
Clare L Parish

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1539163/publications.pdf Version: 2024-02-01

CLADE | DADICH

#	Article	IF	CITATIONS
1	A combined cell and gene therapy approach for homotopic reconstruction of midbrain dopamine pathways using human pluripotent stem cells. Cell Stem Cell, 2022, 29, 434-448.e5.	11.1	23
2	Changing Fate: Reprogramming Cells via Engineered Nanoscale Delivery Materials. Advanced Materials, 2022, 34, e2108757.	21.0	9
3	A Hydrogel as a Bespoke Delivery Platform for Stromal Cell-Derived Factor-1. Gels, 2022, 8, 224.	4.5	Ο
4	Extracellular Matrix Biomimetic Hydrogels, Encapsulated with Stromal Cell-Derived Factor 1, Improve the Composition of Foetal Tissue Grafts in a Rodent Model of Parkinson's Disease. International Journal of Molecular Sciences, 2022, 23, 4646.	4.1	6
5	The association of enteric neuropathy with gut phenotypes in acute and progressive models of Parkinson's disease. Scientific Reports, 2021, 11, 7934.	3.3	18
6	Focal Ischemic Injury to the Early Neonatal Rat Brain Models Cognitive and Motor Deficits with Associated Histopathological Outcomes Relevant to Human Neonatal Brain Injury. International Journal of Molecular Sciences, 2021, 22, 4740.	4.1	2
7	Human stem cells harboring a suicide gene improve theÂsafety and standardisation of neural transplants in Parkinsonian rats. Nature Communications, 2021, 12, 3275.	12.8	21
8	FGF-MAPK signaling regulates human deep-layer corticogenesis. Stem Cell Reports, 2021, 16, 1262-1275.	4.8	12
9	Spontaneous formation of β-sheet nano-barrels during the early aggregation of Alzheimer's amyloid beta. Nano Today, 2021, 38, 101125.	11.9	44
10	Tissue Programmed Hydrogels Functionalized with GDNF Improve Human Neural Grafts in Parkinson's Disease. Advanced Functional Materials, 2021, 31, 2105301.	14.9	16
11	The application of human pluripotent stem cells to model the neuronal and glial components of neurodevelopmental disorders. Molecular Psychiatry, 2020, 25, 368-378.	7.9	29
12	Biomimetic Materials and Their Utility in Modeling the 3-Dimensional Neural Environment. IScience, 2020, 23, 100788.	4.1	33
13	An Optimized Protocol for the Generation of Midbrain Dopamine Neurons under Defined Conditions. STAR Protocols, 2020, 1, 100065.	1.2	18
14	Ischemic Injury Does Not Stimulate Striatal Neuron Replacement Even during Periods of Active Striatal Neurogenesis. IScience, 2020, 23, 101175.	4.1	3
15	Investigation of nerve pathways mediating colorectal dysfunction in Parkinson's disease model produced by lesion of nigrostriatal dopaminergic neurons. Neurogastroenterology and Motility, 2020, 32, e13893.	3.0	17
16	Viral Delivery of GDNF Promotes Functional Integration of Human Stem Cell Grafts in Parkinson's Disease. Cell Stem Cell, 2020, 26, 511-526.e5.	11.1	56
17	Transcriptional Profiling of Xenogeneic Transplants: Examining Human Pluripotent Stem Cell-Derived Grafts in the Rodent Brain. Stem Cell Reports, 2019, 13, 877-890.	4.8	7
18	Isolation of LMX1a Ventral Midbrain Progenitors Improves the Safety and Predictability of Human Pluripotent Stem Cell-Derived Neural Transplants in Parkinsonian Disease. Journal of Neuroscience, 2019, 39, 9521-9531.	3.6	23

