porous Zr-MOFs Assembled from Simple Building Blocks for Oxygen Storage. ACS Applied Materials & Samp; Interfaces, 2019, 11, 42179-42185.	8.0	17
51	Zirconium-Based Metal–Organic Framework with 9-Connected Nodes for Ammonia Capture. ACS Applied Nano Materials, 2019, 2, 6098-6102.	5.0	59
52	Topology and porosity control of metal–organic frameworks through linker functionalization. Chemical Science, 2019, 10, 1186-1192.	7.4	129
53	Exploring the Role of Hexanuclear Clusters as Lewis Acidic Sites in Isostructural Metal–Organic Frameworks. Chemistry of Materials, 2019, 31, 4166-4172.	6.7	80
54	Vanadium Catalyst on Isostructural Transition Metal, Lanthanide, and Actinide Based Metal–Organic Frameworks for Alcohol Oxidation. Journal of the American Chemical Society, 2019, 141, 8306-8314.	13.7	112

#	Article	IF	CITATIONS
55	Metal–Organic Frameworks with Metal–Catecholates for O ₂ /N ₂ Separation. Journal of Physical Chemistry C, 2019, 123, 12935-12946.	3.1	33
56	Stabilization of Formate Dehydrogenase in a Metal–Organic Framework for Bioelectrocatalytic Reduction of CO 2. Angewandte Chemie, 2019, 131, 7764-7768.	2.0	31
57	Stabilization of Formate Dehydrogenase in a Metal–Organic Framework for Bioelectrocatalytic Reduction of CO ₂ . Angewandte Chemie - International Edition, 2019, 58, 7682-7686.	13.8	103
58	Reticular Access to Highly Porous acs -MOFs with Rigid Trigonal Prismatic Linkers for Water Sorption. Journal of the American Chemical Society, 2019, 141, 2900-2905.	13.7	150
59	Introducing Nonstructural Ligands to Zirconia-like Metal–Organic Framework Nodes To Tune the Activity of Node-Supported Nickel Catalysts for Ethylene Hydrogenation. ACS Catalysis, 2019, 9, 3198-3207.	11.2	68
60	Air oxidation of sulfur mustard gas simulants using a pyrene-based metal–organic framework photocatalyst. Beilstein Journal of Nanotechnology, 2019, 10, 2422-2427.	2.8	14
61	Guest-Dependent Single-Crystal-to-Single-Crystal Phase Transitions in a Two-Dimensional Uranyl-Based Metal–Organic Framework. Crystal Growth and Design, 2019, 19, 506-512.	3.0	29
62	Metal–Organic Framework Supported Single Site Chromium(III) Catalyst for Ethylene Oligomerization at Low Pressure and Temperature. ACS Sustainable Chemistry and Engineering, 2019, 7, 2553-2557.	6.7	56
63	Effect of Redox "Non-Innocent―Linker on the Catalytic Activity of Copper-Catecholate-Decorated Metal–Organic Frameworks. ACS Applied Materials & Samp; Interfaces, 2018, 10, 635-641.	8.0	52
64	Room Temperature Synthesis of an 8-Connected Zr-Based Metal–Organic Framework for Top-Down Nanoparticle Encapsulation. Chemistry of Materials, 2018, 30, 2193-2197.	6.7	80
65	Enforcing Ising-like magnetic anisotropy <i>via</i> trigonal distortion in the design of a W(<scp>v</scp>)–Co(<scp>ii</scp>) cyanide single-chain magnet. Chemical Science, 2018, 9, 119-124.	7.4	40
66	From Transition Metals to Lanthanides to Actinides: Metal-Mediated Tuning of Electronic Properties of Isostructural Metal–Organic Frameworks. Inorganic Chemistry, 2018, 57, 13246-13251.	4.0	80
67	Highly Selective Acetylene Semihydrogenation Catalyzed by Cu Nanoparticles Supported in a Metal–Organic Framework. ACS Applied Nano Materials, 2018, 1, 4413-4417.	5.0	27
