## Serena Marchio'

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1539707/publications.pdf Version: 2024-02-01



SEDENA MARCHIO'

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Paclitaxel Restores Sensitivity to Chemotherapy in Preclinical Models of Multidrug-Resistant<br>Intrahepatic Cholangiocarcinoma. Frontiers in Oncology, 2022, 12, 771418.                                                                  | 2.8 | 4         |
| 2  | Nanoparticles as Physically- and Biochemically-Tuned Drug Formulations for Cancers Therapy.<br>Cancers, 2022, 14, 2473.                                                                                                                    | 3.7 | 7         |
| 3  | Bacteriophages as Therapeutic and Diagnostic Vehicles in Cancer. Pharmaceuticals, 2021, 14, 161.                                                                                                                                           | 3.8 | 30        |
| 4  | Phage Display-Based Nanotechnology Applications in Cancer Immunotherapy. Molecules, 2020, 25, 843.                                                                                                                                         | 3.8 | 32        |
| 5  | Emerging Pharmacologic Targets in Cerebral Cavernous Malformation and Potential Strategies to Alter the Natural History of a Difficult Disease. JAMA Neurology, 2019, 76, 492.                                                             | 9.0 | 36        |
| 6  | A Functional Idiotype/Anti-Idiotype Network Is Active in Genetically Gluten-Intolerant Individuals<br>Negative for Both Celiac Disease–Related Intestinal Damage and Serum Autoantibodies. Journal of<br>Immunology, 2019, 202, 1079-1087. | 0.8 | 4         |
| 7  | Targeted nanomedicines for applications in preclinical cancer models. Bulletin of Russian State<br>Medical University, 2019, , 5-13.                                                                                                       | 0.2 | 0         |
| 8  | Anti-GRP78 autoantibodies induce endothelial cell activation and accelerate the development of atherosclerotic lesions. JCI Insight, 2018, 3, .                                                                                            | 5.0 | 31        |
| 9  | An antivascular vaccine to boost self-immunity and strike the tumor. Proceedings of the National<br>Academy of Sciences of the United States of America, 2017, 114, E3164-E3165.                                                           | 7.1 | 1         |
| 10 | Interaction between Tumor Cell Surface Receptor RAGE and Proteinase 3 Mediates Prostate Cancer<br>Metastasis to Bone. Cancer Research, 2017, 77, 3144-3150.                                                                                | 0.9 | 31        |
| 11 | Autoantibodies against the cell surface–associated chaperone GRP78 stimulate tumor growth via<br>tissue factor. Journal of Biological Chemistry, 2017, 292, 21180-21192.                                                                   | 3.4 | 17        |
| 12 | Going viral? Linking the etiology of human prostate cancer to the <i> <scp>PCA</scp> 3 </i> long noncoding <scp>RNA</scp> and oncogenic viruses. EMBO Molecular Medicine, 2017, 9, 1327-1330.                                              | 6.9 | 10        |
| 13 | BMTP-11 is active in preclinical models of human osteosarcoma and a candidate targeted drug for<br>clinical translation. Proceedings of the National Academy of Sciences of the United States of America,<br>2017, 114, 8065-8070.         | 7.1 | 26        |
| 14 | Intracellular targeting of annexin A2 inhibits tumor cell adhesion, migration, and in vivo grafting.<br>Scientific Reports, 2017, 7, 4243.                                                                                                 | 3.3 | 38        |
| 15 | Brain endothelial cellâ€ŧargeted gene therapy of neurovascular disorders. EMBO Molecular Medicine,<br>2016, 8, 592-594.                                                                                                                    | 6.9 | 9         |
| 16 | BCAM and LAMA5 Mediate the Recognition between Tumor Cells and the Endothelium in the Metastatic Spreading of KRAS-Mutant Colorectal Cancer. Clinical Cancer Research, 2016, 22, 4923-4933.                                                | 7.0 | 50        |
| 17 | Towards a transcriptome-based theranostic platform for unfavorable breast cancer phenotypes.<br>Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12780-12785.                                   | 7.1 | 31        |
| 18 | Targeted molecular-genetic imaging and ligand-directed therapy in aggressive variant prostate cancer.<br>Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12786-12791.                          | 7.1 | 39        |

SERENA MARCHIO'

| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Interleukin-11 Receptor Is a Candidate Target for Ligand-Directed Therapy in Lung Cancer. American<br>Journal of Pathology, 2016, 186, 2162-2170.                                                                           | 3.8  | 18        |
| 20 | Ligand-targeted theranostic nanomedicines against cancer. Journal of Controlled Release, 2016, 240, 267-286.                                                                                                                | 9.9  | 154       |
| 21 | Self-targeting of TNF-releasing cancer cells in preclinical models of primary and metastatic tumors.<br>Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2223-2228.              | 7.1  | 35        |
| 22 | Neuroblastoma-targeted nanocarriers improve drug delivery and penetration, delay tumor growth and abrogate metastatic diffusion. Biomaterials, 2015, 68, 89-99.                                                             | 11.4 | 36        |
| 23 | PRUNE2 is a human prostate cancer suppressor regulated by the intronic long noncoding RNA<br><i>PCA3</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015,<br>112, 8403-8408.        | 7.1  | 226       |
| 24 | The combination of sorafenib and everolimus shows antitumor activity in preclinical models of malignant pleural mesothelioma. BMC Cancer, 2015, 15, 374.                                                                    | 2.6  | 24        |
| 25 | Synchronous down-modulation of miR-17 family members is an early causative event in the retinal angiogenic switch. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3770-3775.   | 7.1  | 39        |
| 26 | The Neuronal Pentraxin-2 Pathway Is an Unrecognized Target in Human Neuroblastoma, Which Also<br>Offers Prognostic Value in Patients. Cancer Research, 2015, 75, 4265-4271.                                                 | 0.9  | 20        |
| 27 | Anti-cancer effect and gene modulation of ET-743 in human biliary tract carcinoma preclinical models.<br>BMC Cancer, 2014, 14, 918.                                                                                         | 2.6  | 8         |
| 28 | Angiopoietin-like 7, a novel pro-angiogenetic factor over-expressed in cancer. Angiogenesis, 2014, 17,<br>881-896.                                                                                                          | 7.2  | 55        |
| 29 | The Combination of Sorafenib and Everolimus Abrogates mTORC1 and mTORC2 Upregulation in Osteosarcoma Preclinical Models. Clinical Cancer Research, 2013, 19, 2117-2131.                                                     | 7.0  | 96        |
| 30 | Novel phage display-derived neuroblastoma-targeting peptides potentiate the effect of drug nanocarriers in preclinical settings. Journal of Controlled Release, 2013, 170, 233-241.                                         | 9.9  | 41        |
| 31 | A peptide from the extracellular region of the synaptic protein α Neurexin stimulates angiogenesis and the vascular specific tyrosine kinase Tie2. Biochemical and Biophysical Research Communications, 2013, 432, 574-579. | 2.1  | 9         |
| 32 | The V1/V2 loop of HIVâ€1 gp120 is necessary for Tat binding and consequent modulation of virus entry.<br>FEBS Letters, 2013, 587, 2943-2951.                                                                                | 2.8  | 8         |
| 33 | Emerging lymphae for the fountain of life. EMBO Journal, 2013, 32, 609-611.                                                                                                                                                 | 7.8  | 6         |
| 34 | Luminescent Silica Nanoparticles for Cancer Diagnosis. Current Medicinal Chemistry, 2013, 20, 2195-2211.                                                                                                                    | 2.4  | 70        |
| 35 | Antitumor Activity of Src Inhibitor Saracatinib (AZD-0530) in Preclinical Models of Biliary Tract<br>Carcinomas. Molecular Cancer Therapeutics, 2012, 11, 1528-1538.                                                        | 4.1  | 14        |
| 36 | A complex of α <sub>6</sub> integrin and Eâ€cadherin drives liver metastasis of colorectal cancer cells<br>through hepatic angiopoietinâ€like 6. EMBO Molecular Medicine, 2012, 4, 1156-1175.                               | 6.9  | 44        |

SERENA MARCHIO'

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | IL-12-dependent innate immunity arrests endothelial cells in G0–G1 phase by a p21Cip1/Waf1-mediated mechanism. Angiogenesis, 2012, 15, 713-725.                                                                         | 7.2  | 5         |
| 38 | Targeted dual-color silica nanoparticles provide univocal identification of micrometastases in preclinical models of colorectal cancer. International Journal of Nanomedicine, 2012, 7, 4797.                           | 6.7  | 31        |
| 39 | SERS active Ag nanoparticles in mesoporous silicon: detection of organic molecules and peptide–antibody assays. Journal of Raman Spectroscopy, 2012, 43, 730-736.                                                       | 2.5  | 70        |
| 40 | Combined targeting of perivascular and endothelial tumor cells enhances anti-tumor efficacy of liposomal chemotherapy in neuroblastoma. Journal of Controlled Release, 2010, 145, 66-73.                                | 9.9  | 78        |
| 41 | Targeting the extracellular signature of metastatic colorectal cancers. Expert Opinion on<br>Therapeutic Targets, 2009, 13, 363-379.                                                                                    | 3.4  | 6         |
| 42 | A new computational approach to analyze human protein complexes and predict novel protein interactions. Genome Biology, 2007, 8, R256.                                                                                  | 9.6  | 8         |
| 43 | Cell surface-associated Tat modulates HIV-1 infection and spreading through a specific interaction with gp120 viral envelope protein. Blood, 2005, 105, 2802-2811.                                                      | 1.4  | 44        |
| 44 | Identification of CD36 molecular features required for its in vitro angiostatic activity. FASEB Journal, 2005, 19, 1713-1715.                                                                                           | 0.5  | 73        |
| 45 | Aminopeptidase A is a functional target in angiogenic blood vessels. Cancer Cell, 2004, 5, 151-162.                                                                                                                     | 16.8 | 132       |
| 46 | c-fos-induced growth factor/vascular endothelial growth factor D induces angiogenesis in vivo and<br>in vitro. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96,<br>9671-9676. | 7.1  | 240       |
| 47 | Vascular Endothelial Growth Factor-C Stimulates the Migration and Proliferation of Kaposi's Sarcoma Cells. Journal of Biological Chemistry, 1999, 274, 27617-27622.                                                     | 3.4  | 86        |
| 48 | Overexpression of the RON gene in human breast carcinoma. Oncogene, 1998, 16, 2927-2933.                                                                                                                                | 5.9  | 190       |