#	Article	IF	CITATIONS
19	Axonal Growth of Midbrain Dopamine Neurons is Modulated by the Cell Adhesion Molecule ALCAM Through <i>Trans</i> -Heterophilic Interactions with L1cam, Chl1, and Semaphorins. Journal of Neuroscience, 2019, 39, 6656-6667.	3.6	20
20	Inhibition of amyloid beta toxicity in zebrafish with a chaperone-gold nanoparticle dual strategy. Nature Communications, 2019, 10, 3780.	12.8	132
21	Generation of four iPSC lines from peripheral blood mononuclear cells (PBMCs) of an attention deficit hyperactivity disorder (ADHD) individual and a healthy sibling in an Australia-Caucasian family. Stem Cell Research, 2019, 34, 101353.	0.7	11
22	Long-Term Motor Deficit and Diffuse Cortical Atrophy Following Focal Cortical Ischemia in Athymic Rats. Frontiers in Cellular Neuroscience, 2019, 13, 552.	3.7	6
23	Harnessing stem cells and biomaterials to promote neural repair. British Journal of Pharmacology, 2019, 176, 355-368.	5.4	34
24	Harnessing stem cells and biomaterials to promote neural repair. British Journal of Pharmacology, 2019, 176, 355-368.	5.4	1
25	Primary tissue for cellular brain repair in Parkinson's disease: Promise, problems and the potential of biomaterials. European Journal of Neuroscience, 2019, 49, 472-486.	2.6	18
26	Modelling the dopamine and noradrenergic cell loss that occurs in Parkinson's disease and the impact on hippocampal neurogenesis. Hippocampus, 2018, 28, 327-337.	1.9	20
27	Using minimalist selfâ€assembling peptides as hierarchical scaffolds to stabilise growth factors and promote stem cell integration in the injured brain. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1571-e1579.	2.7	44
28	Local Injection of Endothelin-1 in the Early Neonatal Rat Brain Models Ischemic Damage Associated with Motor Impairment and Diffuse Loss in Brain Volume. Neuroscience, 2018, 393, 110-122.	2.3	3
29	Shear Containment of BDNF within Molecular Hydrogels Promotes Human Stem Cell Engraftment and Postinfarction Remodeling in Stroke. Advanced Biology, 2018, 2, 1800113.	3.0	28
30	Long-Distance Axonal Growth and Protracted Functional Maturation of Neurons Derived from Human Induced Pluripotent Stem Cells After Intracerebral Transplantation. Stem Cells Translational Medicine, 2017, 6, 1547-1556.	3.3	21
31	Huntingtin Inclusions Trigger Cellular Quiescence, Deactivate Apoptosis, and Lead to Delayed Necrosis. Cell Reports, 2017, 19, 919-927.	6.4	98
32	Homophilic binding of the neural cell adhesion molecule CHL1 regulates development of ventral midbrain dopaminergic pathways. Scientific Reports, 2017, 7, 9368.	3.3	21
33	Peptide-Based Scaffolds Support Human Cortical Progenitor Graft Integration to Reduce Atrophy and Promote Functional Repair in a Model of Stroke. Cell Reports, 2017, 20, 1964-1977.	6.4	88
34	A PITX3 -EGFP Reporter Line Reveals Connectivity of Dopamine and Non-dopamine Neuronal Subtypes in Grafts Generated from Human Embryonic Stem Cells. Stem Cell Reports, 2017, 9, 868-882.	4.8	32
35	Temporally controlled growth factor delivery from a self-assembling peptide hydrogel and electrospun nanofibre composite scaffold. Nanoscale, 2017, 9, 13661-13669.	5.6	37
36	Specification of murine ground state pluripotent stem cells to regional neuronal populations. Scientific Reports, 2017, 7, 16001.	3.3	7