68	Catalytic chemoselective functionalization of methane in a metalâ^'organic framework. Nature Catalysis, 2018, 1, 356-362.	34.4	153
69	A Flexible Metal–Organic Framework with 4-Connected Zr ₆ Nodes. Journal of the American Chemical Society, 2018, 140, 11179-11183.	13.7	158
70	Single-molecule magnet behavior in a mononuclear dysprosium(<scp>iii</scp>) complex with 1-methylimidazole. RSC Advances, 2017, 7, 2766-2772.	3.6	7
71	Size effect of the active sites in UiO-66-supported nickel catalysts synthesized via atomic layer deposition for ethylene hydrogenation. Inorganic Chemistry Frontiers, 2017, 4, 820-824.	6.0	38
72	Conducting Molecular Nanomagnet of Dy III with Partially Charged TCNQ Radicals. Chemistry - A European Journal, 2017, 23, 7448-7452.	3.3	26

#	Article	IF	Citations
73	Systematic Investigation of Controlled Nanostructuring of Mn12 Single-Molecule Magnets Templated by Metal–Organic Frameworks. Inorganic Chemistry, 2017, 56, 6965-6972.	4.0	29
74	A New Nitronyl Nitroxide Radical as Building Blocks for a Rare $\langle i \rangle S \langle i \rangle = 13/2$ High Spin Ground State 2p-3d Complex and a 2p-3d-4f Chain. Crystal Growth and Design, 2017, 17, 95-99.	3.0	26
75	Structural diversity and magnetic properties of six cobalt coordination polymers based on 2,2′-phosphinico-dibenzoate ligand. Dalton Transactions, 2016, 45, 19500-19510.	3.3	23
76	Self-Assembly of Organocyanide Dianions and Metal–Organic Macrocycles into Polymeric Architectures Including an Unprecedented Quadruple Helical Aperiodic Structure. Crystal Growth and Design, 2016, 16, 1805-1811.	3.0	7
77	Switching of Adsorption Properties in a Zwitterionic Metal–Organic Framework Triggered by Photogenerated Radical Triplets. Chemistry of Materials, 2016, 28, 7825-7832.	6.7	65
78	Trigonal antiprismatic Co(ii) single molecule magnets with large uniaxial anisotropies: importance of Raman and tunneling mechanisms. Chemical Science, 2016, 7, 6519-6527.	7.4	112
79	A cobalt(<scp>ii</scp>) spin-crossover compound with partially charged TCNQ radicals and an anomalous conducting behavior. Chemical Science, 2016, 7, 1569-1574.	7.4	58
80	Metal–Organic Frameworks as Platforms for the Controlled Nanostructuring of Single-Molecule Magnets. Journal of the American Chemical Society, 2015, 137, 9254-9257.	13.7	135
81	Magnetic ordering in TCNQ-based metal–organic frameworks with host–guest interactions. Inorganic Chemistry Frontiers, 2015, 2, 904-911.	6.0	58
82	Structural distortions of the spin-crossover material [Co(pyterpy) ₂](TCNQ) ₂ mediated by supramolecular interactions. Journal of Materials Chemistry C, 2015, 3, 9292-9298.	5.5	25
83	Singleâ€Chain Magnetic Behavior in a Heteroâ€Triâ€Spin Complex Mediated by Supramolecular Interactions with TCNQF ^{.â^'} Radicals. Angewandte Chemie - International Edition, 2014, 53, 11567-11570.	13.8	79
84	A cadmium TCNQ-based semiconductor with versatile binding modes and non-integer redox states. Chemical Communications, 2014, 50, 1429-1431.	4.1	26
85	Semiconductors and Aperiodic Structures in Organocyanide-Based Materials. Acta Crystallographica Section A: Foundations and Advances, 2014, 70, C1265-C1265.	0.1	0
86	Synthesis of acid-functionalized composite via surface deposition of acid-containing amorphous carbon. Applied Surface Science, 2012, 258, 7166-7173.	6.1	5