#	Article	IF	CITATIONS
37	Efficiently Specified Ventral Midbrain Dopamine Neurons from Human Pluripotent Stem Cells Under Xeno-Free Conditions Restore Motor Deficits in Parkinsonian Rodents. Stem Cells Translational Medicine, 2017, 6, 937-948.	3.3	55
38	Over-Expression of Meteorin Drives Cliogenesis Following Striatal Injury. Frontiers in Cellular Neuroscience, 2016, 10, 177.	3.7	7
39	Combined immunohistochemical and retrograde tracing reveals little evidence of innervation of the rat dentate gyrus by midbrain dopamine neurons. Frontiers in Biology, 2016, 11, 246-255.	0.7	7
40	GAPTrap: A Simple Expression System for Pluripotent Stem Cells and Their Derivatives. Stem Cell Reports, 2016, 7, 518-526.	4.8	27
41	Temporally controlled release of multiple growth factors from a self-assembling peptide hydrogel. Nanotechnology, 2016, 27, 385102.	2.6	38
42	Dopamine Receptor Antagonists Enhance Proliferation and Neurogenesis of Midbrain Lmx1a-expressing Progenitors. Scientific Reports, 2016, 6, 26448.	3.3	29
43	Tailoring minimalist self-assembling peptides for localized viral vector gene delivery. Nano Research, 2016, 9, 674-684.	10.4	41
44	Integrating Biomaterials and Stem Cells for Neural Regeneration. Stem Cells and Development, 2016, 25, 214-226.	2.1	26
45	Functionalized composite scaffolds improve the engraftment of transplanted dopaminergic progenitors in a mouse model of Parkinson's disease. Biomaterials, 2016, 74, 89-98.	11.4	89
46	Transcriptome analysis reveals transmembrane targets on transplantable midbrain dopamine progenitors. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1946-E1955.	7.1	52
47	Meningeal cells influence midbrain development and the engraftment of dopamine progenitors in Parkinsonian mice. Experimental Neurology, 2015, 267, 30-41.	4.1	12
48	14-3-3ζ deficient mice in the BALB/c background display behavioural and anatomical defects associated with neurodevelopmental disorders. Scientific Reports, 2015, 5, 12434.	3.3	39
49	Motor and behavioral phenotype in conditional mutants with targeted ablation of cortical D1 dopamine receptor-expressing cells. Neurobiology of Disease, 2015, 76, 137-158.	4.4	9
50	Genome-wide binding and mechanistic analyses of Smchd1-mediated epigenetic regulation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3535-44.	7.1	83
51	Chondroitinase improves midbrain pathway reconstruction by transplanted dopamine progenitors in Parkinsonian mice. Molecular and Cellular Neurosciences, 2015, 69, 22-29.	2.2	23
52	Functional Characterization of Friedreich Ataxia iPS-Derived Neuronal Progenitors and Their Integration in the Adult Brain. PLoS ONE, 2014, 9, e101718.	2.5	27
53	In vivo assessment of grafted cortical neural progenitor cells and host response to functionalized self-assembling peptide hydrogels and the implications for tissue repair. Journal of Materials Chemistry B, 2014, 2, 7771-7778.	5.8	71
54	Resolving pathobiological mechanisms relating to Huntington disease: Gait, balance, and involuntary movements in mice with targeted ablation of striatal D1 dopamine receptor cells. Neurobiology of Disease, 2014, 62, 323-337.	4.4	14

#	Article	IF	CITATIONS
55	Characterization of the Stability and Bio-functionality of Tethered Proteins on Bioengineered Scaffolds. Journal of Biological Chemistry, 2014, 289, 15044-15051.	3.4	29
56	Modulating Wnt signaling to improve cell replacement therapy for Parkinson's disease. Journal of Molecular Cell Biology, 2014, 6, 54-63.	3.3	31
57	Diverse Roles for Wnt7a in Ventral Midbrain Neurogenesis and Dopaminergic Axon Morphogenesis. Stem Cells and Development, 2014, 23, 1991-2003.	2.1	32
58	3D Electrospun scaffolds promote a cytotrophic phenotype of cultured primary astrocytes. Journal of Neurochemistry, 2014, 130, 215-226.	3.9	47
59	Ryk, a Receptor Regulating Wnt5a-Mediated Neurogenesis and Axon Morphogenesis of Ventral Midbrain Dopaminergic Neurons. Stem Cells and Development, 2013, 22, 2132-2144.	2.1	28
60	Tuning the amino acid sequence of minimalist peptides to present biological signals via charge neutralised self assembly. Soft Matter, 2013, 9, 3915.	2.7	60
61	Efficient expansion and dopaminergic differentiation of human fetal ventral midbrain neural stem cells by midbrain morphogens. Neurobiology of Disease, 2013, 49, 118-127.	4.4	30
62	Cell intrinsic and extrinsic factors contribute to enhance neural circuit reconstruction following transplantation in Parkinsonian mice. Journal of Physiology, 2013, 591, 77-91.	2.9	33
63	Locomotor hyperactivity in 14-3-3ζ KO mice is associated with dopamine transporter dysfunction. Translational Psychiatry, 2013, 3, e327-e327.	4.8	28
64	A Fully Human Inhibitory Monoclonal Antibody to the Wnt Receptor RYK. PLoS ONE, 2013, 8, e75447.	2.5	22
65	Developing stem cell-based therapies for neural repair. Frontiers in Cellular Neuroscience, 2013, 7, 198.	3.7	1
66	Transplantation of Fetal Midbrain Dopamine Progenitors into a Rodent Model of Parkinson's Disease. Methods in Molecular Biology, 2013, 1059, 169-180.	0.9	21
67	Biofunctionalisation of polymeric scaffolds for neural tissue engineering. Journal of Biomaterials Applications, 2012, 27, 369-390.	2.4	41
68	The human testisâ€determining factor SRY localizes in midbrain dopamine neurons and regulates multiple components of catecholamine synthesis and metabolism. Journal of Neurochemistry, 2012, 122, 260-271.	3.9	82
69	Promoting engraftment of transplanted neural stem cells/progenitors using biofunctionalised electrospun scaffolds. Biomaterials, 2012, 33, 9188-9197.	11.4	87
70	Neurons derived from human embryonic stem cells extend long-distance axonal projections through growth along host white matter tracts after intra-cerebral transplantation. Frontiers in Cellular Neuroscience, 2012, 6, 11.	3.7	41
71	SFRP1 and SFRP2 Doseâ€Dependently Regulate Midbrain Dopamine Neuron Development In Vivo and in Embryonic Stem Cells. Stem Cells, 2012, 30, 865-875.	3.2	58
72	The Potential of Stem Cells and Tissue Engineered Scaffolds for Repair of the Central Nervous System.		6

, 2012, , 97-111.

#	Article	IF	CITATIONS
73	Birth dating of midbrain dopamine neurons identifies A9 enriched tissue for transplantation into Parkinsonian mice. Experimental Neurology, 2012, 236, 58-68.	4.1	82
74	Chronic cocaine administration reduces striatal dopamine terminal density and striatal dopamine release which leads to drug-seeking behaviour. Neuroscience, 2011, 174, 143-150.	2.3	18
75	Functional Integration of Grafted Neural Stem Cell-Derived Dopaminergic Neurons Monitored by Optogenetics in an In Vitro Parkinson Model. PLoS ONE, 2011, 6, e17560.	2.5	94
76	Wnt5a Regulates Midbrain Dopaminergic Axon Growth and Guidance. PLoS ONE, 2011, 6, e18373.	2.5	86
77	Neuronal activity regulates expression of tyrosine hydroxylase in adult mouse substantia nigra pars compacta neurons. Journal of Neurochemistry, 2011, 116, 646-658.	3.9	47
78	Development of an In Vitro Model to Evaluate the Regenerative Capacity of Adult Brain-Derived Tyrosine Hydroxylase-Expressing Dopaminergic Neurons. Neurochemical Research, 2011, 36, 967-977.	3.3	5
79	Cellular Up-regulation of Nedd4 Family Interacting Protein 1 (Ndfip1) using Low Levels of Bioactive Cobalt Complexes. Journal of Biological Chemistry, 2011, 286, 8555-8564.	3.4	19
80	A Small Synthetic Cripto Blocking Peptide Improves Neural Induction, Dopaminergic Differentiation, and Functional Integration of Mouse Embryonic Stem Cells in a Rat Model of Parkinson's Disease Â. Stem Cells, 2010, 28, 1326-1337.	3.2	40
81	Creating a Ventral Midbrain Stem Cell Niche in an Animal Model for Parkinson's Disease. Stem Cells and Development, 2010, 19, 1995-2007.	2.1	2
82	Biomaterials for Brain Tissue Engineering. Australian Journal of Chemistry, 2010, 63, 1143.	0.9	99
83	Three-Dimensional Nanofibrous Scaffolds Incorporating Immobilized BDNF Promote Proliferation and Differentiation of Cortical Neural Stem Cells. Stem Cells and Development, 2010, 19, 843-852.	2.1	158
84	Dopamine D ² receptor knockout mice develop features of Parkinson disease. Annals of Neurology, 2009, 66, 472-484.	5.3	41
85	Wnt/β-Catenin Signaling Blockade Promotes Neuronal Induction and Dopaminergic Differentiation in Embryonic Stem Cells. Stem Cells, 2009, 27, N/A-N/A.	3.2	64
86	Liver X Receptors and Oxysterols Promote Ventral Midbrain Neurogenesis In Vivo and in Human Embryonic Stem Cells. Cell Stem Cell, 2009, 5, 409-419.	11.1	129
87	Wnt5a-treated midbrain neural stem cells improve dopamine cell replacement therapy in parkinsonian mice. Journal of Clinical Investigation, 2008, 118, 149-160.	8.2	152
88	Midbrain dopaminergic neurogenesis and behavioural recovery in a salamander lesion-induced regeneration model. Development (Cambridge), 2007, 134, 2881-2887.	2.5	99
89	Stem-Cell-Based Strategies for the Treatment of Parkinson's Disease. Neurodegenerative Diseases, 2007, 4, 339-347.	1.4	41
90	Inhibition of JNK increases survival of transplanted dopamine neurons in Parkinsonian rats. Cell Death and Differentiation, 2007, 14, 381-383.	11.2	19

#	Article	IF	CITATIONS
91	An Efficient Method for the Derivation of Mouse Embryonic Stem Cells. Stem Cells, 2006, 24, 844-849.	3.2	77
92	Cripto as a Target for Improving Embryonic Stem Cell–Based Therapy in Parkinson's Disease. Stem Cells, 2005, 23, 471-476.	3.2	62
93	Chronic corticotropin-releasing factor type 1 receptor antagonism with antalarmin regulates the dopaminergic system of Fawn-Hooded rats. Journal of Neurochemistry, 2005, 94, 1523-1534.	3.9	11
94	Mice Lacking the α4 Nicotinic Receptor Subunit Fail to Modulate Dopaminergic Neuronal Arbors and Possess Impaired Dopamine Transporter Function. Molecular Pharmacology, 2005, 68, 1376-1386.	2.3	36
95	Haloperidol treatment reverses behavioural and anatomical changes in cocaine-dependent mice. Neurobiology of Disease, 2005, 19, 301-311.	4.4	16
96	Spontaneous Formation of Lewy Bodies in a Rodent. , 2005, , 321-329.		0
97	Organized Development from Human Embryonic Stem Cells after Injection into Immunodeficient Mice. Stem Cells and Development, 2004, 13, 421-435.	2.1	81
98	Changes in function and ultrastructure of striatal dopaminergic terminals that regenerate following partial lesions of the SNpc. Journal of Neurochemistry, 2004, 87, 1056-1056.	3.9	0
99	Changes in function and ultrastructure of striatal dopaminergic terminals that regenerate following partial lesions of the SNpc. Journal of Neurochemistry, 2004, 86, 329-343.	3.9	48
100	Quantified Assessment of Terminal Density and Innervation. Current Protocols in Neuroscience, 2004, 27, Unit 1.13.	2.6	8
101	Macrophages and Microglia Produce Local Trophic Gradients That Stimulate Axonal Sprouting Toward but Not beyond the Wound Edge. Molecular and Cellular Neurosciences, 2002, 21, 436-453.	2.2	178
102	The Role of Interleukin-1, Interleukin-6, and Glia in Inducing Growth of Neuronal Terminal Arbors in Mice. Journal of Neuroscience, 2002, 22, 8034-8041.	3.6	100
103	Effects of long-term treatment with dopamine receptor agonists and antagonists on terminal arbor size. European Journal of Neuroscience, 2002, 16, 787-794.	2.6	61
104	The Role of Dopamine Receptors in Regulating the Size of Axonal Arbours. Advances in Behavioral Biology, 2002, , 313-321.	0.2	1
105	The Role of Dopamine Receptors in Regulating the Size of Axonal Arbors. Journal of Neuroscience, 2001, 21, 5147-5157.	3.6	114
106	Axonal sprouting following lesions of the rat substantia nigra. Neuroscience, 2000, 97, 99-112.	2.3	180